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Abstract

Hypergraphs are generalization of graphs, which have several useful applications. Sunflower hypergraphs
are interesting hypergraphs, which become linear in some cases. In this paper, we discuss the Siedel spec-
trum of these hypergraphs.

Introduction

Let H = (V,E) be a hypergraph with V = {v1, v2, v3, . . . , vn} and E = {e1, e2, e3, . . . , em}. Each edge
ei is a subset of V . Let A(H) be the adjacency matrix of H , which is defined by,

A(H) =

{
aij = |ek : i ̸= j; (vi, vj) ∈ ek ⊂ E|
0 otherwise.

We denote by Op,q, Jp,q and Ip the zero matrix of order pq, the all ones matrix of order pq and identity
matrices of order p respectively. In case p = q, we just write Jp or Op. Then, the definition for Sediel matrix
S(H) of a hypergraph [10] is given by S(H) = Jn − In − 2A(H). This paper has terminologies, method
and proof technique heavily inspired from [5].

The characteristic polynomial of hypergraph H , with respect to the adjacency matrix is,

ϕA(H,λ) = det(A− λI).

A complete graph is a graph in which every pair of distinct vertices is connected by an edge. Then, the
adjacency matrix of a complete graph on p vertices is denoted by Kp. Let CX(n) be the characteristic
polynomial of X times the Siedel matrix of the complete graph on n vertices.

In [1], Banerjee and Das discuss the adjacency spectrum of the sunflower. Also, hyperstar [2] is a particular
case of the sunflower hypergraph. Cardoso gives the adjacency spectrum of hyperstar. Rodrı́guez [6]
emphasis on the Laplacian matrix of hypergraph. The properties of the adjacency and Laplacian spectrum
of (k, r) regular hypergraph are presented in [4]. Here, we focus on the Seidel spectrum of the sunflower
hypergraph.

Definitions

Definition 1. A sunflower hypergraph SH(n, p, h) is an h-uniform hypergraph of order n = h+ (k − 1)p
and size k(1 ≤ p ≤ h − 1 and h ≥ 3) such that each edge consists of p distinct vertices and a common
subset to all edges with h− p vertices.
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Lemma 1. The eigenvalues of the matrix X = aIn+ bJn are given by bn+ a with multiplicity 1 and a with
multiplicity n− 1.
Lemma 2. [3] Let A and D be square matrices of arbitrary orders. The determinant of the block matrix

M =

(
A B
C D

)
with invertible matrix D is given by |M | = |D||A−BD−1C| = ||D|A−B·adj(D)C|

|D|n−1 .

For a square matrix A and vectors u, v, we have, the Sherman-Morrison formula [7], which is a special case
of Woodbury formula [8],[9] is

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u

.

Spectrum of sunflower hypergraph

The adjacency matrix of sunflower hypergraphs SH(n, h, p), when p ̸= 1 can be given as

A(SH(n, h, p)) =


Kp O . . . O Jp,h−p

Op Kp . . . Op Jp,h−p

Op Op
. . . (k)− times Op Jp,h−p

Op Op . . . Kp Jp,h−p

Jh−p,p Jh−p,p . . . Jh−p,p k(Kh−p)


where k = n−h

p . (
On−h+1 Jn−h+1,h−1

Jh−1,n−h+1 kKh−1

)
.

Since the Siedel adjacency matrix of a hypergraph with adjacency matrix A of order n is defined as Jn −
In − 2A, therefore, we get that, the matrices of which we wish to find the spectrum are

−Kp Jp . . . Jp −Jp,h−p

Jp −Kp . . . Jp −Jp,h−p

Jp Jp
. . . (k)− times Jp −Jp,h−p

Jp Jp . . . −Kp −Jp,h−p

−Jh−p,p −Jh−p,p . . . −Jh−p,p −X(Kh−p)

 ,

where X = 2k − 1 and p ̸= 1; and, (
Kn−h+1 −Jn−h+1,h−1

−Jh−1,n−h+1 −XKh−1

)
,

when p = 1.

