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Abstract

General Relativity describes the gravitational field using the geometrical line element of a given
generic spacetime metric ds2 = gµνdxµdxν where do not exists a clear difference between space and
time.This generical form of the equations using tensor algebra is useful for differential geometry where
we can handle the spacetime metric tensor gµν in a way that keeps both space and time integrated in the
same mathematical entity (the metric tensor). However there are situations in which we need to recover
the difference between space and time.The 3 + 1 ADM formalism allows ourselves to separate from the
generic equation ds2 = gµνdxµdxν of a given spacetime the 3 dimensions of space(hypersurfaces) and
the time dimension. Using the signature (−,+,+,+) we get the original equations of the 3 + 1 ADM
formalism given by the following expression:

gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (1)

In the equation above α is the lapse function βi and βj are the shift vectors and γij is related to the 3
dimensional metric dl2 = γijdxidxj with i, j = 1, 2, 3 and signature (+,+,+) that measures the proper
distance between two points inside each hypersurface. Expanding all the terms of this equation we will
get both contravariant and covariant components. We propose two new ADM equations:
The first proposed equation is the 3+1 parallel contravariant ADM formalism with signature (−,+,+,+)
is given by:

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (2)

Expanding all the terms of this equation we will get only contravariant components.
The second proposed equation is the 3+1 parallel covariant ADM formalism with signature (−,+,+,+)
is given by:

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (3)

Expanding all the terms of this equation we will get only covariant components.
We apply all these equations to the Natario warp drive spacetime for both constant and variable veloc-
ities.

∗spacetimeshortcut@yahoo.com
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1 Introduction:

The Warp Drive as a solution of the Einstein field equations of General Relativity that allows superluminal
travel appeared first in 1994 due to the work of Alcubierre.([1]) The warp drive as conceived by Alcu-
bierre worked with an expansion of the spacetime behind an object and contraction of the spacetime in
front.The departure point is being moved away from the object and the destination point is being moved
closer to the object.The object do not moves at all1.It remains at the rest inside the so called warp bubble
but an external observer would see the object passing by him at superluminal speeds(pg 8 in [1])(pg 1 in [2]).

Later on in 2001 another warp drive appeared due to the work of Natario.([2]).This do not expands
or contracts spacetime but deals with the spacetime as a ”strain” tensor of Fluid Mechanics(pg 5 in [2]).
Imagine the object being a fish inside an aquarium and the aquarium is floating in the surface of a river but
carried out by the river stream.The warp bubble in this case is the aquarium whose walls do not expand or
contract. An observer in the margin of the river would see the aquarium passing by him at a large speed
but inside the aquarium the fish is at the rest with respect to his local neighborhoods.

However there are 3 major drawbacks that compromises the warp drive physical integrity as a viable
tool for superluminal interstellar travel.

The first drawback is the quest of large negative energy requirements enough to sustain the warp bubble.
In order to travel to a ”nearby” star at 20 light-years at superluminal speeds in a reasonable amount of
time a ship must attain a speed of about 200 times faster than light.However the negative energy density
at such a speed is directly proportional to the factor 1048 which is 1.000.000.000.000.000.000.000.000 times
bigger in magnitude than the mass of the planet Earth!!!(see [7],[8],[9],[10] and [18]).

Another drawback that affects the warp drive is the quest of the interstellar navigation:Interstellar space is
not empty and from a real point of view a ship at superluminal speeds would impact asteroids,comets,interstellar
space dust and photons.(see [5],[7],[8] and [18]).

The last drawback raised against the warp drive is the fact that inside the warp bubble an astronaut can-
not send signals with the speed of the light to control the front of the bubble because an Horizon(causally
disconnected portion of spacetime)is established between the astronaut and the warp bubble.(see [5],[7]
and [8]).

We can demonstrate that the Natario warp drive can ”easily” overcome these obstacles as a valid can-
didate for superluminal interstellar travel(see [7],[8],[9],[10] and [18]).

In this work we cover only the Natario warp drive and we avoid comparisons between the differences
of the models proposed by Alcubierre and Natario since these differences were already deeply covered by
the existing available literature.(see [5],[6] and [7])However we use the Alcubierre shape function to define
its Natario counterpart.

1do not violates Relativity
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Alcubierre([12]) used the so-called 3 + 1 original Arnowitt-Dresner-Misner(ADM) formalism using the
approach of Misner-Thorne-Wheeler(MTW )([11]) to develop his warp drive theory.As a matter of fact the
first equation in his warp drive paper is derived precisely from the original 3 + 1 ADM formalism(see eq
2.2.4 pgs [67(b)],[82(a)] in [12], see also eq 1 pg 3 in [1])23 and we have strong reasons to believe that
Natario which followed the Alcubierre steps also used the original 3 + 1 ADM formalism to develop the
Natario warp drive spacetime.

The Natario warp drive equation with signature (−,+,+,+) that obeys the original 3 + 1 ADM for-
malism is given below:(see (21.40) pg [507(b)] [534(a)] in [11])

gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (4)

Changing the signature from (−,+,+,+) to (+,−,−,−) making α = 1 and inserting the components
of the Natario vector we have:

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (5)

Several years ago some works appeared in the scientific literature ([16] and [17]) advocating two new
parallel 3+1 ADM formalisms.While the original ADM formalism uses mixed contravariant and covariant
scripts one of the new parallel formalisms uses only contravariant scripts while the other uses only covariant
scripts.

The Natario warp drive equation with signature (−,+,+,+) that obeys the parallel contravariant 3 + 1
ADM formalism is given below:

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (6)

Changing the signature from (−,+,+,+) to (+,−,−,−) making α = 1 and inserting the components
of the Natario vector we have:

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (7)

The Natario warp drive equation with signature (−,+,+,+) that obeys the parallel covariant 3 + 1
ADM formalism is given below:

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (8)

Changing the signature from (−,+,+,+) to (+,−,−,−) making α = 1 and inserting the components
of the Natario vector we have:

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (9)

2see Appendix E
3see the Remarks section on our system to quote pages in bibliographic references
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However some important things must be outlined in both the Alcubierre and Natario warp drive
spacetimes or the works in ([16] and [17]) :

• 1)-The warp drives as proposed by Alcubierre,Natario or the works in ([16] and [17]) always have a
constant speed vs.They do not accelerate or de-accelerate and travel always with a constant speed.But
a real warp drive must ”know” how to accelerate for example from 0 to a speed of 200 times faster than
light in the beginning of an interstellar journey and in the end of the journey it must de-accelerate
again to 0 in the arrival at the destination point which means to say of course a distant star.

• 2)-The warp drives as proposed by Alcubierre or Natario always have a constant speed vs raised to
the square in their equations for the negative energy density.An accelerating warp drive probably
must have the terms of variable velocities or accelerations included in the expression for the negative
energy density since this energy is responsible for the generation of the warp drive spacetime.

Since the Natario vector is the generator of the Natario warp drive spacetime metric in this work we
expand the original Natario vector including the coordinate time as a new Canonical Basis for the Hodge
star generating an expanded Natario vector and extended versions of the Natario warp drive spacetime
metric which encompasses accelerations and variable velocities.

Our proposed extended Natario warp drive metric with variable velocity vs due to a constant acceler-
ation a in the 3 + 1 original ADM formalism is given by the following equation:

ds2 = (1− 2Xt + XtX
t −XrsX

rs −XθX
θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (10)

Our proposed extended Natario warp drive metric with variable velocity vs due to a constant acceler-
ation a in the 3 + 1 parallel contravariant ADM formalism is given by the following equation:

ds2 = (1− 2Xt + (Xt)2 − (Xrs)2 − (Xθ)2)dt2 + 2(Xrsdrs + Xθrsdθ)dt− drs2 − rs2dθ2 (11)

Our proposed extended Natario warp drive metric with variable velocity vs due to a constant acceler-
ation a in the 3 + 1 parallel covariant ADM formalism is given by the following equation:

ds2 = (1− 2Xt + (Xt)2 − (Xrs)2 − (Xθ)2)dt2 + 2(Xrsdrs + Xθrsdθ)dt− drs2 − rs2dθ2 (12)

Note that in these equations when compared with the equations given in the previous page new sets
of contravariant and covariant components Xt and Xt appears because in these cases as the velocity vs
changes its value as times goes by due to a constant acceleration a this affects the whole spacetime geom-
etry in all these equations.

Note that in the original ADM formalism mixed contravariant and covariant terms Xt and Xt appears
together while in the contravariant parallel ADM formalism only the contravariant term Xt appears and
in the covariant parallel ADM formalism only the covariant term Xt appears.

Two important things must be outlined by now:

• 1)-The Natario shape function used in the equations with constant speed is valid also in the equations
with variable speed.

• 2)-All these equations satisfies the Natario criteria for a warp drive spacetime.
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In this work we present the new extended equations for the Natario warp drive spacetime which en-
compasses accelerations and variable speeds using also both the original and parallel ADM formalisms and
we arrive at the conclusion that the new equations are also valid solutions for the warp drive spacetime
according to the Natario criteria.

For the study of the original ADM formalism we use the approaches of MTW ([11]) and Alcubierre([12])
and we adopt the Alcubierre convention for notation of equations and scripts.

We adopt here the Geometrized system of units in which c = G = 1 for geometric purposes and the
International System of units for energetic purposes.

This work is organized as follows:

• Section 2)-Introduces the Natario warp drive continuous shape function able to low the negative
energy density requirements when a ship travels with a speed of 200 times faster than light.
The negative energy density for such a speed is directly proportional to the factor 1048 which is
1.000.000.000.000.000.000.000.000 times bigger in magnitude than the mass of the planet Earth!!!.

• Section 3)-presents the original equation for the Natario warp drive spacetime with a constant velocity
vs in the original 3+1 ADM formalism in a rigorous mathematical fashion.We recommend the study
of the Appendices A and E at the end of the work in order to fully understand the mathematical
demonstrations.

• Section 4)-presents the extended equation for the Natario warp drive spacetime with a variable veloc-
ity vs and a constant acceleration a in the original 3+1 ADM formalism in a rigorous mathematical
fashion.We recommend the study of the Appendices B,C and F at the end of the work in order to
fully understand the mathematical demonstrations.

• Section 5)-presents the original equation for the Natario warp drive spacetime with a constant ve-
locity vs in the 3 + 1 parallel contravariant ADM formalism in a rigorous mathematical fashion.We
recommend the study of the Appendix H at the end of the work.

