Relativity time dilation - a two signal time delay theory

June 24, 2023

Copyright
Harvey Scribner

Abstract

Special relativity time dilation has until now a un-discovered physics disconnect, "the signals used to derive the expression for time dilation (1) are actually from fixed sources in space". This observation presents a dilemma for the foundation of special relativity where it assumes a moving source emits the signals with time delay Δt^{\prime}. The physics is shown that two fixed sources emit the signals independent of the velocity v of the supposed moving source.

Index Terms-Special relativity, time dilation, extinction shift principle, transverse relative time shift.

Introduction

Special relativity time dilation (SRTD) has captured the imagination of mankind for over a century. According to SR a moving source with velocity v emits two signals with a time delay Δt^{\prime}, Figure 1. p, q, and m form a right triangle. The signals in SR are assumed to move at the velocity of light, c. The source emits signal $\boldsymbol{s}_{\boldsymbol{p}}$ at location $\mathbf{p} . \boldsymbol{s}_{\boldsymbol{p}}$ reaches the location \mathbf{m} at time Δt^{\prime}. The source is located at \mathbf{q} at time Δt^{\prime} and then emits signal s_{q}. The time delay for s_{q} to reach m is Δt. An observer located at \mathbf{m} will see the signal delay, Δt, for receipt of \boldsymbol{s}_{p} and \boldsymbol{s}_{q}. From the Pythagorean theorem we get (2). Solving (2) for Δt^{\prime} we get (1). The relationship (1) between Δt^{\prime} and Δt in the famous SRTD derived in [1]. This work shows that the sources in SRTD are actually fixed in space with respect to the observer of the signals, i.e. the sources do not move.

$$
\Delta t^{\prime}=\frac{\Delta t}{\sqrt{1-\frac{v^{2}}{c^{2}}}}(1)
$$

Figure 1: Source with velocity v emits signals $\boldsymbol{s}_{\boldsymbol{p}}$ and $\boldsymbol{s}_{\boldsymbol{q}}$.

$$
\begin{equation*}
\left(c \Delta t^{\prime}\right)^{2}=\left(v \Delta t^{\prime}\right)^{2}+(c \Delta t)^{2} \tag{2}
\end{equation*}
$$

Example 1 shows the progression of the source signals over time, observed signal time delay, and derives the formula relating Δt^{\prime} and Δt. Example 2 develops the concept of velocity of a moving object using the geometry in Example 1. Example 3 combines the signal emission and moving object concepts into the same frame of reference and reveals where SRTD has introduced metaphysics into modern science. In Example 4 the moving object flips a switch on fixed sources to enable the signal emission. The conclusion provides observations and recommends a source that provides a physics based alternative to the observed signal time delay a transverse relative time shift ${ }^{2}$ which is not a Special Relativity time dilation.

[^0]Example 1: Light signals s_{p} and s_{q} emitted with time delay Δt^{\prime} are reach m with time delay Δt. Let points $\mathbf{p}, \mathbf{q}, \mathbf{m}$ be fixed positions in empty space as shown in the right triangle in Figure 2. The distance $\mathbf{p m}$ is $\mathbf{D}, \mathbf{p q}$ is $\mathbf{M}, \mathbf{q m}$ is \mathbf{L}. The velocity of light \mathbf{c} is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. \mathbf{D} is 5 c equal to $15 \times 10^{8} \mathrm{~m}$. The observer $(:)$ its located at position \mathbf{m}.

Figure 2: Position of p, q, m and distances $\mathrm{M}, \mathrm{L}, \mathrm{D}$ in right triangle.

Figure 3: Source \mathbf{S}_{p} emits signal \mathbf{s}_{p} from location \mathbf{p}.

Figure 4: Signal s_{p} travels $1 c$ m in 1 s from location p.