The generalization of the Lemma 1 is the following.
Theorem 1. If A is a k order square matrix having constant row sum r and having the same eigenvectors
as aI + bJ . Then, the eigenvalues of the matrix M defined by

M =


A bJk . . . bJk
bJk A . . . bJk

...
... (n− times)

...
bJk . . . . . . A


are given by r+bk(n−1) with multiplicity 1, r−bk with multiplicity n−1 and d with multiplicity k(n−1),
where d is the eigenvalue of A with respect to the eigenvectors other than (1 1 1 . . . 1)T .
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Proof. From Lemma 1, we can construct eigenvectors for M as follows: Let j⃗i denote the all ones vector
of order i. Let the eigenvectors of A except j⃗k be labelled as e1, e2, . . . , ek−1. Then, we have the eigen-
vectors of M to be j⃗kn, (⃗jk 0 . . . − j⃗k)

T , (0 j⃗k 0 . . . − j⃗k)
T , . . . , (0 0 . . . 0 − j⃗k)

T , (e1 0 0 . . . 0)T ,
(e2 0 . . . 0)T , . . . , (ek−1 0 . . . 0)T , (0 e1 0 . . . 0)

T , . . . , (0 0 . . . ek−1)
T . The corresponding eigenvalues

would then be r + (bkn − bk) = r + bk(n − 1) with multiplicity 1 (for eigenvector j⃗kn), r − bk with
multiplicity n − 1 (for eigenvectors (⃗jk 0 . . . − j⃗k)

T , (0 j⃗k 0 . . . − j⃗k)
T , . . . , (0 0 . . . 0 j⃗k − j⃗k)

T ) and
lastly the eigenvalue of A corresponding to the eigenvectors ei with multiplicity k(n−1). The vectors given
above are actually eigenvectors can be easily verified by multiplication and by using the properties of A and
bJk.

Lemma 3. If Kn is the adjacency matrix of the complete graph on n vertices, then adjugate of M =
−k(Kn)− λIn has the form

Ckp(n− 1) (k − λ)n−2 . . . k(k − λ)n−2

(1− λ)n−2 Ckp(n− 1) . . . k(k − λ)n−2

...
...

. . .
...

k(k − λ)n−2 k(k − λ)n−2 . . . Ckp(n− 1)


, where CX(n) = (k−λ)n−1(k− kn−λ) is the characteristic polynomial of M (or negative of k times the
adjacency matrix of the complete graph of order n).

Proof. As Kn = (k − λ)In − kJn is invertible, we again use the property that for any matrix A, adj(A) =
|A|·A−1. To calculate the inverse of M , we use Sherman-Morrison formula [7]. By the formula, we have, for
any square matrix A, (A+ uvT )−1 = A−1 − A−1uvTA−1

1+vTA−1u
, where u and v are vectors and 1 + vTA−1u ̸= 0.

Here, we can take u = (1 1 . . . (n − times) 1)T and v = (−k − k . . . (n − times) − k)T so that
uvT = −kJn and X = (k − λ)In. Then, we get

M−1 =
1

k − λ
In −

1
k−λInuv

T 1
k−λIn

1 + −kn
k−λ

=
1

k − λ
In −

1
(k−λ)2

(−kJn)

(k−λ)−kn
k−λ

=
1

(k − λ)(k − λ− kn)
(k − λ− n)In + kJn

This implies that the adjugate then becomes |M | ·M−1 = CX(n) 1
(k−λ)(k−λ−kn)((k − λ − kn)In + kJn)

= (k − λ)n−2(k − λ − kn)In + (k − λ)n−2Jn = (k − λ)n−2((2k − λ − nk) − k)In + (k − λ)n−2kJn
= (CX(n − 1) − (k − λ)n−2)In + k(k − λ)n−2. This matrix, when expanded, at once gives the desired
result.

Lemma 4. If Kh−p denotes the adjacency matrix of the complete graph on h vertices, then we have
Jn−h+p,h−p · adj(−XKh − λIh) · Jh−p,n−h+p = ((X − λ)(h−p−2)(−λ+X(1− h+ p))(h− p) +X(h−
p))2)Jn−h+p.

Proof. The proof is straight-forward multiplication, using Lemma 3 and noting that multiplication of Jm,n

with its transpose equals nJm,m.