• Section 6)-presents the original equation for the Natario warp drive spacetime with a variable velocity
vs and a constant acceleration a in the 3 + 1 parallel contravariant ADM formalism in a rigorous
mathematical fashion.We recommend the study of the Appendix I at the end of the work.

• Section 7)-presents the original equation for the Natario warp drive spacetime with a constant velocity
vs in the 3+1 parallel covariant ADM formalism in a rigorous mathematical fashion.We recommend
the study of the Appendix J at the end of the work.

• Section 8)-presents the original equation for the Natario warp drive spacetime with a variable velocity
vs and a constant acceleration a in the 3 + 1 parallel covariant ADM formalism in a rigorous
mathematical fashion.We recommend the study of the Appendix K at the end of the work.

• Section 9)-compares all these original and extended equations and we point out the fact that the
shape function used in one equation is also valid in the other equations and since the derivatives of
first or second order of the shape function low the negative energy density requirements in the one
of these equations these derivatives may perhaps be able to low the same requirements in the other
equations.We also point out that in the 1 + 1 spacetime all these equations can be reduced to two
equivalent forms one form for constant speeds and another form for variable speeds.
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The 3 + 1 original ADM formalism with signature (−,+,+,+) is given by the equation (21.40) pg
[507(b)] [534(a)] in [11]:(see Appendices E and F )

gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (13)

The 3 + 1 parallel contravariant ADM formalism with signature (−,+,+,+) is given by the equa-
tion:(see Appendices H and I)

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (14)

The 3 + 1 parallel covariant ADM formalism with signature (−,+,+,+) is given by the equation:(see
Appendices J and K)

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (15)

The 3 + 1 original ADM formalism with signature (−,+,+,+) and with the lapse function explicitly
defined is given by the equation:

gµν dxµ dxν = −γtt(1 + βt)2dt2 + γij(dxi + βidt)(dxj + βjdt) (16)

The 3+1 parallel contravariant ADM formalism with signature (−,+,+,+) and with the lapse function
explicitly defined is given by the equation:

gµν dxµ dxν = −(
√

γtt + βt)2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (17)

The 3 + 1 parallel covariant ADM formalism with signature (−,+,+,+) and with the lapse function
explicitly defined is given by the equation:

gµν dxµ dxν = −(
√

γtt + βt)2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (18)

Note that we managed to define each lapse function according to each ADM formalism.

For the original formalism we have the term γij(dxi+βidt)(dxj +βjdt) and the lapse function γtt(1+βt)2dt2

using the same mathematical structure in which the terms γij ,βi or βj from the spatial components appears
with the terms γtt and βt of the corresponding time components.

For the parallel contravariant formalism we have the term (
√

γiidxi + βidt)(√γjjdxj + βjdt) and the
lapse function (

√
γtt +βt)2dt2 using the same mathematical structure in which the terms

√
γii,βi,√γjj and

βj from the spatial components appears with the terms
√

γtt and βt of the corresponding time components.

For the parallel covariant formalism we have the term (
√

γiidxi + βidt)(√γjjdxj + βjdt) and the lapse
function (

√
γtt + βt)2dt2 using the same mathematical structure in which the terms

√
γii,βi,

√
γjj and βj

from the spatial components appears with the terms
√

γtt and βt of the corresponding time components..

The term γij is related to the 3 dimensional metric dl2 = γijdxidxj with i, j = 1, 2, 3 that measures
the proper distance between two points inside each hypersurface.

dl2 = γijdxidxj must be a diagonalized metric with signature (+,+,+) then dl2 = γiidxidxi dl =
√

γiidxi
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The warp drive as an artificial superluminal geometric tool that allows to travel faster than light may
well have an equivalent in the Nature.According to the modern Astronomy the Universe is expanding and
as farther a galaxy is from us as faster the same galaxy recedes from us.The expansion of the Universe is
accelerating(see preface of second edition and pg [337(a)], [337)b)] in [13]) and if the distance between us
and a galaxy far and far away is extremely large the speed of the recession may well exceed the light speed
limit.(see pgs [106(a)], [98(b)] in [23] and pgs [394(a)][377(b)] in [24] pgs [119(a)][226(b)] in [28]).

It is very important to note that if a galaxy in the other side of the Universe at a billion light-years of
distance outside the range of our Particle Horizon is moving away from us at a faster than light speed then
superluminal velocities may well exists in Nature.So the warp drive may not be impossible at all.Natario
also points out exactly this.(see pgs [10] and [11] in [29]).

What Alcubierre and Natario did was an attempt to reproduce the expansion of the Universe in a local way
creating a local spacetime distortion that expands the spacetime behind a ship and contracts spacetime
in front reproducing the superluminal expansion of the Universe moving away the departure point in an
expansion and bringing together the destination point in a contraction.The expansion-contraction can be
seen in the abs of the original Alcubierre paper in [1].Although Natario says in the abs of his paper in [2]
that the expansion-contraction does not occurs in its spacetime in pg 5 of the Natario paper we can see
the expansion-contraction occurring however the expansion of the normal volume elements or the trace of
the extrinsic curvature is zero because the contraction in the radial direction is exactly balanced by the
expansion in the perpendicular directions.

An excellent explanation on how a spacetime distortion or a perturbation pushes away a spaceship from
the departure point and brings the ship to the destination point at faster than light speed can be seen
at pg 34 in [21],pgs [260(a)260(b)][261(a)261(b)] in [22].Note that in these works it can be seen that the
perturbation do not obeys the time dilatation of the Lorentz transformations hence the speed limit of
Special Relativity cannot be applied here.

An accelerated warp drive can only exists if the astronaut in the center of the warp bubble can some-
how communicate with the warp bubble walls sending instructions to change its speed.But for signals at
light speed the Horizon exists so light speed cannot be used to send signals to the front of the bubble.(see
pg 16 in [7] and pg 21 in [8]).Besides in the Natario warp drive the negative energy density covers the entire
bubble.(see pg 52 in [7] and pg 51 in [8]).Since the negative energy density have repulsive gravitational
behavior the photon of light if possible to reach the bubble walls would then be deflected by the repulsive
behavior never reaching the bubble walls(see pg [116(a)][116(b)] in [26])

The solution that allows contact with the bubble walls was presented in pg 28 in [7] and pg 31 in [8].
Although the light cone of the external part of the warp bubble is causally disconnected from the astro-
naut who lies inside the large bubble he(or she) can somehow generate micro warp bubbles and since the
astronaut is external to the micro warp bubble he(or she) contains the entire light cone of the micro bubble
so these bubbles can be ”engineered” to be sent to the large bubble. This idea seems to be endorsed by pg
34 in [21],pgs [268(a)268(b)] in [22] where it is mentioned that warp drives can only be created or controlled
by an observer that contains the entire forward light cone of the bubble.

Although this work was written to be independent self-contained and self-consistent it must be regarded
as a companion work to our works in [16],[17] and in [20].
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2 The Natario warp drive continuous shape function

Introducing here f(rs) as the Alcubierre shape function that defines the Alcubierre warp drive spacetime
we can construct the Natario shape function n(rs) that defines the Natario warp drive spacetime using its
Alcubierre counterpart.Below is presented the equation of the Alcubierre shape function.4.

f(rs) =
1
2
[1− tanh[@(rs−R)] (19)

rs =
√

(x− xs)2 + y2 + z2 (20)

According with Alcubierre any function f(rs) that gives 1 inside the bubble and 0 outside the bubble
while being 1 > f(rs) > 0 in the Alcubierre warped region is a valid shape function for the Alcubierre
warp drive.(see eqs 6 and 7 pg 4 in [1] or top of pg 4 in [2]).

In the Alcubierre shape function xs is the center of the warp bubble where the ship resides. R is the
radius of the warp bubble and @ is the Alcubierre parameter related to the thickness.According to Alcu-
bierre these can have arbitrary values.We outline here the fact that according to pg 4 in [1] the parameter
@ can have arbitrary values.rs is the path of the so-called Eulerian observer that starts at the center of
the bubble xs = R = rs = 0 and ends up outside the warp bubble rs > R.

According to Natario(pg 5 in [2]) any function that gives 0 inside the bubble and 1
2 outside the bubble

while being 0 < n(rs) < 1
2 in the Natario warped region is a valid shape function for the Natario warp drive.

The Natario warp drive continuous shape function can be defined by:

n(rs) =
1
2
[1− f(rs)] (21)

n(rs) =
1
2
[1− [

1
2
[1− tanh[@(rs−R)]]]] (22)

This shape function gives the result of n(rs) = 0 inside the warp bubble and n(rs) = 1
2 outside the warp

bubble while being 0 < n(rs) < 1
2 in the Natario warped region.

Note that the Alcubierre shape function is being used to define its Natario shape function counterpart.

For the Natario shape function introduced above it is easy to figure out when f(rs) = 1(interior of
the Alcubierre bubble) then n(rs) = 0(interior of the Natario bubble) and when f(rs) = 0(exterior of the
Alcubierre bubble)then n(rs) = 1

2(exterior of the Natario bubble).

4tanh[@(rs + R)] = 1,tanh(@R) = 1 for very high values of the Alcubierre thickness parameter @ >> |R|
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Another Natario warp drive valid shape function can be given by:

n(rs) = [
1
2
][1− f(rs)WF ]WF (23)

Its derivative square is :

n′(rs)2 = [
1
4
]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)]f ′(rs)2 (24)

The shape function above also gives the result of n(rs) = 0 inside the warp bubble and n(rs) = 1
2

outside the warp bubble while being 0 < n(rs) < 1
2 in the Natario warped region(see pg 5 in [2]).

Note that like in the previous case the Alcubierre shape function is being used to define its Natario
shape function counterpart. The term WF in the Natario shape function is dimensionless too:it is the
warp factor.It is important to outline that the warp factor WF >> |R| is much greater than the modulus
of the bubble radius.

For the second Natario shape function introduced above it is easy to figure out when f(rs) = 1(interior of
the Alcubierre bubble) then n(rs) = 0(interior of the Natario bubble) and when f(rs) = 0(exterior of the
Alcubierre bubble)then n(rs) = 1

2(exterior of the Natario bubble).