Let fixed source $\mathbf{S}_{\mathbf{p}}$ at location \mathbf{p} emit a signal $\mathbf{s}_{\mathbf{p}}$ with velocity \boldsymbol{c}, the speed of light, Figure $\mathbf{3}$. $\mathbf{s}_{\mathbf{p}}$ will travel 1 cm in 1 second, Figure 4, 2 cm in 2 s , Figure 5, 3 cm in 3 s , Figure 6, 4 cm in 4 s , Figure 7, and arrive at location \mathbf{m} in time $\Delta t^{\prime}(2)$ in 5 s a distance of 5 c m , Figure 8 . Figure 9 shows the progression of signal s_{p} from $\mathrm{t}=0 \mathrm{~s}$ through $\mathrm{t}=5 \mathrm{~s}$.

$$
\begin{equation*}
\Delta t^{\prime}=\frac{D}{c} \tag{2}
\end{equation*}
$$

Figure 5: Signal s_{p} travels $2 c$ m in 2 s from location p .

Figure 6: Signal s_{p} travels $3 c$ m in 3 s from location \mathbf{p}.

Figure 7: Signal s_{p} travels $4 c$ m in 4 s from location p.

At time $\Delta t^{\prime}(\mathrm{t}=5 \mathrm{~s})$ fixed source $\mathbf{S}_{\mathbf{q}}$ located at \mathbf{q} emits signal $\mathbf{s}_{\mathbf{q}}$ with velocity c, Figure $\mathbf{1 0}$. Signal $\mathbf{s}_{\mathbf{p}}$ will travel $1 c \mathrm{~m}$ in 1 second, Figure 11, $2 c \mathrm{~m}$ in 2 s , Figure 12, 3 c m in 3 s , Figure 13, and arrive at location m in time $\Delta t=4 \mathrm{~s}(3)$ a distance of $4 c \mathrm{~m}$, Figure 14.

Figure 8: Signal s_{p} arrives at m in time $\Delta t^{\prime}=5 \mathrm{~s}$.

Figure 11: Signal s_{p} travels $1 c \mathrm{~m}$ in 1 s from location \mathbf{q}.

Figure 14: Signal s_{q} arrives at \mathbf{m} in $4 \mathrm{~s}, \mathrm{t}=9 \mathrm{~s}$, a distance of $4 c \mathrm{~m}$ from location \mathbf{q}.

Figure 9: Signal $\mathbf{s}_{\mathbf{q}}$ from $\mathrm{t}=0 \mathrm{~s}$ through $\mathrm{t}=5 \mathrm{~s}$, a time difference of Δt^{\prime}.

Figure 12: Signal s_{p} travels
$2 c \mathrm{~m}$ in 2 s from location \mathbf{q}.

Figure 15 shows the evolution of signal \mathbf{s}_{q} from $\mathrm{t}=5 \mathrm{~s}$ through $\mathrm{t}=9 \mathrm{~s}$ a travel time of $\Delta t=4 \mathrm{~s}$. From (2)(3) we get (4)(5).

$$
D=c \Delta t^{\prime}(4) \quad L=c \Delta t(5)
$$

Now we notice that the time delay between emission of $\mathbf{s p}_{\mathrm{p}}$ and \mathbf{s}_{q} is Δt^{\prime}. The signal sources are located at difference positions is space and the signals are emitted at different times. There is no causal relationship between s_{p} and s_{q}.

Figure 10: Fixed source $\mathbf{S}_{\mathbf{q}}$ located at \mathbf{q} emit signal $\mathbf{s}_{\mathbf{q}}$ with velocity c time Δt^{\prime}.

Figure 13: Signal s_{q} travels 3 cm in 3 s from location \mathbf{q}.

Figure 15: Signal s_{q} arrives at \mathbf{m} in $4 \mathrm{~s}, \mathrm{t}=9 \mathrm{~s}$, a distance of $4 c \mathrm{~m}$ from location \mathbf{q}.

