Some remarks on the generalization of atlases

Ryan J. Buchanan*

December 4, 2023

Abstract

We generalize atlases for flat stacks over smooth bundles by constructing local-global bijections between modules of differing order. We demonstrate an adjunction between a special mixed module and a holonomy groupoid.

1 Notation and Conventions

Throughout, $Strat_M^{\{*\}} \subseteq Man$ will denote a point-for-point stratification on a manifold M.¹ We will let $Strat_M^{\Delta}$ denote the conical stratification, $Strat_{U_{\alpha}}^{u_i}$ will denote an open (portable) cover of a parameter space, which is dependent upon the character *i* for topological realization.

Call every u_i a covering sieve, and let every

$$U_{\alpha} = \bigcup_{i} \alpha_{i} \in s_{i} \times s_{i}$$

Let, for every path $x \to -x$, there be a corresponding value $\Psi_{\theta} : \mathcal{X} \rightrightarrows \mathcal{Y}$. In other words, we define a *polar path* (of polarity 1), by the map

$$\Pi_x:\pi\xrightarrow{x^{-1}}-\pi$$

by *inducing* an isomorphism,

$$Id_x \simeq y \cdot i \in x_i$$

To explicitly define induction, as a first-principle operator, would be difficult, though not entirely intractable. Recall from the adjunction

$$Hom(x,y) \xrightarrow{\sim} x \otimes y$$

that there is a path

$$min \to \max(exp(\pm x \times y))$$

^{*}Roseburg, OR

¹Compare this notation with [6], section 2.1

where, for every nth order operation,

 $x \otimes_n y$

there is a rank n retract, consisting of 2n arrows $\ker(x) \to im(x) \sim \ker(y) \to im(y)$. Let \mathcal{H}^2 denote the upper half-plane, and

$$\mathcal{H}^1 \simeq \mathbb{A}^1$$

hold by isometry between the cross product of diagonals

$$\sqrt{\Delta^2(x \times x)} \cdot (y \times y) \simeq Pull_{\delta}(Hom(x, y))$$

Definition 1. Let C_{∞} be an infinite ordered chain. Let every morphism be injective, and surnjective, and therefore a bijection. We let, for every $\varepsilon \in (x \in X) \times (y \in Y)$, there is a corresponding fraction, $\frac{1}{n} \simeq \delta$.

Call every map $A \xrightarrow{\delta} B$ of generalized spaces a δ -pushout, and call its inverse δ^{-1} a δ -pullback.

The \hookrightarrow will denote a monomorphism, and \twoheadrightarrow will denote an epimorphism.

2 Lucid sets and inner homs

Let $\mathscr{C} : \mathscr{C} \longrightarrow \mathscr{C}_{SET}$ be a perfect immersion. Call the image of a distinguished character $i \in \mathscr{C}$ a *lucid* map, if its pullback is an etale object in the \mathscr{C} -category, which we will later enrich.

Let there be a bijection between an index \mathfrak{A} , and a category \mathcal{C} , and another between \mathcal{C}_{SET} and \mathscr{C} . Let the index generate a class of open submersions

$$U_{\alpha_{i,*}}: x \hookrightarrow y \cap *$$

Proposition 1. There is a δ -pushout for every element $x_i \in \mathscr{C}$.

Example 1. The C^1 space has a mirror with Holder continuity $C^{\infty} \to |C|_{\pm}$. This allows the bi-crossed module of inner homs

 $\coprod_i x \star y$

to have a one-to-one bijection with orbital elements, which, as have been previously shown, act as local isotropy groupoid realizations.

Example 2. The counting operad $x \star_+ y$ induces a transitive relationship,

$$\mathcal{R}_{xy}: \sum_{i=0}^{\infty} x_i \to y_i$$

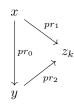
on the set of open objects in the collective isotropy group module,

$$\bigcup_i \mathcal{G}_{x_i}$$

Example 3. As the fiber $x \Rightarrow y$ splits, we obtain morphisms pr_0 , pr_1 , and pr_2 , inducing a conical foliation on an abstract space. The critical point may be written z_k , where the harmonic function

$$\sum_{n=\aleph_0}^{n=\aleph^{\omega^{\omega}}} \alpha_n \frac{1}{n} + \alpha_{n-1} \frac{1}{n+1} \dots \alpha_{\emptyset} \frac{1}{n+\infty}$$

gives us the value of k.