• Numerical plot for the second shape function with @ = 50000 R = 100 meters and warp factor with
a value WF = 200

rs f(rs) n(rs) f ′(rs)2 n′(rs)2

9, 99970000000E + 001 1 0 2, 650396620740E − 251 0
9, 99980000000E + 001 1 0 1, 915169647489E − 164 0
9, 99990000000E + 001 1 0 1, 383896564748E − 077 0
1, 00000000000E + 002 0, 5 0, 5 6, 250000000000E + 008 3, 872591914849E − 103
1, 00001000000E + 002 0 0, 5 1, 383896486082E − 077 0
1, 00002000000E + 002 0 0, 5 1, 915169538624E − 164 0
1, 00003000000E + 002 0 0, 5 2, 650396470082E − 251 0

• Numerical plot for the second shape function with @ = 75000 R = 100 meters and warp factor with
a value WF = 200

rs f(rs) n(rs) f ′(rs)2 n′(rs)2

9, 99980000000E + 001 1 0 5, 963392481410E − 251 0
9, 99990000000E + 001 1 0 1, 158345097767E − 120 0
1, 00000000000E + 002 0, 5 0, 5 1, 406250000000E + 009 8, 713331808411E − 103
1, 00001000000E + 002 0 0, 5 1, 158344999000E − 120 0
1, 00002000000E + 002 0 0, 5 5, 963391972940E − 251 0

• Numerical plot for the second shape function with @ = 100000 R = 100 meters and warp factor with
a value WF = 200

rs f(rs) n(rs) f ′(rs)2 n′(rs)2

9, 99990000000E + 001 1 0 7, 660678807684E − 164 0
1, 00000000000E + 002 0, 5 0, 5 2, 500000000000E + 009 1, 549036765940E − 102
1, 00001000000E + 002 0 0, 5 7, 660677936765E − 164 0
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The plots in the previous page demonstrate the important role of the thickness parameter @ in the warp
bubble geometry wether in both Alcubierre or Natario warp drive spacetimes.For a bubble of 100 meters
radius R = 100 the regions where 1 > f(rs) > 0(Alcubierre warped region) and 0 < n(rs) < 1

2(Natario
warped region) becomes thicker or thinner as @ becomes higher.

Then the geometric position where both Alcubierre and Natario warped regions begins with respect to
R the bubble radius is rs = R − ε < R and the geometric position where both Alcubierre and Natario
warped regions ends with respect to R the bubble radius is rs = R + ε > R

As large as @ becomes as smaller ε becomes too.

Note from the plots of the previous page that we really have two warped regions:

• 1)-The geometrized warped region where 1 > f(rs) > 0(Alcubierre warped region) and 0 < n(rs) < 1
2

(Natario warped region).

• 2)-The energized warped region where the derivative squares of both Alcubierre and Natario shape
functions are not zero.

The parameter @ affects both energized warped regions wether in Alcubierre or Natario cases but is
more visible for the Alcubierre shape function because the warp factor WF in the Natario shape functions
squeezes the energized warped region into a very small thickness.

The negative energy density for the Natario warp drive is given by(see pg 5 in [2])

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2 cos2 θ +

(
n′(rs) +

r

2
n′′(rs)

)2
sin2 θ

]
(25)

Converting from the Geometrized System of Units to the International System we should expect for
the following expression(see Appendix G):

ρ = −c2

G

vs2

8π

[
3(n′(rs))2 cos2 θ +

(
n′(rs) +

rs

2
n′′(rs)

)2
sin2 θ

]
. (26)

Rewriting the Natario negative energy density in cartezian coordinates we should expect for(see Ap-
pendix D):

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(n′(rs))2(

x

rs
)2 +

(
n′(rs) +

r

2
n′′(rs)

)2
(

y

rs
)2
]

(27)
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In the equatorial plane(1 + 1 dimensional spacetime with rs = x− xs ,y = 0 and center of the bubble
xs = 0):

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(n′(rs))2

]
(28)

Note that in the above expressions the warp drive speed vs appears raised to a power of 2. Considering
our Natario warp drive moving with vs = 200 which means to say 200 times light speed in order to make
a round trip from Earth to a nearby star at 20 light-years away in a reasonable amount of time(in months
not in years) we would get in the expression of the negative energy the factor c2 = (3 × 108)2 = 9 × 1016

being divided by 6, 67× 10−11 giving 1, 35× 1027 and this is multiplied by (6× 1010)2 = 36× 1020 coming
from the term vs = 200 giving 1, 35× 1027 × 36× 1020 = 1, 35× 1027 × 3, 6× 1021 = 4, 86× 1048 !!!

A number with 48 zeros!!!The planet Earth have a mass5 of about 6× 1024kg

This term is 1.000.000.000.000.000.000.000.000 times bigger in magnitude than the mass of the planet
Earth!!!or better:The amount of negative energy density needed to sustain a warp bubble at a speed of 200
times faster than light requires the magnitude of the masses of 1.000.000.000.000.000.000.000.000 planet
Earths!!!

Note that if the negative energy density is proportional to 1048 this would render the warp drive im-
possible but fortunately the square derivative of the Natario shape function possesses values of 10−102

ameliorating the factor 1048 making the warp drive negative energy density more ”affordable”. For a de-
tailed study of the derivatives of first and second order of the Natario shape function n(rs) see pgs 10 to
41 in [18]

5see Wikipedia:The free Encyclopedia
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3 The equation of the Natario warp drive spacetime metric with a
constant speed vs in the original 3 + 1 ADM formalism

The equation of the Natario warp drive spacetime in the original 3 + 1 ADM formalism is given by:(see
Appendix E for details )

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (29)

The equation of the Natario vector nX(pg 2 and 5 in [2]) is given by:

nX = Xrsdrs + Xθrsdθ (30)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [2])(see also Appendix
A for details )

Xrs = 2vsn(rs) cos θ (31)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (32)

The covariant shift vector components Xrs and Xθ are given by:

Xrs = 2vsn(rs) cos θ (33)

Xθ = −rs2vs(2n(rs) + (rs)n′(rs)) sin θ (34)

Considering a valid n(rs) as a Natario shape function being n(rs) = 1
2 for large rs(outside the warp

bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1
2 in the walls of the

warp bubble also known as the Natario warped region(pg 5 in [2]):

We must demonstrate that the Natario warp drive equation given above satisfies the Natario require-
ments for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t)dx with X = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [2])
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Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we
consider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs
4,5 and 6 in [2]).

In a 1 + 1 spacetime the equatorial plane we get¿:

ds2 = (1−XrsX
rs)dt2 + 2(Xrsdrs)dt− drs2 (35)

The equation above was written using both contravariant and covariant shift vector components of the
Natario vector at the same time.

Since Xrs = Xrs the equation in the 1 + 1 spacetime can be written as given below:

• 1)-contravariant form;all the shift vector components of the Natario vector are contravariant

ds2 = (1− (Xrs)2)dt2 + 2(Xrsdrs)dt− drs2 (36)

• 2)-covariant form:all the shift vector components of the Natario vector are covariant

ds2 = (1− (Xrs)2)dt2 + 2(Xrsdrs)dt− drs2 (37)

The equal contravariant and covariant shift vector component Xrs and Xrs are then:

Xrs = Xrs = 2vsn(rs) (38)

Remember that Natario(pg 4 in [2]) defines the x axis as the axis of motion.Inside the bubble n(rs) = 0
resulting in a Xrs = 0 and outside the bubble n(rs) = 1

2 resulting in a Xrs = vs and this illustrates the
Natario definition for a warp drive spacetime.
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4 The equation of the Natario warp drive spacetime metric with a
variable speed vs due to a constant acceleration a in the original 3+1
ADM formalism

The equation of the Natario warp drive spacetime in the original 3 + 1 ADM formalism is given by:(see
Appendix F for details )

ds2 = (1− 2Xt + XtX
t −XrsX

rs −XθX
θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (39)

The equation of the Natario vector nX is given by:

nX = Xtdt + Xrsdrs + Xθrsdθ (40)

The contravariant shift vector components Xt,Xrs and Xθ of the Natario vector are defined by(see
Appendices B and C):

Xt = 2n(rs)rscosθa (41)

Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ (42)

Xθ = −2n(rs)at[2n(rs) + rsn′(rs)] sin θ (43)

The covariant shift vector components Xt,Xrs and Xθ are given by:

Xt = 2n(rs)rscosθa (44)

Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ (45)

Xθ = −2n(rs)at[2n(rs) + rsn′(rs)]rs2 sin θ (46)

Considering a valid n(rs) as a Natario shape function being n(rs) = 1
2 for large rs(outside the warp

bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1
2 in the walls of the

warp bubble also known as the Natario warped region(pg 5 in [2]):

We must demonstrate that the Natario warp drive equation given above satisfies the Natario require-
ments for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t)dx + xdvs with X = vs for a large
value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp
bubble.(pg 4 in [2])
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Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we
consider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs
4,5 and 6 in [2]).

In a 1 + 1 spacetime the equatorial plane we get¿:

ds2 = (1− 2Xt + XtX
t −XrsX

rs)dt2 + 2(Xrsdrs)dt− drs2 (47)

The equation above was written using both contravariant and covariant shift vector components of the
Natario vector at the same time.

Since Xt = Xt and Xrs = Xrs the equation in the 1 + 1 spacetime can be written as given below6:

• 1)-contravariant form;all the shift vector components of the Natario vector are contravariant

ds2 = (1− 2Xt + (Xt)2 − (Xrs)2)dt2 + 2(Xrsdrs)dt− drs2 (48)

• 2)-covariant form:all the shift vector components of the Natario vector are covariant

ds2 = (1− 2Xt + (Xt)2 − (Xrs)2)dt2 + 2(Xrsdrs)dt− drs2 (49)

The equal contravariant and covariant shift vector component Xt Xt Xrs and Xrs are then:

Xt = Xt = 2n(rs)rsa (50)

Xrs = Xrs = 2[2n(rs)2 + rsn′(rs)]at (51)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = 2n(rs)at (52)

Remember that Natario(pg 4 in [2]) defines the x axis as the axis of motion.Inside the bubble n(rs) = 0
resulting in a vs = 0 and outside the bubble n(rs) = 1

2 resulting in a vs = at as expected from a variable
velocity vs in time t due to a constant acceleration a.Since inside and outside the bubble n(rs) always
possesses the same values of 0 or 1

2 then the derivative n′(rs) of the Natario shape function n(rs) is zero7

and the covariant shift vector Xrs = 2[2n(rs)2]at with Xrs = 0 inside the bubble and Xrs = 2[2n(rs)2]at =
2[21

4 ]at = at = vs outside the bubble and this illustrates the Natario definition for a warp drive spacetime.

