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A Proof of Riemann Hypothesis by  

Symmetry and Circular Properties of Riemann Zeta Function 

Tae Beom Lee 

Abstract: Riemann zeta function(RZF) (𝑠) is a function of a complex variable 𝑠 = 𝑥 + 𝑖𝑦. 

Riemann hypothesis(RH) states that all the non-trivial zeros of RZF lie on the critical line, 

0.5 + 𝑖𝑦 . The symmetricity of RZF zeros implies that if ( + 𝑖) = 0, 0 <  < 0.5,  then 

(1 −  + 𝑖) = 0, too. The graphs of RZF are similar to the graphs of circles with non-uniform 

radius and argument. These two, symmetry and circular properties of RZF, are the basis of 

our proof.  

1. Introduction 

RZF [1][2][3][4][5] (𝑠)  and Dirichlet eta function(DEF) [6] (𝑠)  are functions of a 

complex variable 𝑠 = 𝑥 + 𝑖𝑦.  

(𝑠) =  ∑
1

𝑛𝑠
∞
𝑛=1 =

1

1𝑠
+

1

2𝑠
+

1

3𝑠
+ ⋯    (1.1) 

(𝑠) =  ∑
(−1)𝑛+1

𝑛𝑠
∞
𝑛=1 = (1 − 21−𝑠)(𝑠) =

1

1𝑠 −
1

2𝑠 +
1

3𝑠 − ⋯   (1.2) 

RZF converges for 𝑥 > 1 and DEF converges for 𝑥 > 0. It will be reasonable to use DEF 

when dealing domain 0 < 𝑥 < 1. But, because zeros of RZF and DEF are same, we used 

RZF without loss of generality.  

RH [1][7][8] states that all the non-trivial zeros of RZF are of the form 𝑠 = 0.5 + 𝑖𝑦 and 

still remains unsolved.  

The symmetricity of RZF zeros implies that if ( + 𝑖) = 0, then (1 −  + 𝑖) = 0, too. 

So, the two zeros should be on the two edge lines of a strip  ≤ 𝑥 ≤ 1 − , 0 <  < 0.5. (From 

now on, suppose 0 <  < 0.5, otherwise specified.)  

To satisfy ( + 𝑖) = (1 −  + 𝑖) = 0, two curves, ( + 𝑖𝑦) and (1 −  + 𝑖𝑦), must 

intersect at the origin, when 𝑦 = . This means that, if we RZF-map the linear movement of 

𝑥 from  to 1 −  for 𝑦 = , the image should be to a closed loop. This loop starts from the 

origin, where ( + 𝑖) = 0, and ends at the origin, where (1 −  + 𝑖) = 0.  

The graphs of RZF are similar to the graphs of circles with non-uniform radius and 

argument. For a circle, the rotational motion is always orthogonal to the radial motion. For 

RZF graphs, too, the rotational motion is always orthogonal to the radial motion.  

Our proof is based on the symmetry and the circular properties of RZF. We showed that, 

without breaching the orthogonal relationships between the rotational and the radial motions, 

the closed loop from ( + 𝑖) = 0 to (1 −  + 𝑖) = 0 can’t be drawn. 

2. Terminologies  

Definition 2.1. Domain strip: A strip  ≤ 𝑥 ≤ 1 − , - ≤ 𝑦 ≤ .  

Definition 2.2. Domain edge lines: Two edge lines of a domain strip. 

Definition 2.3. Range strip: A strip generated through a mapping of a domain strip.  

Definition 2.4. Range edge lines: Two edge lines of a range strip.  

Definition 2.5. Contour C: A closed curve in lemma 3.2.   
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3. Symmetry Properties of RZF Zeros  

The following three equations are well known. (𝑠) is Riemann Xi function [8][9].  