Recall that, for a totally lossless projection of a perfect map, there exists a perfect inverse. In formal terms:

Axiom 1. $(Perf(x) \hookrightarrow Perf(y)) \longrightarrow Perf((x \cdot y)^{-1})$

In fact, by this we mean strictly

$$Perf(x,y) \implies Perf(x,y,\cdot,-)$$

So, for \mathcal{C} a small category, whose objects are etale, the topological realization

$$c \in \mathcal{C} \longrightarrow \{*\}$$

, we are given (for free), a logical implication

$$c \implies \mathcal{C}_{SET}$$

be "remembering" the inner hom constructed in example 1.

Some topics of interest for this implication may include portability, which further implies holonomy if the underlying stratification element is a manifold. Thus, as a result, it may be worth considering orbifolds as well, leading to a more nuanced theory of orbispaces.

I am inclined to state that, at the macroscopic level, everything that is observed is portable; i.e., it exhibits actions which are derivatives with respect to time. This is to say, everything observed in the *practical* world, is a submodule of the enriched vector space overlying the stack \mathscr{A} from which the topology is derived.

Proposition 2. Let

 $Hol_n \simeq (\mathscr{A} \twoheadrightarrow Strat_{\bullet}^{\omega})$

Then, there is an arithmetic mapping

 $n \longrightarrow \bullet$

which is locally contractible if it is simply connected.

Remark 1. Hol_n , of course, denotes the holonomy groupoid of Ehresmann, with rank n isomorphisms. Recall that a rank n isomorphism is a cutting of a fiber q into n isotropic (of equal arity) segments.

Proposition 3. $\mathscr{A} \twoheadrightarrow Strat_{\bullet}^{\omega}$ may be extended to a logical implication

 $\mathscr{A} \iff Strat_{\bullet}^{\omega}$

Proof. The inverse, Id_n^{-1} may be composed with Id_n to yield the null groupoid.²

Classifying spaces, atlases, and diffeomorphisms 3

Let $\mathscr{C} \hookrightarrow \mathscr{C}_+$ be an additive, polar mapping. Let there be a manifold $\mathscr{M}_{\mathcal{C}} \to \mathscr{C}_+$ generated by taking the first derivative of a tangent fiber at any arbitrary point, with respect to time.

Let there be a Haefligger classifying space,

$$\Gamma^q \cdot BG$$

such that $\pi_q(\varepsilon) \implies \vec{\partial} U_{q_i \in \alpha}$. Suppose that the implication splits as $II_{\mathcal{R}} = x_y, y^x$ Then,

Proposition 4. There is a canonical bijection

$$((x_y \times y^x) \cdot (y^x \times x_y)) \leftrightarrow \pi_n(\Psi_\theta)$$

Recall from [4] the van Est theorem:

Theorem 1. If G is (topologically) p_0 -connected, the map induced by VE in cohomology is an isomorphism for $p \leq p_0$ and injective for $p = p_0 + 1$, in the map:

$$VE_{k-hom}: C^p_{k-hom}(\mathfrak{v}) \to C^p_{k-hom}(v)$$

That is to say, for two p-cochains obeying the (generalized) cocycle condition, there is a totally lossless projection³

$$\mathfrak{v}_p \hookrightarrow v_p$$

such that

$$\mathfrak{v}_p^n \cdot v_p^n = \sum_{i=0}^n fib_{pro}(v_i)$$

²Consult [1] for the relevant literature. It is a masterful work of art. [2] is highly recommended as well, but not, of course, necessary. ³See [5]

Let $\mathcal{G}_0 = Id_{x \in X}$ for some $x \in \mathcal{G} \cap X$. This identity extends to a classifying space, BG, by way of a categorical stratification, $Strat^x_{\mathcal{G}}$, via the map

 $Strat^{x}_{\mathcal{G}} \cdot \Gamma^{q}$

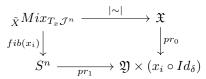
for $q \neq n \in \mathbb{N}$. Here, x_i^n denotes the qth orbital of a point-like object in a topological stack. We may extend this to a map of displays:

$$\phi_{\mathfrak{X}\rightrightarrows\mathfrak{Y}}: (x_i^n)^q \longrightarrow \tilde{x}_j$$

where \tilde{x}_j denotes the jth representative gneerator of a jet bundle $\mathcal{J}_x(\phi)$.