6in a geometrized system of units γtt = 1
7except in the neighborhoods of the bubble radius.See Section 2
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5 The equation of the Natario warp drive spacetime metric in the
parallel contravariant 3 + 1 ADM formalism for a constant speed vs

The warp drive spacetime according to Natario for the coordinates rs and θ in the parallel contravariant
3 + 1 ADM formalism is defined by the following equation:(see Appendix H for details )

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (53)

The expressions for Xrs and Xθ are given by:(see pg 5 in [2],see also Appendix A for details)

Xrs = 2vsn(rs) cos θ (54)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (55)

Looking both the equation of the Natario warp drive and the equation of the Natario vector nX(pg 2
and 5 in [2]):

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (56)

nX = Xrsdrs + Xθrsdθ (57)

We can see that the Natario vector is completely inserted twice in the non-diagonalized components of
the metric of the Nayario warp drive equation which gives:

g01 = g10 = Xrs = 2vsn(rs) cos θ (58)

g02 = g20 = Xθrs = −vs(2n(rs) + (rs)n′(rs))rs sin θ (59)

Since we have two sets of non-diagonalized components in the Natario warp drive equation and each
set possesses equal components of the Natario vector nX this is the reason why the Natario vector nX
appears twice in the Natario warp drive equation.

Considering a valid n(rs) as a Natario shape function being n(rs) = 1
2 for large rs(outside the warp

bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1
2 in the walls of the

warp bubble also known as the Natario warped region(pg 5 in [2]):

We can see that the Natario warp drive equation given in the previous page satisfies the Natario re-
quirements for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = −vs(t)dx or nX = vs(t)dx with X = vs
for a large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of
the warp bubble.(pg 4 in [2])

The statement above can be explained in the following way:
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Consider the Natario vector nX(pg 2 and 5 in [2]) defined below as:

nX = Xrsdrs + Xθrsdθ (60)

The components of the Natario vector nX are Xrs and Xθ.These are the shift vectors.Then a Natario
vector is constituted by one or more shift vectors.

When the Natario shape function n(rs) = 0 inside the bubble then Xrs = 2vsn(rs) cos θ = 0 and
Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ = 0.Then inside the bubble both shift vectors are zero resulting
in a zero Natario vector.

When the Natario shape function n(rs) = 1
2 outside the bubble then Xrs = 2vsn(rs) cos θ = vs cos θ

and Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ = −vs sin θ.Then outside the bubble both shift vectors are not
zero resulting in a not zero Natario vector.

Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we
consider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs
4,5 and 6 in [2]).

The Natario warp drive equation and the Natario vector nX in the equatorial plane 1 + 1 spacetime
now becomes:

ds2 = [1− (Xrs)2]dt2 + 2[Xrsdrs]dt− drs2 (61)

nX = Xrsdrs (62)

The equation above was written using only contravariant shift vector components of the Natario vector.

Since Xrs = Xrs the equation in the 1 + 1 spacetime can be written using only covariant shift vector
components of the Natario vector as given below:

ds2 = (1− (Xrs)2)dt2 + 2(Xrsdrs)dt− drs2 (63)

The equal contravariant and covariant shift vector component Xrs and Xrs are then:

Xrs = Xrs = 2vsn(rs) (64)

Note that the Natario vector nX is still inserted twice in the Natario warp drive equation due to the
2 remaining non-diagonalized components which are:

g01 = g10 = Xrs = 2vsn(rs) (65)

When the Natario shape function n(rs) = 0 inside the bubble then the shift vector Xrs = 2vsn(rs) = 0
.Then inside the bubble the shift vector Xrs = 0 is zero resulting in a zero Natario vector.

When the Natario shape function n(rs) = 1
2 outside the bubble then the shift vector Xrs = 2vsn(rs) = vs

.Then outside the bubble both shift and Natario vectors are not zero and the shift vector is equal to the
bubble speed vs.Then if Xrs = vs this explains the Natario affirmation of X = 0 inside the bubble and
X = vs outside the bubble.(pg 4 in [2])
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6 The equation of the Natario warp drive spacetime metric with a
variable speed vs due to a constant acceleration a in the parallel
contravariant 3 + 1 ADM formalism

The equation of the Natario warp drive spacetime in the parallel contravariant 3 + 1 ADM formalism is
given by:(see Appendix I for details )

ds2 = (1− 2Xt + (Xt)2 − (Xrs)2 − (Xθ)2)dt2 + 2(Xrsdrs + Xθrsdθ)dt− drs2 − rs2dθ2 (66)

The equation of the Natario vector nX is given by:

nX = Xtdt + Xrsdrs + Xθrsdθ (67)

The contravariant shift vector components Xt,Xrs and Xθ of the Natario vector are defined by(see
Appendices B and C):

Xt = 2n(rs)rscosθa (68)

Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ (69)

Xθ = −2n(rs)at[2n(rs) + rsn′(rs)] sin θ (70)

Considering a valid n(rs) as a Natario shape function being n(rs) = 1
2 for large rs(outside the warp

bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1
2 in the walls of the

warp bubble also known as the Natario warped region(pg 5 in [2]):

We must demonstrate that the Natario warp drive equation given above satisfies the Natario require-
ments for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t)dx + xdvs with X = vs for a large
value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp
bubble.(pg 4 in [2])
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Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we
consider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs
4,5 and 6 in [2]).

In a 1 + 1 spacetime the equatorial plane we get:

ds2 = (1− 2Xt + (Xt)2 − (Xrs)2)dt2 + 2(Xrsdrs)dt− drs2 (71)

The equation above was written only contravariant shift vector components of the Natario vector.

Since Xt = Xt and Xrs = Xrs the equation in the 1 + 1 spacetime can be written using only covari-
ant shift vector components of the Natario vector as given below8:

ds2 = (1− 2Xt + (Xt)2 − (Xrs)2)dt2 + 2(Xrsdrs)dt− drs2 (72)

The equal contravariant and covariant shift vector component Xt Xt Xrs and Xrs are then:

Xt = Xt = 2n(rs)rsa (73)

Xrs = Xrs = 2[2n(rs)2 + rsn′(rs)]at (74)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = 2n(rs)at (75)

Remember that Natario(pg 4 in [2]) defines the x axis as the axis of motion.Inside the bubble n(rs) = 0
resulting in a vs = 0 and outside the bubble n(rs) = 1

2 resulting in a vs = at as expected from a variable
velocity vs in time t due to a constant acceleration a.Since inside and outside the bubble n(rs) always
possesses the same values of 0 or 1

2 then the derivative n′(rs) of the Natario shape function n(rs) is zero9

and the covariant shift vector Xrs = 2[2n(rs)2]at with Xrs = 0 inside the bubble and Xrs = 2[2n(rs)2]at =
2[21

4 ]at = at = vs outside the bubble and this illustrates the Natario definition for a warp drive spacetime.

8in a geometrized system of units γtt = 1
9except in the neighborhoods of the bubble radius.See Section 2
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7 The equation of the Natario warp drive spacetime metric in the
parallel covariant 3 + 1 ADM formalism for a constant speed vs

The warp drive spacetime according to Natario for the coordinates rs and θ in the parallel covariant 3 + 1
ADM formalism is defined by the following equation:(see Appendix J for details ).

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (76)

Looking to the equation of the Natario vector nX(pg 2 and 5 in [2]):

nX = Xrsdrs + Xθrsdθ (77)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [2],see also Appendix
A for details):

Xrs = 2vsn(rs) cos θ (78)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (79)

But remember that dl2 = γijdxidxj = dr2 + r2dθ2 with γrr = 1,γθθ = r2 √γrr = 1
√

γθθ = r and
r = rs.Then the covariant shift vector components Xrs and Xθ with r = rs are given by:

Xr = γrrX
r = Xrs = γrsrsX

rs = 2vsn(rs) cos θ = Xr = Xrs (80)

Xθ = γθθX
θ = rs2Xθ = −rs2vs(2n(rs) + (rs)n′(rs)) sin θ (81)

It is possible to construct a covariant form for the Natario vector nX defined as ncX as follows:

ncX = Xrsdrs + Xθrsdθ (82)

With the covariant shift vector components Xrs and Xθ defined as shown above:
Looking both the equation of the Natario warp drive and the equation of the covariant Natario vector

ncX;

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (83)

ncX = Xrsdrs + Xθrsdθ (84)

We can see that the covariant Natario vector is completely inserted twice in the non-diagonalized
components of the metric of the Nayario warp drive equation which gives:

g01 = g10 = Xrs = 2vsn(rs) cos θ = Xr = Xrs (85)

g02 = g20 = Xθrs = rs3Xθ = −rs3vs(2n(rs) + (rs)n′(rs)) sin θ (86)

Since we have two sets of non-diagonalized components in the Natario warp drive equation and each
set possesses equal components of the covariant Natario vector ncX this is the reason why the Natario
vector ncX appears twice in the Natario warp drive equation.
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Considering a valid n(rs) as a Natario shape function being n(rs) = 1
2 for large rs(outside the warp

bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1
2 in the walls of the

warp bubble also known as the Natario warped region(pg 5 in [2]):

We can see that the Natario warp drive equation given in the previous page satisfies the Natario re-
quirements for a warp bubble defined by:

any covariant Natario vector ncX generates a warp drive spacetime if ncX = 0 and X = vs = 0 for a small
value of rs defined by Natario as the interior of the warp bubble and ncX = −vs(t)dx or ncX = vs(t)dx
with X = vs for a large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being
the speed of the warp bubble.(pg 4 in [2])

The statement above can be explained in the following way:

Consider again the covariant Natario vector ncX defined below as:

ncX = Xrsdrs + Xθrsdθ (87)

The covariant components of the Natario vector ncX are Xrs and Xθ.These are the covariant shift
vectors.Then a covariant Natario vector is constituted by one or more covariant shift vectors.

When the Natario shape function n(rs) = 0 inside the bubble then Xrs = 2vsn(rs) cos θ = 0 and
Xθ = −rs2vs(2n(rs) + (rs)n′(rs)) sin θ = 0.Then inside the bubble both covariant shift vectors are zero
resulting in a zero covariant Natario vector.

When the Natario shape function n(rs) = 1
2 outside the bubble then Xrs = 2vsn(rs) cos θ = vs cos θ

and Xθ = −rs2vs(2n(rs) + (rs)n′(rs)) sin θ = −rs2vs sin θ.Then outside the bubble both covariant shift
vectors are not zero resulting in a not zero covariant Natario vector.

Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we
consider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs
4,5 and 6 in [2]).

The Natario warp drive equation and the covariant Natario vector ncX in the equatorial plane 1 + 1
spacetime now becomes:

ds2 = [1− (Xrs)2]dt2 + 2[Xrsdrs]dt− drs2 (88)

The equation above was written using only covariant shift vector components of the Natario vector.