Theorem 2. The spectrum of the Siedel matrix of SH(n, h, p) with parameters n, h, p; p ̸= {1, (h − 1)},
and h > 2 is given by the roots of the characteristic polynomial F (λ) = (X−λ)h−p−2(1−2p−λ)k−1(1−
λ)n−h+p−k ·A, where A = −2X2h+ (X2 +X)h2 − (X2 −X)p2 − ((X + 1)h− (X − 1)p− 2X − n−
1)λ2−λ3+X2+(X2− (X2+X)h)n− (2Xh− (X2+X)n)p− ((X+1)h2− (X−1)p2+X2− (X2+
3X)h− ((X + 1)h− 2X)n+ (X2 + (X + 1)n−X − 2h)p+ 2X)λ. In particular, it has an eigenvalue
of 1 with multiplicity at least n − h − k + p, X = 2k − 1 with multiplicity at least h − p − 2, and 1 − 2p
with multiplicity at least k − 1.
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Proof. The Siedel matrix of SH(n, h, p) is given by:

S(SH) =


−Kp Jp . . . Jp −Jp,h−p

Jp −Kp . . . Jp −Jp,h−p

Jp Jp
. . . (k)− times Jp −Jp,h−p

Jp Jp . . . −Kp −Jp,h−p

−Jh−p,p −Jh−p,p . . . −Jh−p,p −X(Kh−p)


where X = 2k − 1. We proceed to calculate the characteristic polynomial of the matrix S(SH). This is
nothing but determinant of the matrix S(SH)− λIn. In matrix form, this is

−Kp − λIp Jp . . . Jp −Jp,h−p

Jp −Kp − λIp . . . Jp −Jp,h−p

Jp Jp
. . . (k)− times Jp −Jp,h−p

Jp Jp . . . −Kp − λIp −Jp,h−p

−Jh−p,p Jh−p,p . . . Jh−p,p −X(Kh−p)− λIh−p


By using Lemma 2, the determinant can be written as:

| −XKh−p − λIh−p|M − Jn−h+p,h−p · adj(−XKh−p − λIh−p)Jh−p,n−h+p|
| −XKh−p − λIh|n−h+p−1

,

where M is the block matrix of the first n− h+ p rows and columns given by
−Kp − λIp Jp . . . Jp

Jp −Kp − λIp . . . Jp

Jp Jp
. . . (k)− times Jp

Jp Jp . . . −Kp − λIp

 .

Taking cognizance of the fact that | −XKh−p − λIh−p| = CX(h − p) and, from Lemma 4, Jn−h+p,h−p ·
adj(−XKh−p−λIh)Jh−p,n−h+p = ((X −λ)(h−p−2)(−λ+X(1−h+ p))(h− p)+X(h− p))2)Jn−h+p.

The determinant is given by:

|CX(h− p)M − ((X − λ)(h−p−2)(−λ+X(1− h+ p))(h− p) +X(h− p))2)Jn−h+p|
(CX(h− p))n−h+p−1

.

We take Y = (X − λ)(h−p−2)((−λ+X(1− h+ p))(h− p) +X(h− p)2). Then, the above becomes, in
block form:

1

(CX(h− p))n−h+p−1

∣∣∣∣∣∣∣
CX(h−p)[−Kp−λIp]−Y Jp Jp(CX(h−p)−Y ) ... Jp(CX(h−p)−Y )

Jp(CX(h−p)−Y ) CX(h−p)[−Kp−λIp]−Y Jp ... Jp(CX(h−p)−Y )

Jp(CX(h−p)−Y ) Jp(CX(h−p)−Y )
. . .(k)−times Jp(CX(h−p)−Y )