(𝑠) =
1

2
𝑠(𝑠 − 1) (

𝑠

2
) (𝑠)

−𝑠

2 .  (3.1) 

(𝑠) = (1 − 𝑠).  (3.2) 

(𝑠) = (𝑠).  (3.3) 

The right side of (3.1) includes (𝑠), so, the zeros of (𝑠) are also the zeros (𝑠). 

Lemma 3.1. Equations (3.2) and (3.3) means that there exist two types of symmetries of RZF 

zeros, as in figure 1. 

① Critical line symmetry: Symmetry of (3.2), which means that if 𝑠 =  + 𝑖 is a 

zero, then 𝑠 = 1 −  + 𝑖 is also a zero.  

② Complex conjugate symmetry: Symmetry of (3.3), which means that if 𝑠 =  +

𝑖 is a zero, then 𝑠 =  − 𝑖 is also a zero.  

Figure 1. Zero symmetries of RZF. 

 

Proof. First, in (3.3), ( − 𝑖) = ( + 𝑖) = 0, that corresponds (𝑅) = (𝑃) = 0 in figure 

1, which is the complex conjugate symmetry. Second, in (3.2), ( + 𝑖) = {1 − ( + 𝑖)} =

0, that corresponds (𝑃) = (𝑆) = 0 in figure 1. By the complex conjugate symmetry, (𝑆) =

(𝑄) = 0. So, (𝑃) = (𝑄) = 0, which is the critical line symmetry.                      ■ 

Lemma 3.2. To satisfy a critical line symmetry, ( + 𝑖𝑦) = (1 −  + 𝑖𝑦) = 0, 𝑦 = , a closed 

curve(contour) must be drawn by the movement of 𝑥 in  ≤ 𝑥 ≤ 1 − , 𝑦 = .  

Proof. In figure 1, P(, ) and Q(1 - , ) are critical line symmetry zeros, and H(0.5, ) lies 

on 𝑥 = 0.5. Then a contour must be drawn by the following 3 steps. 

① Initial state at (, ): At P(, ), graph remains at the origin as (𝑃) in figure 2. 

② Movement to 𝑯(𝟎. 𝟓, ): Graph leaves the origin and reaches (𝐻) in figure 2.  

③ Movement to 𝑸(𝟏 − , ): Graph leaves (𝐻) and reaches back to the origin 

(𝑄) in figure 2. 
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Figure 2. Contour C for 𝛼 ≤ 𝑥 ≤ 1 − 𝛼. 

 

So, the RZF image graph for a line segment  ≤ 𝑥 ≤ 1 −  should be a closed curve, as 

in Figure 2. Let’s call it a contour C.                                                  ■ 

4. Orthogonal Properties of RZF Graphs 

RZF is the infinite sum of trigonometric functions with different amplitude and argument.  

(𝑠) = ∑
1

𝑛𝑠
∞
𝑛=1 =

1

1𝑠
+

1

2𝑠
+

1

3𝑠
+ ⋯ , 𝑠 = 𝑥 + 𝑖𝑦.   

v
1

𝑛𝑠
= 𝑒−𝑥𝑙𝑛𝑛𝑒−𝑖𝑦𝑙𝑛𝑛.   

(𝑠) = ∑ 𝑒−𝑥𝑙𝑛𝑛𝑒−𝑖𝑦𝑙𝑛𝑛∞
𝑛=1   

 

= ∑ 𝑒−𝑥𝑙𝑛𝑛 𝑐𝑜𝑠(−𝑦𝑙𝑛𝑛) + 𝑖 ∑ 𝑒−𝑥𝑙𝑛𝑛𝑠𝑖𝑛(−𝑦𝑙𝑛𝑛)∞
𝑛=1

∞
𝑛=1 .  

Figure 3 shows how a domain strip is mapped to a circular or a RZF range strip. 

Figure 3. Strip mapping examples.  

   

(a) Circular range strip. (b) Domain strip. (c) RZF range strip. 