Since Xrs = Xrs the equation in the 1 + 1 spacetime can be written using only contravariant shift vector
components of the Natario vector as given below:

ds2 = (1− (Xrs)2)dt2 + 2(Xrsdrs)dt− drs2 (89)
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The equal contravariant and covariant shift vector component Xrs and Xrs are then:

Xrs = Xrs = 2vsn(rs) (90)

ncX = Xrsdrs (91)

Note that the covariant Natario vector ncX is still inserted twice in the Natario warp drive equation
due to the 2 remaining non-diagonalized components which are:

g01 = g10 = Xrs = 2vsn(rs) (92)

When the Natario shape function n(rs) = 0 inside the bubble then the covariant shift vector Xrs =
2vsn(rs) = 0 .Then inside the bubble the covariant shift vector Xrs = 0 is zero resulting in a zero covariant
Natario vector.

When the Natario shape function n(rs) = 1
2 outside the bubble then the covariant shift vector Xrs =

2vsn(rs) = vs .Then outside the bubble both covariant shift and Natario vectors are not zero and the co-
variant shift vector is equal to the bubble speed vs.Then if Xrs = vs this explains the Natario affirmation
of X = 0 inside the bubble and X = vs outside the bubble.(pg 4 in [2])
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8 The equation of the Natario warp drive spacetime metric with a
variable speed vs due to a constant acceleration a in the parallel
covariant 3 + 1 ADM formalism

The equation of the Natario warp drive spacetime in the parallel covariant 3 + 1 ADM formalism is given
by:(see Appendix K for details )

ds2 = (1− 2Xt + (Xt)2 − (Xrs)2 − (Xθ)2)dt2 + 2(Xrsdrs + Xθrsdθ)dt− drs2 − rs2dθ2 (93)

The equation of the Natario vector nX is given by:

nX = Xtdt + Xrsdrs + Xθrsdθ (94)

The contravariant shift vector components Xt,Xrs and Xθ of the Natario vector are defined by(see
Appendices B and C):

Xt = 2n(rs)rscosθa (95)

Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ (96)

Xθ = −2n(rs)at[2n(rs) + rsn′(rs)] sin θ (97)

The covariant shift vector components Xt,Xrs and Xθ are given by:

Xt = 2n(rs)rscosθa (98)

Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ (99)

Xθ = −2n(rs)at[2n(rs) + rsn′(rs)]rs2 sin θ (100)

Considering a valid n(rs) as a Natario shape function being n(rs) = 1
2 for large rs(outside the warp

bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1
2 in the walls of the

warp bubble also known as the Natario warped region(pg 5 in [2]):

We must demonstrate that the Natario warp drive equation given above satisfies the Natario require-
ments for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t)dx + xdvs with X = vs for a large
value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp
bubble.(pg 4 in [2])

23



Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we
consider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs
4,5 and 6 in [2]).

In a 1 + 1 spacetime the equatorial plane we get:

ds2 = (1− 2Xt + (Xt)2 − (Xrs)2)dt2 + 2(Xrsdrs)dt− drs2 (101)

The equation above was written using only covariant shift vector components of the Natario vector.

Since Xt = Xt and Xrs = Xrs the equation in the 1 + 1 spacetime can be written using only contravariant
shift vector components of the Natario vector as given below10:

ds2 = (1− 2Xt + (Xt)2 − (Xrs)2)dt2 + 2(Xrsdrs)dt− drs2 (102)

The equal contravariant and covariant shift vector component Xt Xt Xrs and Xrs are then:

Xt = Xt = 2n(rs)rsa (103)

Xrs = Xrs = 2[2n(rs)2 + rsn′(rs)]at (104)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = 2n(rs)at (105)

Remember that Natario(pg 4 in [2]) defines the x axis as the axis of motion.Inside the bubble n(rs) = 0
resulting in a vs = 0 and outside the bubble n(rs) = 1

2 resulting in a vs = at as expected from a variable
velocity vs in time t due to a constant acceleration a.Since inside and outside the bubble n(rs) always
possesses the same values of 0 or 1

2 then the derivative n′(rs) of the Natario shape function n(rs) is zero11

and the covariant shift vector Xrs = 2[2n(rs)2]at with Xrs = 0 inside the bubble and Xrs = 2[2n(rs)2]at =
2[21

4 ]at = at = vs outside the bubble and this illustrates the Natario definition for a warp drive spacetime.

10in a geometrized system of units γtt = 1
11except in the neighborhoods of the bubble radius.See Section 2
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9 Differences and resemblances between all these equations with con-
stant or variable velocity vs in the original or parallel 3 + 1 ADM

formalism for the Natario warp drive spacetime

The equation in 3+1 original ADM formalism for the Natario warp drive spacetime for a variable velocity
vs is given by:(see Appendices B,C and F for details )

ds2 = (1− 2Xt + XtX
t −XrsX

rs −XθX
θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (106)

The equation in 3 + 1 original ADM formalism for the Natario warp drive spacetime for a constant
velocity vs is given by:(see Appendices A and E for details )

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (107)

The equation of the Natario warp drive spacetime for a variable velocity vs in the parallel contravariant
3 + 1 ADM formalism is given by:(see Appendix I for details )

ds2 = (1− 2Xt + (Xt)2 − (Xrs)2 − (Xθ)2)dt2 + 2(Xrsdrs + Xθrsdθ)dt− drs2 − rs2dθ2 (108)

The equation of the Natario warp drive spacetime in the parallel contravariant 3 + 1 ADM formalism
for a constant velocity vs is given by:(see Appendix H for details )

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (109)

The equation of the Natario warp drive spacetime in the parallel covariant 3 + 1 ADM formalism for
a variable velocity vs is given by:(see Appendix K for details )

ds2 = (1− 2Xt + (Xt)2 − (Xrs)2 − (Xθ)2)dt2 + 2(Xrsdrs + Xθrsdθ)dt− drs2 − rs2dθ2 (110)

The equation of the Natario warp drive spacetime for a constant velocity vs in the parallel covariant
3 + 1 ADM formalism is give by:(see Appendix J for details ).

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (111)

Looking to the equations above we can see that the original ADM formalism uses both contravariant
and covariant shift vector components for the Natario vector while the parallel contravariant or covariant
ADM formalisms uses respectively only contravariant or covariant components.

Also from the previous sections we know that although in the 3 + 1 spacetime these equations are dif-
ferent between each other,but due to the equivalence between contravariant and covariant components in
the 1 + 1 spacetime all these equations can be reduced to the same form using contravariant or covariant
shift vector components in the case of the 1 + 1 spacetime however the form for variable velocity vs uses
the extra terms for the Natario vector due to the constant acceleration a which do not exists in the form
for fixed velocity vs
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The Natario vector for the equation with variable velocity vs is given by:

nX = Xtdt + Xrsdrs + Xθrsdθ (112)

The Natario vector for the equation with constant velocity vs is given by:

nX = Xrsdrs + Xθrsdθ (113)

The contravariant and covariant components in the Natario vector for the equation with variable velocity
vs are given by:

• Xt = 2n(rs)rscosθa

• Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ

• Xθ = −2n(rs)at[2n(rs) + rsn′(rs)] sin θ

• Xt = 2n(rs)rscosθa

• Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ

• Xθ = −2n(rs)at[2n(rs) + rsn′(rs)]rs2 sin θ

The contravariant and covariant components in the Natario vector for the equation with constant
velocity vs are given by:

• Xrs = 2vsn(rs) cos θ

• Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ

• Xrs = 2vsn(rs) cos θ

• Xθ = −rs2vs(2n(rs) + (rs)n′(rs)) sin θ

Note that in the case of variable velocity vs a new set of contravariant and covariant components Xt and
Xt appears both in the Natario warp drive equation and in the Natario vector because in this case as the ve-
locity vs changes its value as times goes by due to a constant acceleration a this affects the whole spacetime
geometry.The equation for a variable velocity vs due to a constant acceleration a is given by vs = 2n(rs)at.

Note also that the remaining contravariant and covariant components of both the Natario warp drive
equations and the Natario vectors Xrs,Xrs,Xθ and Xθ are defined in function of a constant acceleration
a in the case of a variable velocity vs and are defined in function of a fixed velocity vs in the case of a
constant velocity vs.

Note also that the contravariant and covariant components Xt, Xt,Xrs and Xrs are equal considering
separately the cases of fixed or variable velocities.This helps to illustrate why in the 1 + 1 spacetime all
these equations can be reduced to the same forms being one form suited for variable speeds while the other
form contemplate fixed speeds.
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We must outline now some very important things all these equations have in common:

• 1)- All these equations satisfies the Natario definition and condition for a warp drive spacetime using
the same Natario shape function n(rs) which gives 0 inside the bubble 1

2 outside the bubble and
0 < n(rs) < 1

2 in the Natario warped region wether in the original or parallel 3+1 ADM formalisms
and also all these equations satisfies the Natario requirements for a warp drive spacetime wether
using variable or fixed velocities.

• 2)- The same Natario shape function n(rs) appears in the contravariant and covariant components
of both Natario vectors.

• 3)- The same Natario shape function n(rs) appears in the definition of the equation of the variable
velocity vs = 2n(rs)at

Alcubierre used the original 3+1 ADM formalism in his warp drive(see eq 1 pg 3 in [1])(see Appendix
E) and we have reasons to believe that Natario which followed the Alcubierre steps also used the original
3 + 1 ADM formalism to derive the original Natario warp drive equation with constant velocity vs:

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (114)

The negative energy density for the Natario warp drive in the original 3 + 1 ADM formalism for fixed
velocities in the International System of Units SI (see Appendix G) is given by(see pg 5 in [2])

ρ = −c2

G

v2
s

8π

[
3(n′(rs))2 cos2 θ +

(
n′(rs) +

r

2
n′′(rs)

)2
sin2 θ

]
(115)

In the equatorial plane(1 + 1 dimensional spacetime with rs = x− xs ,y = 0 and center of the bubble
xs = 0) the negative energy density for fixed velocities is given by:(see Appendix D)

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(n′(rs))2

]
(116)

Since in the 1 + 1 spacetime all the equations with fixed velocities reduces to the same form wether in
the original or parallel ADM formalisms the equation above remains valid in all the cases

But for the case of the warp drive equations with variable velocity vs both in the original or parallel
3 + 1 ADM formalism or the case of the 3 + 1 parallel ADM formalism even for fixed speeds we can say
nothing about the negative energy density at first sight and we need to compute ”all-the-way-round” the
Christoffel symbols Riemann and Ricci tensors and the Ricci scalar in order to obtain the Einstein tensor
and hence the stress-energy-momentum tensor in a long and tedious process of tensor analysis liable of
occurrence of calculation errors.