Jp(CX(h−p)−Y ) Jp(CX(h−p)−Y ) ... CX(h−p)[−Kp−λIp]−Y Jp

∣∣∣∣∣∣∣
Comparing the above matrix with Theorem 1, we get A = CX(h − p)[−Kp − λIp] − Y Jp and b =
CX(h− p)− Y . Therefore, as the eigenvalues of matrix in this case are A are CX(h− p)(n+ 1− p− h−
λ)+Y (h−p−n) with multiplicity 1, (CX(h)(1−2p−λ)) with multiplicity k−1 and CX(h−p)(1−λ) with
multiplicity n−h+p−k, the determinant will be equal to CX(h−p)(n+1−p−h−λ)+Y (h−p−n)(CX(h−
p)(1−2p−λ))k−1(CX(h−p)(1−x))n−h+p−1]. Simplifying the expression using the form of CX(h−p) =
(X − λ)h−p−1(X(1 − h + p) − λ), we get F (λ) = (X − λ)h−p−2(1 − 2p − λ)k−1(1 − λ)n−h+p−k · A,
where A = −2X2h+(X2+X)h2− (X2−X)p2− ((X+1)h− (X−1)p−2X−n−1)λ2−λ3+X2+
(X2 − (X2 +X)h)n− (2Xh− (X2 +X)n)p− ((X +1)h2 − (X − 1)p2 +X2 − (X2 +3X)h− ((X +

4
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1)h− 2X)n+ (X2 + (X + 1)n−X − 2h)p+ 2X)λ. The expression F (λ) is therefore the characteristic
polynomial of the desired Siedel matrix. Therefore, roots of the cubic polynomial A will fully determine
the spectrum of G, as the eigenvalues 1, X = 2k − 1 and 2p − 1 are already known with their minimum
multiplicities (n− 1− h+ p), (h− p− 2) and k − 1 from the expression.

Corollary 1. The spectrum of the Siedel matrix of SH(n, h, h − 1) with h > 2 is given by the roots of the
characteristic polynomial H(λ) = (x2 + (2p − 1)x + 1 − n)(1 − 2p − λ)k−1(1 − λ)n−1−k. Therefore,
the Siedel matrix has eigenvalues 1 with minimum multiplicity n− 1− k, 1− 2p with minimum multiplicity
k − 1.

Proof. In this case, the matrix retains a similar structure, except that since p = h−1 =⇒ h−p = 1, the last
block Kh−p is a zero matrix. In this case, the characteristic polynomial CX(h− p) reduces to just −λ, and
corresponding the adjugate is 1. Therefore, in the discussion of the above theorem, we replace CX(h−p) by
−λ and Y by (−1 −1 . . . (n−1)− times −1) · (−1 −1 . . . (n−1)− times −1)T = n−1. Simplifying
using these substitutions in the characteristic polynomial F (λ) of the previous theorem, we get the desired
characteristic polynomial as (1− 2p−λ)k−1(1−λ)n−1−k ·A, where A = −λ(n+2− 2h−λ)− (n− 1)2,
which, on simplifying, is H(λ) = (x2 + (2p− 1)x+ 1− n)(1− 2p− λ)k−1(1− λ)n−1−k. Therefore, the
roots of the quadratic (x2 + (2p − 1)x + 1 − n) fully determine the spectrum of the desired matrix in this
case, as the other eigenvalues 1 − 2p and 1 have their minimum multiplicities already determined as k − 1
and n− 1− k respectively.

Theorem 3. The spectrum of the Siedel matrix of SH(n, h, 1) h > 2 is given by the roots of the polynomial
G(λ) = (−λ− 1)n−h(X − λ)h−3A, where A = (X2 +X)h2 − ((X + 1)h− 3X − n)λ2 − λ3 − 2(X2 +
X)h+(2X2−(X2+X)h+X)n−((X+1)h2+2X2−(X2+3X+2)h−((X+1)h−3X−1)n+1)λ+X .
In particular, it has eigenvalue of 1 with multiplicity at least n − h, and X = 2k − 1 with multiplicity at
least h− 3.

Proof. In this case, the Siedel matrix of SH(n, h, 1) has the form

S(SH) =

(
Kn−h+1 −Jn−h+1,h−1

−Jh−1,n−h+1 −XKh−1

)
, where X = 2k − 1 = 2(n− h+ 1)− 1 = 2n− 2h+ 1, and other symbols have their usual meaning.

