A Quantum Generalized Evidence Combination Rule Algorithm

Yu Zhou^a, Fuyuan Xiao ^{a,*}

^aSchool of Big Data and Software Engineering, Chongqing University, Chongqing 401331, China

Abstract

In this paper, a quantum generalized combination rule algorithm is proposed to reduce the computational complexity of generalized evidence theory combination rule.

Keywords: Generalized evidence theory, Generalized combination rule,

Quantum algorithm, Quantum generalized combination rule

1. QGCR: Quantum Generalized Combination Rule

QGCR algorithm consists of the following four steps.

Step 1: Transform GBBAs into \mathcal{M}^a and \mathcal{M}^b .

Apply a transform function expressed as follow.

$$\mathcal{M}_i = \sqrt{m(\mathcal{F}_i)}.\tag{1}$$

By this transformation, \mathcal{M} now satisfies $\sum_{i=0}^{2^n-1} |\mathcal{M}_i|^2 = 1$.

Step 2: Encode \mathcal{M}^a and \mathcal{M}^b into quantum states.

^{*}Corresponding author: Fuyuan Xiao (e-mail: doctorxiaofy@hotmail.com, xiao-fuyuan@cqu.edu.cn).

Let $G(|\mathcal{F}_t\rangle, i)$ be the *i*-th bit of the quantum basis state $|\mathcal{F}_t\rangle$ and symbol \mathcal{F}_t be the corresponding proposition. Then the correspondence can be characterized as follows:

$$\begin{cases} G(|\mathcal{F}_t\rangle, i) = |1\rangle \Leftrightarrow \theta_i \in \mathcal{F}_t ,\\ G(|\mathcal{F}_t\rangle, i) = |0\rangle \Leftrightarrow \theta_i \notin \mathcal{F}_t . \end{cases}$$
(2)

The quantum superposition state could be expressed as follow:

$$|\Psi\rangle = \sum_{i=0}^{2^{n}-1} \mathcal{M}_{i} |\mathcal{F}_{i}\rangle, \qquad (3)$$

Step 3: Apply the combination quantum circuit.

Use a specific quantum circuit QC to draw the combination results. The quantum superposition state in target register is expressed as follow:

$$|\psi_{a}\rangle \oplus |\psi_{b}\rangle = |1\rangle \sum_{|\mathcal{F}_{u}\cap\mathcal{F}_{v}\rangle = |\mathcal{F}_{t}\rangle, u+v=0} \mathcal{M}_{u}^{a}\mathcal{M}_{v}^{b} |\mathcal{F}_{t}\rangle + |0\rangle \sum_{|\mathcal{F}_{u}\cap\mathcal{F}_{v}\rangle = |\mathcal{F}_{t}\rangle, u+v\neq0} \mathcal{M}_{u}^{a}\mathcal{M}_{v}^{b} |\mathcal{F}_{t}\rangle.$$
(4)

Step 4: Measure target register to estimate combination result.

The combination results could be estimated by following rules:

$$K = \sum_{|\mathcal{F}_u \cap \mathcal{F}_v\rangle = |\mathcal{F}_0\rangle} m_a(\mathcal{F}_u) m_b(\mathcal{F}_v)$$
(5)
$$= \hat{P}(|1\rangle |\mathcal{F}_0\rangle) + \hat{P}(|0\rangle |\mathcal{F}_0\rangle), \qquad (5)$$
$$m(\emptyset) = \begin{cases} m_a(\mathcal{F}_0) m_b(\mathcal{F}_0) = \hat{P}(|1\rangle |\mathcal{F}_0\rangle), & K \neq 1, \\ 1, & K = 1, \end{cases}$$
(6)
$$m(\mathcal{F}_t) = \frac{(1 - m(\emptyset)) \sum_{|\mathcal{F}_u \cap \mathcal{F}_v\rangle = |\mathcal{F}_t\rangle} m_a(\mathcal{F}_u) m_b(\mathcal{F}_v)}{1 - K} \\= \frac{(1 - m(\emptyset)) \hat{P}(|0\rangle |\mathcal{F}_t\rangle)}{1 - K}, \quad t \neq 0, \qquad (7)$$

where $\hat{P}(|\mathcal{F}\rangle)$ is the probability of observing a quantum basis state in measurement.

2. Conclusion

The proposed QGCR can exponentially reduce the computational complexity of generalized combination rule.

References

 Y. Deng, "Generalized evidence theory," Applied Intelligence, vol. 43, no. 3, pp. 530–543, 2015.