From the Pythagorean relation in Figure 1 geometry we get (6). Combine (4)(5)(6) to get (7). Solve (7) for Δt^{\prime} to get (8). Notice that locations in space \mathbf{p} and \mathbf{q} are separated by a distance \mathbf{M}.
$D^{2}=M^{2}+L^{2}(6)$
$\left(c \Delta t^{\prime}\right)^{2}=M^{2}+(c \Delta t)^{2}(7)$
$\Delta t^{\prime}=\sqrt{\Delta t^{2}+\frac{M^{2}}{c^{2}}}$
Example 2: Object moves with velocity v over distance \mathbf{M} in time Δt^{\prime}.
Let object traveling distance \mathbf{M} with velocity v from point \mathbf{p} to point \mathbf{q} in time Δt^{\prime}, Figure 16. The object does not send a signal in this example. The velocity v of the object is the distance traveled \mathbf{M} divided by the time of travel Δt^{\prime} (9). The distance \mathbf{M} is (10). From (9) the time of travel from \mathbf{p} to \mathbf{q} is $\Delta t^{\prime}(11)$.
$v=\frac{M}{\Delta t^{\prime}}$ (9)

$$
M=v \Delta t^{\prime}(10)
$$

$$
\Delta t^{\prime}=\frac{M}{v}(11)
$$

There is no causal relationship between the Δt^{\prime} in example 1 and example 2. There is a correlation with the velocity in examples 1 and 2. The time traveled by the object is the same.

Example 3: Traveling object passes position p when source S_{p} emits signal s_{p} and travels distance M when source S_{q} emits signal s_{q}.
Let $\mathbf{S}_{\mathbf{p}}$ emit $\mathbf{S}_{\mathbf{p}}$ as a traveling object with velocity v passes position \mathbf{p}. At time Δt^{\prime} simultaneously \mathbf{s}_{p} arrives at position \mathbf{m} when the object travels distance \mathbf{M} and arrives at position q, Figure 17.

Let the source $\mathbf{S}_{\mathbf{q}}$ emit signal $\mathbf{s}_{\mathbf{q}}$ when the object passes position \mathbf{q}. The signal s_{q} will arrive at position m at time Δt, Figure 18.

In this example there is no causal relationship between the velocity v of the traveling object, the signal \mathbf{s}_{p} emitted from the fixed source \mathbf{S}_{p}, and the signal $\mathbf{s}_{\mathbf{q}}$ emitted from the fixed source $\mathbf{S}_{\mathbf{q}}$. There is a coincidence in the emission of signal $\mathbf{s}_{\boldsymbol{p}}$ and the position of the moving object as it passes location \mathbf{p}. There is a coincidence in the emission of the signal $\mathbf{s}_{\mathbf{q}}$ and position of the moving object as it passes location \mathbf{q}.

Example 4: Let there be a switch at fixed sources $\mathbf{S}_{\boldsymbol{p}}$ and $\mathbf{S}_{\mathbf{q}}$ that is activated by the passing of a traveling object with velocity v.
Let there be a switch at sources \mathbf{S}_{p} and a switch at \mathbf{S}_{q} that is activated by the passing of a traveling object with velocity v. The positions of $\mathbf{p}, \mathbf{q}, \mathbf{m}$ and sources $\mathbf{S}_{\mathbf{p}}$ and $\mathbf{S}_{\mathbf{q}}$ are fixed in space. Let the object moving with velocity v pass position m activate the switch at fixed source \mathbf{S}_{p} which sends signal \mathbf{s}_{p}. The time delay $\Delta t^{\prime}(2)$ for s_{p} to arrive at position \boldsymbol{m} is defined by the velocity of the speed of the light signal c and is independent of the velocity v of the moving object.

Figure 19: $D=5 c, L=4 c, M=3 c$ in meters (m).
Let Δt^{\prime} in (2) equal to the time of travel across distance \mathbf{M} for the object in (11) to get (12). Solve (12) for v (13). The velocity v in (13) is the only velocity of the object where the object can be at location \mathbf{q} and the signal $\mathbf{s}_{\mathbf{p}}$ will simultaneously arrive at \mathbf{m}. Both distanced \mathbf{M} and \mathbf{D} are constants, fixed positions in space.

$$
\begin{equation*}
\Delta t^{\prime}=\frac{D}{c}=\frac{M}{v}(12) \quad v=\frac{M}{D} c \tag{13}
\end{equation*}
$$

There is only one velocity v (13) where the object can arrive at position \boldsymbol{q} and signal $\boldsymbol{s}_{\boldsymbol{p}}$ can arrive at position \boldsymbol{m} so that signal $\boldsymbol{s}_{\boldsymbol{q}}$ can be emitted at position \boldsymbol{q} and arrive at position m in time Δt. Δt represents the signal delay at m. Δt^{\prime} is the time delay in emission of $\boldsymbol{s}_{\boldsymbol{p}}$ and $\boldsymbol{s}_{\boldsymbol{q}}$ from their fixed sources.