We proceed to calculate the characteristic polynomial of the above matrix. This is nothing but determinant
of the matrix S(SH)− λIn. In matrix form, this is(

Kn−h+1 − λIn−h+1 −Jn−h+1,h−1

−Jh−1,n−h+1 −XKh−1 − λIh−1

)
By using Lemma 2, the determinant can be written as:

| −XKh−1 − λIh−1|Kn−h+1 − Jn−h+1,h−1 · adj(−XKh−1 − λIh−1)Jh−1,n−h+1|
| −XKh−1 − λIh|n−h

.

Taking cognizance of the fact that | −XKh−1 − λIh−1| = CX(h− 1) and Jn−h+1,h−1 · adj(−XKh−1 −
λIh)Jh−1,n−h+1 = ((X − λ)(h−1)(−λ +X(1 − h + 1))(h − 1) +X(h − 1))2)Jn−h+1 from (2), we get

the determinant as |CX(h−1)Kn−h+1−λIn−h+1−((X−λ)(h−1)(−λ+X(1−h+1))(h−1)+X(h−p))2)Jn−h+1|
(CX(h−1))n−h .

We take Y = (X − λ)(h−3)((−λ + X(2 − h))(h − 1) + X(h − 1)2). Then, the determinant becomes
|CX(h−1)(Kn−h+1−λIn−h+1)−Y Jn−h+1|

(CX(h−1))n−h =
|(CX(h−1)−Y )Jn−h+1+CX(h−1)(−λ−1)In−h+1|

(CX(h−1))n−h . From Lemma 1, the
eigenvalues of (CX(h − 1) − Y )JYn−h+1 + (−λ − CX(h − 1))In are (n − h + 1)(CX(h − 1) − Y )
with multiplicity 1 and CX(h − 1)(−λ − 1) with multiplicity n − h. Therefore, the determinant becomes
(CX(h−1)(−λ−1))n−h((CX(h−1)(n−h−λ)+Y (h−1−n)

(CX(h−1))n−h . Simplifying the expression using CX(h − p) = (X −
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λ)h−2(X(2− h)− λ), we get the determinant, which is the characteristic polynomial to be G(λ) = (−λ−
1)n−h(X − λ)h−3A, where A = (X2 +X)h2 − ((X + 1)h− 3X − n)λ2 − λ3 − 2(X2 +X)h+ (2X2 −
(X2 +X)h+X)n− ((X + 1)h2 + 2X2 − (X2 + 3X + 2)h− ((X + 1)h− 3X − 1)n+ 1)λ+X .

Corollary 2. The spectrum of the Siedel matrix of SH(n, 2, 1) is given by {n− 1,−1,−1, . . .}

Proof. In this case, the Siedel matrix is just the Siedel matrix of the star graph on n vertices. The spectrum
of this graph is well known, which can be derived either from the above theorem, by taking the adjugate of
Kh−p − λIh−p = K−1 − λI1 = −λ; or by the usual literature on bipartite spectral graph theory.

To aid in verification of formulae, we provide here, as an appendix, the SageMath code that constructs the
Siedel matrix of SH(n, h, p) and computes its eigenvalues. The formulae verification is also performed for
few cases.

Appendices

Appendix 1

Here is the code to generate the Siedel matrix SH(12, 6, 3).

def SiedelSunflowerMat(n,h,p):
k=(n-h)/p+1
q=graphs.CompleteGraph(p)
P=q.am()
A=graphs.CompleteGraph(h-p)
H=k*A.am()
x=n-h+p
J=ones_matrix(x,h-p)
N=block_matrix([[J],[H]])
N1=J.transpose()
Y1=[]
for i in list(range(k)):

Y1.append(P)
Y=block_diagonal_matrix(Y1)
Z=block_matrix([[Y],[N1]])
S=block_matrix([[Z,N]])
J2=ones_matrix(n)
I2=identity_matrix(n)
S1=J2-I2-2*S
return S1

S=SiedelSunflowerMat(12,6,3)
S.eigenvalues()