For the circular range strip in figure 3 (a), let 

𝑓(𝑠) = 𝑒𝑠 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑥𝑒𝑖𝑦, then the derivatives [10][11] w.r.t. 𝑥 and 𝑦 are   

𝜕𝑓(𝑠)

𝜕𝑥
= 𝑒𝑥𝑒𝑖𝑦 = 𝑓(𝑠),   

𝜕𝑓(𝑠)

𝜕𝑦
= 𝑖𝑒𝑥𝑒𝑖𝑦 = 𝑖

𝜕𝑓(𝑠)

𝜕𝑥
, |

𝜕𝑓(𝑠)

𝜕𝑥
| = |

𝜕𝑓(𝑠)

𝜕𝑦
|.   (4.1) 

For RZF range strip in figure 3 (c), the derivatives w.r.t. 𝑥 and 𝑦 are 

𝜕(𝑠)

𝜕𝑥
= − ∑ (𝑙𝑛𝑛)𝑒−𝑥𝑙𝑛𝑛𝑒−𝑖𝑦𝑙𝑛𝑛∞

𝑛=1 ,  
 

𝜕(𝑠)

𝜕𝑦
= −𝑖 ∑ (𝑙𝑛𝑛)𝑒−𝑥𝑙𝑛𝑛𝑒−𝑖𝑦𝑙𝑛𝑛∞

𝑛=1 = 𝑖
𝜕(𝑠)

𝜕𝑥
, |

𝜕(𝑠)

𝜕𝑥
| = |

𝜕(𝑠)

𝜕𝑦
|.   (4.2) 

𝑠 = 𝑥 + 𝑖𝑦 

𝑒𝑠 = 𝑒𝑥+𝑖𝑦  (𝑠) = (𝑥 + 𝑖𝑦) 
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In (4.1), 
𝜕𝑓(𝑠)

𝜕𝑥
 is the radial variation(motion) of 𝑓(𝑠) and 

𝜕𝑓(𝑠)

𝜕𝑦
 is the rotational variation 

of 𝑓(𝑠), and they are orthogonal to each other with same magnitude.  

In (4.2), 
𝜕(𝑠)

𝜕𝑥
 is the radial variation of (𝑠), and 

𝜕(𝑠)

𝜕𝑦
 is the rotational variation of (𝑠), 

and they are orthogonal to each other with same magnitude.   

5. Illustrative Edge Line Intersections 

Figure 4 shows illustrative edge line intersections. We forged zeros by multiplying (𝑠 −

𝑠1)(𝑠 − 𝑠2) and 𝑐𝑜𝑠𝜑 to (𝑠). Let 𝑔(𝑠) = (𝑠 − 𝑠1)(𝑠 − 𝑠2)(𝑠) and ℎ(𝑠) = 𝑐𝑜𝑠𝜑(𝑠), where 

𝑠1 =  + 𝑖, 𝑠2 = 1 −  + 𝑖 and 𝜑 =
𝑦𝜋


. When 𝑠 = 𝑠1 or 𝑠 = 𝑠2, 𝑔(𝑠) = 0, and when 𝑦 =



2
, ℎ(𝑠) = 0.     

Figure 4. Illustrative edge line intersections. 

  

(a) 𝑔(𝑠) = (𝑠 − 𝑠1)(𝑠 − 𝑠2)(𝑠). (b) ℎ(𝑠) = 𝑐𝑜𝑠𝜑(𝑠). 

Figure 4 (a) depicts 𝑔(𝑠) = (𝑠 − 𝑠1)(𝑠 − 𝑠2)(𝑠), 7.5 ≤ 𝑦 ≤ 8, 𝑠1 ≈ 0.1 + 7.74𝑖, 𝑠2 ≈ 0.9 +

7.74𝑖, with following observations.  

① Two range edge lines for 𝑥 = 0.1 and 𝑥 = 0.9 intersect at the origin (0,0) when 

𝑠 = 𝑠1 or 𝑠 = 𝑠2.  