Or we can use computers with programs like Maple or Mathematica (see pgs [342(b)] or [369(a)] in
[11], pgs [276(b)] or [294(a)] in [13],pgs [454, 457, 560(b)] or [465, 468, 567(a)] in [14] pg [98(a)] or [98(b)] in
[25],pgs [183(a)] or [178(b)] in [27]).

Appendix C pgs [551−555(b)] or [559−563(a)] in [14] shows how to calculate everything until the Einstein
tensor from the basic input of the covariant components of the 3+1 spacetime metric using Mathematica.
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But since the Natario shape function n(rs) is the same for all these equations it is reasonable to suppose
that derivatives of first second(or perhaps higher)order will appear in the negative energy density expression
for the Natario warp drive with variable velocity and since the derivatives of first or second order for the
Natario shape function possesses extremely low values these values can obliterate large terms for velocities
vs or large accelerations a.For a detailed study of the derivatives of first and second order of the Natario
shape function n(rs) see pgs 10 to 41 in [18]
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10 Conclusion:

In this work we presented the new equations for the warp drive spacetime according to Natario with con-
stant or variable velocity vs and constant acceleration a(in the case for the variable velocity) in both the
original or parallel 3 + 1 ADM formalisms:

The Natario warp drive spacetime is a very rich environment to study the superluminal features of General
Relativity because now we have six spacetime metrics and not only one and the geometry of the new
equations in the 3 + 1 spacetime is still unknown and needs to be cartographed.

The 3+1 original ADM formalism with signature (−,+,+,+) is given by the equation (21.40) pg [507(b)]
[534(a)] in [11]

gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (117)

The 3 + 1 parallel contravariant ADM formalism with signature (−,+,+,+) is given by the equation:

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (118)

The 3 + 1 parallel covariant ADM formalism with signature (−,+,+,+) is given by the equation:

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (119)

While the Christoffel symbols,Riemann and Ricci tensors,Ricci scalar,Einstein tensors or extrinsic cur-
vature tensors are completely known and chartered for the Natario warp drive in the original 3 + 1 ADM
formalism with fixed speed,these mathematical entities are completely unknown for the Natario warp drive
in the original 3+1 ADM formalism with variable speeds or the Natario warp drive in both the contravari-
ant or covariant parallel 3 + 1 ADM formalisms wether using fixed or variable speeds and this can open
new avenues of research in General Relativity.

Considering constant velocities then the lapse function α = 1 and for the 3 + 1 ADM formalisms wether
in the original or parallel cases we have the following results:

The 3 + 1 original ADM formalism with signature (−,+,+,+) without lapse function.

gµν dxµ dxν = −dt2 + γij(dxi + βidt)(dxj + βjdt) (120)

The 3 + 1 parallel contravariant ADM formalism with signature (−,+,+,+) without lapse function.

gµν dxµ dxν = −dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (121)

The 3 + 1 parallel covariant ADM formalism with signature (−,+,+,+) without lapse function.

gµν dxµ dxν = −dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (122)
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For the warp drives using variable velocities we must define explicitly the lapse function responsible for
the extra terms due to the accelerations.

The 3 + 1 original ADM formalism with signature (−,+,+,+) and with the lapse function explicitly
defined is given by the equation:

gµν dxµ dxν = −γtt(1 + βt)2dt2 + γij(dxi + βidt)(dxj + βjdt) (123)

The 3+1 parallel contravariant ADM formalism with signature (−,+,+,+) and with the lapse function
explicitly defined is given by the equation:

gµν dxµ dxν = −(
√

γtt + βt)2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (124)

The 3 + 1 parallel covariant ADM formalism with signature (−,+,+,+) and with the lapse function
explicitly defined is given by the equation:

gµν dxµ dxν = −(
√

γtt + βt)2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (125)

Note that we managed to define each lapse function according to each ADM formalism.

For the original formalism we have the term γij(dxi+βidt)(dxj +βjdt) and the lapse function γtt(1+βt)2dt2

using the same mathematical structure in which the terms γij ,βi or βj from the spatial components appears
with the terms γtt and βt of the corresponding time components.

For the parallel contravariant formalism we have the term (
√

γiidxi + βidt)(√γjjdxj + βjdt) and the
lapse function (

√
γtt +βt)2dt2 using the same mathematical structure in which the terms

√
γii,βi,√γjj and

βj from the spatial components appears with the terms
√

γtt and βt of the corresponding time components.

For the parallel covariant formalism we have the term (
√

γiidxi + βidt)(√γjjdxj + βjdt) and the lapse
function (

√
γtt + βt)2dt2 using the same mathematical structure in which the terms

√
γii,βi,

√
γjj and βj

from the spatial components appears with the terms
√

γtt and βt of the corresponding time components..

A real and fully functional warp drive must encompasses accelerations or de-accelerations in order to
go from 0 to 200 times light speed in the beginning of an interstellar journey and to slow down to 0 again
in the end of the interstellar journey.

Both the Alcubierre and Natario original geometries encompasses warp drives of constant velocities so
we expanded the Natario vector to encompass time coordinate as a new Canonical Basis for the Hodge
Star generating an extended version of the original Natario warp drive equation which of course encom-
passes accelerations or de-accelerations.

The Natario warp drive spacetime is a very rich environment to study the superluminal features of General
Relativity because now we have six spacetime metrics and not only one and the geometry of the new
equation in the 3 + 1 spacetime is still unknown and needs to be cartographed.
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Because collisions between the walls of the warp bubble and the hazardous particles of the Interstellar
Medium(IM) would certainly occurs in a real superluminal interstellar spaceflight we borrowed the idea
of Chris Van Den Broeck proposed some years ago in 1999 in order to increase the degree of protection of
the spaceship and the crew members in the Natario warp drive equation for constant speed vs(see pg 46
in [18],pg 3 in [19]).

Our idea was to keep the surface area of the bubble exposed to collisions microscopically small avoid-
ing the collisions with the dangerous IM particles while at the same time expanding the spatial volume
inside the bubble to a size larger enough to contains a spaceship inside.

A submicroscopic outer radius of the bubble being the only part in contact with our Universe would
mean a submicroscopic surface exposed to the collisions against the hazardous IM particles thereby re-
ducing the probabilities of dangerous impacts against large objects (comets asteroids etc) enhancing the
protection level of the spaceship and hence the survivability of the crew members.

Any future development for the Natario warp drive must encompass the more than welcome idea of Chris
Van Den Broeck and this idea can also be easily implemented in the Natario warp drive with variable ve-
locity.Since the Broeck idea is independent of the Natario geometry wether in constant or variable velocity
we did not covered the Broeck idea here because it was already covered in [18] and [19] and in order to
discuss the geometry of a Natario warp drive with variable velocity the Broeck idea is not needed here
however the Broeck idea must appear in a real Natario warp drive with variable velocity vs concerning
realistic superluminal interstellar spaceflights.

But unfortunately although we can discuss mathematically how to reduce the negative energy density
requirements to sustain a warp drive we dont know how to generate the shape function that distorts the
spacetime geometry creating the warp drive effect.So unfortunately all the discussions about warp drives
are still under the domain of the mathematical conjectures.

However we are confident to affirm that the Natario-Broeck warp drive will survive the passage of the
Century XXI and will arrive to the Future.The Natario-Broeck warp drive as a valid candidate for faster
than light interstellar space travel will arrive to the the Century XXIV on-board the future starships up
there in the middle of the stars helping the human race to give his first steps in the exploration of our Galaxy

Live Long And Prosper
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11 Appendix A:differential forms,Hodge star and the mathematical
demonstration of the Natario vectors nX = −vsdx and nX = vsdx

for a constant speed vs in a R3 space basis

This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted
with the methods Natario used to arrive at the final expression of the Natario Vector nX

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in
[2],eqs 3.135 and 3.137 pg 82(a)(b) in [15],eq 3.72 pg 69(a)(b) in [15]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (126)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) (127)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (128)

From above we get the following results

dr ∼ r2 sin θ(dθ ∧ dϕ) (129)

rdθ ∼ r sin θ(dϕ ∧ dr) (130)

r sin θdϕ ∼ r(dr ∧ dθ) (131)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(see pg 8 in [4],eq 3.72 pg 69(a)(b) in [15]):

∗dr = r2 sin θ(dθ ∧ dϕ) (132)

∗rdθ = r sin θ(dϕ ∧ dr) (133)

∗r sin θdϕ = r(dr ∧ dθ) (134)

Back again to the Natario equivalence between spherical and cartezian coordinates(pg 5 in [2]):

∂

∂x
∼ dx = d(r cos θ) = cos θdr−r sin θdθ ∼ r2 sin θ cos θdθ∧dϕ+r sin2 θdr∧dϕ = d

(
1
2
r2 sin2 θdϕ

)
(135)
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Look that

dx = d(r cos θ) = cos θdr − r sin θdθ (136)

Or

dx = d(r cos θ) = cos θdr − sin θrdθ (137)

Applying the Hodge Star operator * to the above expression:

∗dx = ∗d(r cos θ) = cos θ(∗dr)− sin θ(∗rdθ) (138)

∗dx = ∗d(r cos θ) = cos θ[r2 sin θ(dθ ∧ dϕ)]− sin θ[r sin θ(dϕ ∧ dr)] (139)

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dθ ∧ dϕ)]− [r sin2 θ(dϕ ∧ dr)] (140)

We know that the following expression holds true(see pg 9 in [3], eq 3.79 pg 70(a)(b) in [15]):

dϕ ∧ dr = −dr ∧ dϕ (141)

Then we have

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dθ ∧ dϕ)] + [r sin2 θ(dr ∧ dϕ)] (142)

And the above expression matches exactly the term obtained by Natario using the Hodge Star operator
applied to the equivalence between cartezian and spherical coordinates(pg 5 in [2]).