The output was [5, 5,−5,−5, 1, 1, 1, 1, 1, 1,−11.717797887081347, 5.717797887081348]. As a test, the
roots of the cubic defined in Theorem 2 is found as under:

var('x')
n=12
h=6
p=3
k=((n-h)/p)+1
X=2*k-1
A=-2*X^2*h + (X^2 + X)*h^2 - (X^2 - X)*p^2 - ((X + 1)*h - (X - 1)*p - 2*X - n - 1)*x^2 - x^3 + X^2 + (X^2 - (X^2 + X)*h)*n - (2*X*h - (X^2 + X)*n)*p - ((X + 1)*h^2 - (X - 1)*p^2 + X^2 - (X^2 + 3*X)*h - ((X + 1)*h - 2*X)*n + (X^2 + (X + 1)*n - X - 2*h)*p + 2*X)*x
A.roots(ring=RR)

6
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The output was [(−11.7177978870813, 1), (5.00000000000000, 1), (5.71779788708135, 1)], which
matches well with the expected result.

Appendix 2

Similarly, here is the code to generate the Siedel matrix of SH(13, 4, 3) and then find its eigenvalues

def SiedelSunflowerMat(n,h,p):
k=(n-h)/p+1
q=graphs.CompleteGraph(p)
P=q.am()
A=graphs.CompleteGraph(h-p)
H=k*A.am()
x=n-h+p
J=ones_matrix(x,h-p)
N=block_matrix([[J],[H]])
N1=J.transpose()
Y1=[]
for i in list(range(k)):

Y1.append(P)
Y=block_diagonal_matrix(Y1)
Z=block_matrix([[Y],[N1]])
S=block_matrix([[Z,N]])
J2=ones_matrix(n)
I2=identity_matrix(n)
S1=J2-I2-2*S
return S1

S=SiedelSunflowerMat(13,4,3)
S.eigenvalues()

The output was found to be [−5,−5,−5, 1, 1, 1, 1, 1, 1, 1, 1,−1.424428900898053, 8.42442890089806].
As a verification, here is the code to verify the quadratic presented in Corollary 1.

var('x,n,p')
n=13
h=4
p=h-1
s=x^2+(2*p-n)*x+(1-n)
s.roots(ring=RR)

The output was found to be [(−1.42442890089805, 1), (8.42442890089805, 1)], which is consonance with
the prior output.

Appendix 3

Lastly, the code to generate the Siedel matrix of SH(13, 6, 1)and then find its eigenvalues is presented
below:

def SiedelSunflowerMat(n,h,p):
k=(n-h)/p+1
q=graphs.CompleteGraph(p)
P=q.am()
A=graphs.CompleteGraph(h-p)
H=k*A.am()
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x=n-h+p
J=ones_matrix(x,h-p)
N=block_matrix([[J],[H]])
N1=J.transpose()
Y1=[]
for i in list(range(k)):

Y1.append(P)
Y=block_diagonal_matrix(Y1)
Z=block_matrix([[Y],[N1]])
S=block_matrix([[Z,N]])
J2=ones_matrix(n)
I2=identity_matrix(n)
S1=J2-I2-2*S
return S1

S=SiedelSunflowerMat(13,6,1)
S.eigenvalues()

The output was found to be [15, 15, 15, 15,−1,−1,−1,−1,−1,−1,−1,−60.59178786746157, 7.591787867461572].
Correspondingly, the verification code is as under:

var('x')
n=13
h=6
k=n-h+1
X=2*k-1
s=(X-x)*(X*(2-h)-x)*(n-h-x)-((-x+X*(2-h))*(h-1)+X*(h-1)^2)*(n-h+1)
s.full_simplify()
s=(X^2 + X)*h^2 - ((X + 1)*h - 3*X - n)*x^2 - x^3 - 2*(X^2 + X)*h + (2*X^2 - (X^2 + X)*h + X)*n - ((X + 1)*h^2 + 2*X^2 - (X^2 + 3*X + 2)*h - ((X + 1)*h - 3*X - 1)*n + 1)*x + X
s.roots(ring=RR)

The output was found to be [(−60.5917878674616, 1), (7.59178786746157, 1), (15.0000000000000, 1)],
which is agreement to the prior result.

Conclusion

We have used the block matrix technique, Sherman-Morrison formula and eigenvector reconstruction
method to discuss the spectrum and characteristic polynomial of the Siedel matrix of sunflower hypergraphs
in this work. The method can also be refined for more general matrices and hypergraphs, which can be used
further for various applications.
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