② When two range edge lines intersect, the line segment 0.1 ≤ 𝑥 ≤ 0.9 is mapped 

to the red contour C, which starts from (0,0) and returns back to (0,0). 

③ RZF graphs for 0.1 < 𝑥 < 0.5  and 0.5 < 𝑥 < 0.9  intersect contour C at two 

points.  

④ RZF graph for 𝑥 = 0.5 contact contour C tangentially at T. 

⑤ The orthogonal properties of RZF graphs in (4.2) is not kept. 

Figure 4 (b) depicts 𝑔(𝑠) = 𝑐𝑜𝑠𝜑(𝑠), 7.5 ≤ 𝑦 ≤ 8, 𝜑 =
(𝑦−7.5)𝜋

8−7.5
, with following 

observations. 

① Two range edge lines for 𝑥 = 0.1 and 𝑥 = 0.9 intersect at the origin (0,0) when 

𝑦 = 7.75 and 𝜑 =
(7.75−7.5)𝜋

8−7.5
=

𝜋

2
.  

② There is no contour C because all other lines also pass the origin.  

③ This pattern is meaningless because there exist infinitely many zeros.  

The MATLAB [11] coding for figure 4 is provided in appendix A. 

(0,0) 

𝑥 = 0,1 

𝑥 = 0,3 

𝑥 = 0,9 

𝑥 = 0,5 

𝑥 = 0,7 

(0,0) 

𝑥 = 0,1 

𝑥 = 0,3 

𝑥 = 0,9 

𝑥 = 0,5 

𝑥 = 0,7 𝐶 
𝑇 
● 
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6. Proving Lemmas 

Lemma 6.1. The contour C,  ≤ 𝑥 ≤ 1 − , 𝑦 = ,  should be tangential to the graph 

(0.5 + 𝑖𝑦). 

Proof. Suppose the contour C is not tangential to the graph (0.5 + 𝑖𝑦), as in figure 5 (a).  

Figure 5. Contour C intersections with the (0.5 + 𝑖𝑦) graph. 

  
(a) Non-tangential intersection.. (b) Tangential intersection.. 

RZF is analytic and continuous function. So, the movement of 𝑥 in  ≤ 𝑥 ≤ 0.5, 𝑦 =  

will draw a portion of contour C, which starts from (0,0) and ends at 𝑇1 or 𝑇2. It must end at 

𝑇1 or 𝑇2 because 𝑇1 or 𝑇2 is a point where 𝑥 = 0.5 and the graph (0.5 + 𝑖𝑦) intersects 

the contour C. Let’s suppose it ends at 𝑇1.  

Likewise, the movement of 𝑥 in 1 −  ≥ 𝑥 ≥ 0.5, 𝑦 =  will draw the other portion of 

contour C, which starts from (0,0) and ends at 𝑇2. It must end at 𝑇2 because 𝑇2 is a point 

where 𝑥 = 0.5 and the graph (0.5 + 𝑖𝑦) intersects the contour C.  

So, the contour C can’t be closed which contradicts lemma 3.2. So, the contour C must 

be tangential to the graph (0.5 + 𝑖𝑦), as in figure 5 (b).                                ■ 

Lemma 6.2. The graph (0.5 + 𝑖𝑦) and the contour C can’t satisfy the orthogonal properties 

of RZF in (4.2) at the tangential point.  

Proof. Any two tangentially contacting curves can’t be orthogonal to each other at the point of 

contact because they have common slope. That is to say, at the tangential point the rotational 

and the radial variations have same direction. So, the orthogonal properties in (4.2) can’t be 

kept at the tangential point.                                                        ■ 

6. Conclusion 

The symmetricity of RZF zeros implies that if ( + 𝑖) = 0, then (1 −  + 𝑖) = 0, too. 