Now examining the expression:

d

(
1
2
r2 sin2 θdϕ

)
(143)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d
(

1
2
r2 sin2 θdϕ

)
(144)

∗d
(

1
2
r2 sin2 θdϕ

)
∼ 1

2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] +
1
2
r2 sin2 θ ∗ d[(dϕ)] (145)

According to pg 10 in [3],eq 3.90 pg 74(a)(b) in [15] the term 1
2r2 sin2 θ ∗ d[(dϕ)] = 0

This leaves us with:

1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dθ ∧ dϕ) +

1
2

sin2 θ2r(dr ∧ dϕ) (146)
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1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dθ ∧ dϕ) +

1
2

sin2 θ2r(dr ∧ dϕ) (147)

Because and according to pg 10 in [3],eqs 3.90 and 3.91 pg 74(a)(b) in [15],tb 3.2 pg 68(a)(b) in [15]:

∗d(α + β) = dα + dβ (148)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 2 99K ∗d(fα) = df ∧ α + f ∧ dα (149)

∗d(dx) = d(dy) = d(dz) = 0 (150)

From above we can see for example that

∗d[(sin2 θ)dϕ] = d(sin2 θ) ∧ dϕ + sin2 θ ∧ ddϕ = 2sinθ cos θ(dθ ∧ dϕ) (151)

∗[d(r2)dϕ] = 2rdr ∧ dϕ + r2 ∧ ddϕ = 2r(dr ∧ dϕ) (152)

And then we derived again the Natario result of pg 5 in [2]

r2 sin θ cos θ(dθ ∧ dϕ) + r sin2 θ(dr ∧ dϕ) (153)

Now we will examine the following expression equivalent to the one of Natario pg 5 in [2] except that
we replaced 1

2 by the function f(r) :

∗d[f(r)r2 sin2 θdϕ] (154)

From above we can obtain the next expressions

f(r)r2 ∗ d[(sin2 θ)dϕ] + f(r) sin2 θ ∗ [d(r2)dϕ] + r2 sin2 θ ∗ d[f(r)dϕ] (155)

f(r)r22sinθ cos θ(dθ ∧ dϕ) + f(r) sin2 θ2r(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (156)

2f(r)r2sinθ cos θ(dθ ∧ dϕ) + 2f(r)r sin2 θ(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (157)
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2f(r)r2sinθ cos θ(dθ ∧ dϕ) + 2f(r)r sin2 θ(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (158)

Comparing the above expressions with the Natario definitions of pg 4 in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (159)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) ∼ −r sin θ(dr ∧ dϕ) (160)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (161)

We can obtain the following result:

2f(r) cosθ[r2sinθ(dθ ∧ dϕ)] + 2f(r) sinθ[r sin θ(dr ∧ dϕ)] + f ′(r)r sin θ[r sin θ(dr ∧ dϕ)] (162)

2f(r) cosθer − 2f(r) sinθeθ − rf ′(r) sin θeθ (163)

∗d[f(r)r2 sin2 θdϕ] = 2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ (164)

Defining the Natario Vector as in pg 5 in [2] with the Hodge Star operator * explicitly written :

nX = vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(165)

nX = −vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(166)

We can get finally the latest expressions for the Natario Vector nX also shown in pg 5 in [2]

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (167)

nX = −2vs(t)f(r) cosθer + vs(t)[2f(r) + rf ′(r)] sin θeθ (168)

With our pedagogical approaches

nX = 2vs(t)f(r) cosθdr − vs(t)[2f(r) + rf ′(r)]r sin θdθ (169)

nX = −2vs(t)f(r) cosθdr + vs(t)[2f(r) + rf ′(r)]r sin θdθ (170)
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12 Appendix B:differential forms,Hodge star and the mathematical
demonstration of the Natario vectors nX = −vsdx and nX = vsdx

for a constant speed vs or for the first term vsdx from the Natario
vector nX = vsdx + xdvs(a variable speed) in a R4 space basis

This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted
with the methods Natario used to arrive at the final expression of the Natario Vector nX

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in
[2],eqs 3.135 and 3.137 pg 82(a)(b) in [15],eq 3.74 pg 69(a)(b) in [15]):

er ≡
∂

∂r
∼ dr ∼ dt ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dt ∧ dθ ∧ dϕ) (171)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ dt ∧ (r sin θdϕ) ∧ dr ∼ r sin θ(dt ∧ dϕ ∧ dr) (172)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dt ∧ dr ∧ (rdθ) ∼ r(dt ∧ dr ∧ dθ) (173)

From above we get the following results

dr ∼ r2 sin θ(dt ∧ dθ ∧ dϕ) (174)

rdθ ∼ r sin θ(dt ∧ dϕ ∧ dr) (175)

r sin θdϕ ∼ r(dt ∧ dr ∧ dθ) (176)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(pg 8 in [4],eq 3.74 pg 69(a)(b) in [15]):

∗dr = r2 sin θ(dt ∧ dθ ∧ dϕ) (177)

∗rdθ = r sin θ(dt ∧ dϕ ∧ dr) (178)

∗r sin θdϕ = r(dt ∧ dr ∧ dθ) (179)

Back again to the Natario equivalence between spherical and cartezian coordinates(pg 5 in [2]):

∂

∂x
∼ dx = d(r cos θ) = cos θdr−r sin θdθ ∼ r2 sin θ cos θdt∧dθ∧dϕ+r sin2 θdt∧dr∧dϕ = d

(
1
2
r2 sin2 θdϕ

)
(180)
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Look that

dx = d(r cos θ) = cos θdr − r sin θdθ (181)

Or

dx = d(r cos θ) = cos θdr − sin θrdθ (182)

Applying the Hodge Star operator * to the above expression:

∗dx = ∗d(r cos θ) = cos θ(∗dr)− sin θ(∗rdθ) (183)

∗dx = ∗d(r cos θ) = cos θ[r2 sin θ(dt ∧ dθ ∧ dϕ)]− sin θ[r sin θ(dt ∧ dϕ ∧ dr)] (184)

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dt ∧ dθ ∧ dϕ)]− [r sin2 θ(dt ∧ dϕ ∧ dr)] (185)

We know that the following expression holds true(see pg 9 in [3],eq 3.79 pg 70(a)(b) in [15])):

dϕ ∧ dr = −dr ∧ dϕ (186)

Then we have

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dt ∧ dθ ∧ dϕ)] + [r sin2 θ(dt ∧ dr ∧ dϕ)] (187)

And the above expression matches exactly the term obtained by Natario using the Hodge Star operator
applied to the equivalence between cartezian and spherical coordinates(pg 5 in [2]).

Now examining the expression:

d

(
1
2
r2 sin2 θdϕ

)
(188)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d
(

1
2
r2 sin2 θdϕ

)
(189)

∗d
(

1
2
r2 sin2 θdϕ

)
∼ 1

2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] +
1
2
r2 sin2 θ ∗ d[(dϕ)] (190)

According to pg 10 in [3],eq 3.90 pg 74(a)(b) in [15] the term 1
2r2 sin2 θ ∗ d[(dϕ)] = 0

This leaves us with:

1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dt ∧ dθ ∧ dϕ) +

1
2

sin2 θ2r(dt ∧ dr ∧ dϕ) (191)
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1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dt ∧ dθ ∧ dϕ) +

1
2

sin2 θ2r(dt ∧ dr ∧ dϕ) (192)

Because and according to pg 10 in [3],eqs 3.90 and 3.91 pg 74(a)(b) in [15],tb 3.3 pg 68(a)(b) in [15]::

∗d(α + β) = dα + dβ (193)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 3 99K ∗d(fα) = df ∧ α− f ∧ dα (194)

∗d(dx) = d(dy) = d(dz) = 0 (195)

From above we can see for example that

∗d[(sin2 θ)dϕ] = dt ∧ d(sin2 θ) ∧ dϕ− dt ∧ sin2 θ ∧ ddϕ = 2sinθ cos θ(dt ∧ dθ ∧ dϕ) (196)

∗[d(r2)dϕ] = 2rdt ∧ dr ∧ dϕ− dt ∧ r2 ∧ ddϕ = 2r(dt ∧ dr ∧ dϕ) (197)

And then we derived again the Natario result of pg 5 in [2]

r2 sin θ cos θ(dt ∧ dθ ∧ dϕ) + r sin2 θ(dt ∧ dr ∧ dϕ) (198)

Now we will examine the following expression equivalent to the one of Natario pg 5 in [2] except that
we replaced 1

2 by the function f(r) :

∗d[f(r)r2 sin2 θdϕ] (199)

From above we can obtain the next expressions

f(r)r2 ∗ d[(sin2 θ)dϕ] + f(r) sin2 θ ∗ [d(r2)dϕ] + r2 sin2 θ ∗ d[f(r)dϕ] (200)

f(r)r22sinθ cos θ(dt ∧ dθ ∧ dϕ) + f(r) sin2 θ2r(dt ∧ dr ∧ dϕ) + r2 sin2 θf ′(r)(dt ∧ dr ∧ dϕ) (201)

2f(r)r2sinθ cos θ(dt ∧ dθ ∧ dϕ) + 2f(r)r sin2 θ(dt ∧ dr ∧ dϕ) + r2 sin2 θf ′(r)(dt ∧ dr ∧ dϕ) (202)
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2f(r)r2sinθ cos θ(dt ∧ dθ ∧ dϕ) + 2f(r)r sin2 θ(dt ∧ dr ∧ dϕ) + r2 sin2 θf ′(r)(dt ∧ dr ∧ dϕ) (203)

Comparing the above expressions with the Natario definitions of pg 4 in [2]):

er ≡
∂

∂r
∼ dr ∼ dt ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dt ∧ dθ ∧ dϕ) (204)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ dt ∧ (r sin θdϕ) ∧ dr ∼ r sin θ(dt ∧ dϕ ∧ dr) ∼ −r sin θ(dt ∧ dr ∧ dϕ) (205)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dt ∧ dr ∧ (rdθ) ∼ r(dt ∧ dr ∧ dθ) (206)

We can obtain the following result:

2f(r) cosθ[r2sinθ(dt∧ dθ∧ dϕ)]+2f(r) sinθ[r sin θ(dt∧ dr∧ dϕ)]+ f ′(r)r sin θ[r sin θ(dt∧ dr∧ dϕ)] (207)

2f(r) cosθer − 2f(r) sinθeθ − rf ′(r) sin θeθ (208)

∗d[f(r)r2 sin2 θdϕ] = 2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ (209)

Defining the Natario Vector as in pg 5 in [2] with the Hodge Star operator * explicitly written :

nX = vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(210)

nX = −vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(211)

We can get finally the latest expressions for the Natario Vector nX also shown in pg 5 in [2]

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (212)

nX = −2vs(t)f(r) cosθer + vs(t)[2f(r) + rf ′(r)] sin θeθ (213)