Analysis when the object velocity is less than and greater than \mathbf{v} in (13)
Let M equal $3 c$ meters (m), L equal $4 c(\mathrm{~m})$, and D equal to $5 c(\mathrm{~m})$, where c is equal to 3×10^{8}, Figure 19. In example 3 using (13) the object velocity v is equal to ($3 / 5$) $c(\mathrm{~m} / \mathrm{s}$), meters per second. In 5 (s) seconds the object travels $3 c(\mathrm{~m})$. In $5(\mathrm{~s})$ the signal s_{p} travels $5 c(\mathrm{~m})$, Figure 20.

Let v_{1} equal to $(2 / 5) c(\mathrm{~m} / \mathrm{s})$. In $5(\mathrm{~s})$ the object travels $2 c(\mathrm{~m})$ while signal \mathbf{s}_{p} travels $5 c(\mathrm{~m})$, Figure 21. The signal $\mathbf{s}_{\mathbf{p}}$ arrives at \mathbf{m} before the object with velocity v_{1} travels to position \mathbf{q}.

Let v_{2} equal to $(4 / 5) c(\mathrm{~m} / \mathrm{s})$. In $5(\mathrm{~s})$ the object travels $4 c(\mathrm{~m})$ while signal \mathbf{s}_{p} travels $5 c(\mathrm{~m})$, Figure
22. The object with velocity v_{2} passes position \mathbf{q} before signal $\mathbf{s}_{\mathbf{p}}$ arrives at \mathbf{m}.

Figure 20: Velocity vis (3/5)c $(\mathrm{m} / \mathrm{s}) . \Delta t^{\prime}$ is $5(\mathrm{~s})$.

Figure 21: Velocity $\mathbf{v}_{\mathbf{1}}$ is $(2 / 5) \mathrm{c}$ $(\mathrm{m} / \mathrm{s}) . \Delta t^{\prime}$ is $5(\mathrm{~s})$.

Figure 22: Velocity $\mathbf{v}_{\mathbf{2}}$ is (4/5)c $(\mathrm{m} / \mathrm{s}) . \Delta t^{\prime}$ is $5(\mathrm{~s})$.

Special relativity time dilation

Combine (7) and (10) to get (14). Solve (14) for Δt^{\prime} to get (20).

$$
\begin{gather*}
\left(c \Delta t^{\prime}\right)^{2}=M^{2}+(c \Delta t)^{2} \quad \text { (7) } \quad M=v \Delta t^{\prime} \quad \text { (10) } \quad\left(c \Delta t^{\prime}\right)^{2}=\left(v \Delta t^{\prime}\right)^{2}+(c \Delta t)^{2} \tag{7}\\
\left(c \Delta t^{\prime}\right)^{2}-\left(v \Delta t^{\prime}\right)^{2}=(c \Delta t)^{2} \quad \text { (15) } \quad \frac{\left(c \Delta t^{\prime}\right)^{2}-\left(v \Delta t^{\prime}\right)^{2}}{c^{2}}=\frac{(c \Delta t)^{2}}{c^{2}} \quad \text { (16) } \quad \Delta t^{\prime 2}-\frac{v^{2}}{c^{2}} \Delta t^{2}=\Delta t^{2}
\end{gather*}
$$

$$
\begin{equation*}
\left(1-\frac{v^{2}}{c^{2}}\right) \Delta t^{\prime 2}=\Delta t^{2} \quad \text { (18) } \quad \Delta t^{2}=\frac{\Delta t^{2}}{\left(1-\frac{v^{2}}{c^{2}}\right)} \text { (19) } \quad \Delta t^{\prime 2}=\frac{\Delta t^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}(20) \tag{18}
\end{equation*}
$$