So, the two zeros should be on the two edge lines of a strip  ≤ 𝑥 ≤ 1 − . To satisfy 

( + 𝑖) = (1 −  + 𝑖) = 0, two curves, ( + 𝑖𝑦) and (1 −  + 𝑖𝑦), must intersect at the 

origin, when 𝑦 = . This means that, if we RZF-map the linear movement of 𝑥 from  to 

1 −  for 𝑦 = , the image should be to a closed loop, what we called contour C.  

For a circle, the rotational motion is always orthogonal to the radial motion. For RZF 

graphs, too, the rotational motion is always orthogonal to the radial motion. And we proved 

that, without breaching these orthogonal properties of RZF graphs, the contour C can’t be 

drawn. 
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Appendix A. 

% Riemann Zeta Function: For illustrative edge line intersection  
clear;  
clc;  
close all 
 
amin = 0.1 %range of alpha 
amax = 0.9 
 
bmin = 7.5 %range of beta 
bmax = 8 
 
na = 11 %alpha sampling 
nb = 20 %beta sampling 
 
zi = 10 %index of zero, s1 and s2 
 
a = linspace(amin, amax, na) 
b = linspace(bmin, bmax, nb) 
 
%make domain strip complex numbers 
for i=1:length(a) 
    for j=1:length(b) 
        s(i, j) = complex(a(i), b(j))      
    end 
end 
 
%map by RZF or other variations 
for i=1:length(a) 
    for j=1:length(b) 
        %z(i, j) = zeta(s(i, j)) %RZF 
        %z(i, j) = zeta(s(i, j))*(s(i, j) - s(1, zi))*(s(i, j) - s(na, zi))        
        z(i, j) = zeta(s(i, j))*cos((j-1)*pi/(nb-1)) 
        %z(i, j) = s(i, j) 
        x(i, j) = real(z(i, j))  
        y(i, j) = imag(z(i, j))         
    end 
end 
 
%figure id & window size 
f = figure(1) 
f.Position = [50 50 300 300] %[x y width height] 
 
%plot trajectories for each alpha   
for i=1:length(a) %for alpha values 
 
    for j=1:length(b) 
        xb(j) = real(z(i, j))  
        yb(j) = imag(z(i, j))         
    end 
     
    if (a(i)>=0.5) && (a(i)<0.501) %alpha=0.5 
        plot(xb, yb, '-black', linewidth=1.5) 
    elseif a(i)==amin %alpha=a 
        plot(xb, yb, '-green', linewidth=1) 
    elseif a(i)==amax %alpha=1-a 
        plot(xb, yb, '-blue', linewidth=1) 
    elseif mod(i,3)==0 %selective plot  
 
if a(i)<(amin+amax)/2 %for a<x<0.5 
            plot(xb, yb, '-green', linewidth=0.5) 
        else %for 0.5<x<1-a 
            plot(xb, yb, '-blue', linewidth=0.5) 
        end 
    end 
    hold on 
    grid on 
end 

 

%plot trajectories for each beta values 
for i=1:length(b) %for beta values 
    for j=1:length(a) 
        xa(j) = real(z(j, i))  
        ya(j) = imag(z(j, i))         
    end 
 
    if b(i)==bmin %start    
        plot(xa, ya, ":black o", linewidth=0.5, markersize=1) 
    elseif b(i)==bmax %end        
        plot(xa, ya, "-.black o", linewidth=0.5, markersize=1) 
    elseif xa(1)==0 && ya(1)==0 %edge lines intersect at (0, 0)   
        plot(xa, ya, "-o", "color", [1, 0, 0], linewidth=1, markersize=1) 
    else %others         
        if mod(i,2)==0 
            %plot(xa, ya, "--x", "color", "#888888", Linewidth=1, 
Markersize=1) 
        else 
            %plot(xa, ya, ":+", "color", "#666666", Linewidth=1, 
Markersize=1) 
        end 
    end 
end 
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