Denote by $_{\tilde{X}}Mix_{T_xJ^n}$ the mixed module obtained by flattening a section of a topological space X to a discrete foliation $\tilde{X} \simeq \mathcal{F}_{x_i}$ over the tangent space of a jet bundle of order n.

Proposition 5. The diagram



is commutative, and the projections are totally lossless.

Proof. Assume \mathfrak{X} is perfect. Then, $\mathfrak{Y} \times (x_i \circ Id_{\delta})$ must be perfect also. Since we have the quotient uniformity

$$_{\tilde{X}}Mix_{T_xJ^n}/\sim = |x_i| \in \mathfrak{X}$$

serving as the geometric realization for each tangent fiber

$$T_{x_i} \in fib(\mathfrak{X})$$

where \mathfrak{X} is a topological space, we conclude our proof by noting that, for every section of T_{x_i} , there is a δ -pullback $\phi^{-1}T_{x_i}$.

At this point, we may construct a gerbe, $\mathscr{G}_{\tilde{X}}^{Hol}$ by inducing a levelwise, piecewise differentiable structure on the tangent bundle. This is given by the formula

$$\mathscr{G}_{\tilde{X}}^{Hol} = \{\mathfrak{X} \times_{x_i} \mathfrak{X} | x_i \in \sum_{i=0}^n X_i \{\partial^0 x + \partial x + \partial^2 x + \ldots + \partial^n x\}$$

Further yet, there is a diffeomorphism

$$\mathscr{G}_{\tilde{X}}^{Hol} \simeq \mathcal{J}^n(T_x x_i(fib(x)))$$

on connections parameterized by the nth order jet bundle over a typical fiber of x. This is because of the famous link between the structure sheaf, \mathcal{O}_X of a stack of which x is a germ, and the orbit group, \mathcal{O}_x of a topological stack including x as a *point-like* object.

Definition 2. Call A an atlas if it is obtained by a composition of transition maps

$$A = \int_0^n (\phi(\partial^n(x_i)) \circ \phi^{-1}(\partial^n(x_i)) \circ \dots \circ \phi(\partial^0(x_i)) \circ \phi^{-1}(\partial^0(x_i)))$$

Example 4. Consider an atlas A where every natural transformation $\phi^{-1} \Rightarrow \phi$ is totally lossless. This is called the perfect atlas.

Example 5. Let A be an atlas, and let every x_i belong to the category $Strat_M$ of stratified manifolds, with an unspecified stratification. Then, a corner, $\partial(\mu(x + y))$, is the orthogonal pseudo-orthogonal stratification of an atlas A, written $A(Strat_M^{\square})$.

Proposition 6. There is an adjunction

$$\mathscr{G}_{\tilde{X}}^{Hol} \leftrightarrow_{\tilde{X}} Mix_{T_xJ^n}$$

Proof. This follows from the famous "tensor-hom" adjunction.

4 References

[1] G. Ivan, On Transitive Group-Groupoids, (2018)

[2] W.B.V. Kandasami, F. Smarandache, *Groupoids of Type I and Type II Using* [0,n), (2014)

[3] D. Carchedi, On The Homotopy Type of Higher Orbifolds and Haefliger Classifying Spaces, (2015)

[4] A. Cabrera, T. Drummond, Van est Isomorphism for Homogenous Cochains, (2017)

[5] R.J. Buchanan, Totally Lossless Projections, (2023)

[6] R.J. Buchanan, *Geometric Sub-bundles*, (2023)

[7] M. Rovelli, A Looping-Delooping Adjunction for Topological Spaces, (2016)