It has already been shown that the velocity v of the object is independent of the signal velocities $\mathbf{s}_{\mathbf{p}}$ and $\mathbf{s}_{\mathbf{q}}$. Equation (20) does yield the correct calculation for $\mathbf{s}_{\mathbf{p}}$ and $\mathbf{s}_{\mathbf{q}}$ arrival at position \mathbf{m} only when the object velocity is (13); however, v does not influence the speed of signals $\mathbf{s}_{\mathbf{p}}$ and $\mathbf{s}_{\mathbf{q}}$.

The derivation of (20) uses geometry similar to that found in SR time dilation ${ }^{3}$ where only the upward travel of the light signal is considered in the moving clock bottom mirror A. Time dilation ${ }^{3}$ shows a cause and effect for the moving mirror A and the light signal that travels along D of the right triangle. This clearly is an illusion presented by SR and cannot be true, see examples 1 through 4 above.

Concluding remarks

The examples 1 through 4 above show that in special relativity the velocity in (1) is independent of the signal source velocity in the geometry used to derive special relativity time dilation. The source velocity in SR time dilation has no physical meaning. SR (1) has a correlation for only one velocity if the time delays are coordinated and the traveling object flips a switch to activate the fixed signal sources. The velocity v in the special relativity time dilation (1) has no cause and effect on any light signal and cannot influence Δt or Δt^{\prime}. In $\mathbf{S R}$ the speed of the light in a vacuum along path \mathbf{D} is not dependent on the velocity of the object traveling with velocity v. This is obvious since the magnitude of the light signals is equal to $c(\mathrm{~m} / \mathrm{s})$ in all directions with or without a moving source. The reality of Galilean Transformation where velocities of sources and emitted signal velocities are additive should be considered.

Suggested reading, "Introduction to the Extinction Shift Principle: A Pure Classical Replacement for Relativity", Dr. Edward Henry Dowdye, Jr. ${ }^{4}$ section 5.2 On the Transverse Relative Time Shift.

Legend

SR - Special Relativity
SRTD - Special Relativity Time Delay
$\Delta t \quad$ - time of flight for signal $\mathbf{s}_{\mathbf{q}}$ to travel from source $\mathbf{S}_{\mathbf{q}}$ located at position \mathbf{q} to \mathbf{m}.
$\Delta t^{\prime} \quad$ - time of flight for signal $\mathbf{s}_{\mathbf{p}}$ to travel from source $\mathbf{S}_{\mathbf{p}}$ located at position \mathbf{p} to \mathbf{m}.
$\mathbf{p}, \mathbf{q}, \mathbf{m}$ - positions in space located on right triangle.
M - distance between points p and $q, \mathbf{p q}$.
L - distance between points q and m, q.
D - distance between points p and $m, ~ p m$.
v - velocity of object
$c \quad-$ velocity of light $\sim 3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
m - distance in meters
s - time in seconds
$\mathbf{s}_{\mathbf{p}} \quad$ - signal emitted from source located at position \mathbf{p}.
$\mathbf{s}_{\mathbf{q}} \quad$ - signal emitted from source located at position \mathbf{q}.

[^1]
[^0]: ${ }^{1}$ Time dilation - Wikipedia, https://en.wikipedia.org/wiki/Time dilation
 2 Introduction to the Extinction Shift Principle: A Pure Classical Replacement for Relativity, Dr. Edward Henry Dowdye Jr., https://www.semanticscholar.org/paper/Introduction-to-the-Extinction-Shift-Principle\%3A-ADowdye/c1dee00cc1b71f91d32b4048046acc857142357c

[^1]: ${ }^{3}$ Time dilation - Wikipedia, https://en.wikipedia.org/wiki/Time dilation
 ${ }^{4}$ https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.552.4186\&rep=rep1\&type=pdf