With our pedagogical approaches

nX = 2vs(t)f(r) cosθdr − vs(t)[2f(r) + rf ′(r)]r sin θdθ (214)

nX = −2vs(t)f(r) cosθdr + vs(t)[2f(r) + rf ′(r)]r sin θdθ (215)
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13 Appendix C:differential forms,Hodge star and the mathematical
demonstration of the Natario vector nX = ∗(vsx) for a variable speed
vs and a constant acceleration a

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of r
defined by Natario as the interior of the warp bubble and nX = vs(t)dx with X = vs for a large value of
r defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [2])

In the Appendices A and B we gave the mathematical demonstration of the Natario vector nX in the
R3 and R4 space basis when the velocity vs is constant.Hence the complete expression of the Hodge star
that generates the Natario vector nX for a constant velocity vs is given by:

nX = ∗(vsx) = vs ∗ (dx) (216)

∗dx = ∗d(rcosθ) = ∗d
(

1
2
r2 sin2 θdϕ

)
= ∗d[f(r)r2 sin2 θdϕ] (217)

The equation of the Natario vector nX(pg 2 and 5 in [2]) is given by:

nX = Xrer + Xθeθ (218)

nX = Xrdr + Xθrdθ (219)

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (220)

nX = 2vs(t)f(r) cosθdr − vs(t)[2f(r) + rf ′(r)]r sin θdθ (221)

With the contravariant shift vector components explicitly given by:

Xr = 2vsf(r) cos θ (222)

Xθ = −vs(2f(r) + (r)f ′(r)) sin θ (223)

Because due to a constant speed vs the term x ∗ d(vs) = 0.Now we must examine what happens when
the velocity is variable and then the term x ∗ d(vs) no longer vanishes.Remember that a real warp drive
must accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression
of the Hodge star that generates the Natario vector nX for a variable velocity vs is now given by:

nX = ∗(vsx) = vs ∗ (dx) + x ∗ (dvs) (224)
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In order to study the term x ∗ d(vs) we must introduce a new Canonical Basis for the coordinate time
in the R4 space basis defined as follows:(see eqs 10.102 and 10.103 pgs 363(a)(b) and 364(a)(b) in [15] with
the terms S = u = 112,eq 3.74 pg 69(a)(b) in [15],eqs 11.131 and 11.133 with the term m = 013 pg 417(a)(b)
in [15].):

et ≡
∂

∂t
∼ dt ∼ dr ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dr ∧ dθ ∧ dϕ) (225)

dt ∼ r2 sin θ(dr ∧ dθ ∧ dϕ) (226)

The Hodge star operator defined for the coordinate time is given by:(see eq 3.74 pg 69(a)(b) in [15]):

∗dt = r2 sin θ(dr ∧ dθ ∧ dϕ) (227)

The valid expression for a variable velocity vs(t) in the Natario warp drive spacetime due to a constant
acceleration a must be given by:

vs = 2f(r)at (228)

Because and considering a valid f(r) as a Natario shape function being f(r) = 1
2 for large r(outside

the warp bubble where X = vs(t) and nX = vs(t) ∗ dx + x ∗ d(vs(t))) and f(r) = 0 for small r(inside
the warp bubble where X = 0 and nX = 0) while being 0 < f(r) < 1

2 in the walls of the warp bub-
ble also known as the Natario warped region(pgs 4 and 5 in [2]) and considering also that the Netario
warp drive is a ship-frame based coordinates system(a reference frame placed in the center of the warp
bubble where the ship resides-or must reside!!) then an observer in the ship inside the bubble sees every
point inside the bubble at the rest with respect to him because inside the bubble vs(t) = 0 because f(r) = 0.

To illustrate the statement pointed above imagine a fish inside an aquarium and the aquarium is floating in
the surface of a river but carried out by the river stream.The stream varies its velocity with time.The warp
bubble in this case is the aquarium and the walls of the aquarium are the walls of the warp bubble-Natario
warped region.An observer in the margin of the river would see the aquarium passing by him at a large
speed considering a coordinates system(a reference frame) placed in the margin of the river but inside the
aquarium the fish is at the rest with respect to his local neighborhoods.Then for the fish any point inside
the aquarium is at the rest with respect to him because inside the aquarium vs = 2f(r)at with f(r) = 0
and consequently giving a vs(t) = 0.Again with respect to the fish the fish ”sees” the margin passing by
him with a large relative velocity.The margin in this case is the region outside the bubble ”seen” by the
fish with a variable velocity vs(t) = v1 in the time t1 and vs(t) = v2 in the time t2 because outside the
bubble the generic expression for a variable velocity vs is given by vs = 2f(r)at and outside the bubble
f(r) = 1

2 giving a generic expression for a variable velocity vs as vs(t) = at and consequently a v1 = at1
in the time t1 and a v2 = at2 in the time t2.Then the variable velocity in not only a function of time
alone but must consider also the position of the bubble where the measure is being taken wether inside or
outside the bubble.So the velocity must also be a function of r.Its total differential is then given by:

dvs = 2[atf ′(r)dr + f(r)tda + f(r)adt] (229)

12These terms are needed to deal with the Robertson-Walker equation in Cosmology using differential forms.We dont need
these terms here and we can make S = u = 1

13This term is needed to describe the Dirac equation in the Schwarzschild spacetime we dont need the term here so we can
make m = 1.Remember also that here we consider geometrized units in which c = 1
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Applying the Hodge star to the total differential dvs we get:

∗dvs = 2[atf ′(r) ∗ dr + f(r)t ∗ da + f(r)a ∗ dt] (230)

But we consider here the acceleration a a constant.Then the term f(r)tda = 0 and in consequence
f(r)t ∗ da = 0.This leaves us with:

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] (231)

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] = 2[atf ′(r)r2 sin θ(dt ∧ dθ ∧ dϕ) + f(r)ar2 sin θ(dr ∧ dθ ∧ dϕ)] (232)

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] = 2[atf ′(r)er + f(r)aet] (233)

The complete expression of the Hodge star that generates the Natario vector nX for a variable velocity
vs is given by:

nX = ∗(vsx) = vs ∗ (dx) + x ∗ d(vs) (234)

The term ∗dx was obtained in the Appendices A and B as follows:(see pg 5 in [2])

∗dx = 2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ (235)

The complete expression of the Hodge star that generates the Natario vector nX for a variable velocity
vs is now given by:

nX = ∗(vsx) = vs(2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ) + x(2[atf ′(r)er + f(r)aet]) (236)

But remember that x = rcosθ(see pg 5 in [2]) and this leaves us with:

nX = ∗(vsx) = vs(2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ) + rcosθ(2[atf ′(r)er + f(r)aet]) (237)

But we know that vs = 2f(r)at.Hence we get:

nX = ∗(vsx) = 2f(r)at(2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ) + rcosθ(2[atf ′(r)er + f(r)aet]) (238)

Then we can start with a warp bubble initially at the rest using the Natario vector shown above and
accelerate the bubble to a desired speed of 200 times faster than light.When we achieve the desired speed
we turn off the acceleration and keep the speed constant.The terms due to the acceleration now disappears
and we are left again with the Natario vector for constant speeds shown below:

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (239)
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Working some algebra with the Natario vector for variable velocities we get:

nX = ∗(vsx) = 2f(r)at(2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ) + rcosθ(2[atf ′(r)er + f(r)aet]) (240)

nX = 4f(r)2at cosθer − 2f(r)at[2f(r) + rf ′(r)] sin θeθ + 2atf ′(r)rcosθer + 2f(r)rcosθaet (241)

nX = 2f(r)rcosθaet + 4f(r)2at cosθer + 2atf ′(r)rcosθer − 2f(r)at[2f(r) + rf ′(r)] sin θeθ (242)

nX = 2f(r)rcosθaet + 2[2f(r)2 + rf ′(r)]atcosθer − 2f(r)at[2f(r) + rf ′(r)] sin θeθ (243)

Then the Natario vector for variable velocities defined using contravariant shift vector components is
given by the following expressions:

nX = Xtet + Xrer + Xθeθ (244)

nX = Xtdt + Xrdr + Xθrdθ (245)

Or being:

nX = 2f(r)rcosθaet + 2[2f(r)2 + rf ′(r)]atcosθer − 2f(r)at[2f(r) + rf ′(r)] sin θeθ (246)

nX = 2f(r)rcosθadt + 2[2f(r)2 + rf ′(r)]atcosθdr − 2f(r)at[2f(r) + rf ′(r)]r sin θdθ (247)

The contravariant shift vector components are respectively given by the following expressions:

Xt = 2f(r)rcosθa (248)

Xr = 2[2f(r)2 + rf ′(r)]atcosθ (249)

Xθ = −2f(r)at[2f(r) + rf ′(r)] sin θ (250)
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14 Appendix D:The Natario warp drive negative energy density in
Cartezian coordinates

The negative energy density according to Natario is given by(see pg 5 in [2])14:

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2 cos2 θ +

(
n′(rs) +

r

2
n′′(rs)

)2
sin2 θ

]
(251)

In the bottom of pg 4 in [2] Natario defined the x-axis as the polar axis.In the top of page 5 we can see
that x = rs cos(θ) implying in cos(θ) = x

rs and in sin(θ) = y
rs

Rewriting the Natario negative energy density in cartezian coordinates we should expect for:

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2(

x

rs
)2 +

(
n′(rs) +

r

2
n′′(rs)

)2
(

y

rs
)2
]

(252)

Considering motion in the equatorial plane of the Natario warp bubble (x-axis only) then [y2 + z2] = 0
and rs2 = [(x− xs)2] and making xs = 0 the center of the bubble as the origin of the coordinate frame for
the motion of the Eulerian observer then rs2 = x2 because in the equatorial plane y = z = 0.

Rewriting the Natario negative energy density in cartezian coordinates in the equatorial plane we should
expect for:

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2

]
(253)

The negative energy density have repulsive gravitational behavior and is distributed along all the bubble
volume even in the equatorial plane so any hazardous incoming objects in front of the bubble (Doppler
blueshifted photons or space dust or debris) would then be deflected by the repulsive behavior of the
negative energy in front of the bubble never reaching the bubble walls(see pg [116(a)][116(b)] in [26])

14n(rs) is the Natario shape function.Equation written in the Geometrized System of Units c = G = 1
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15 Appendix E:mathematical demonstration of the Natario warp drive
equation for a constant speed vs in the original 3+1 ADM Formalism
according to MTW and Alcubierre

General Relativity describes the gravitational field in a fully covariant way using the geometrical line ele-
ment of a given generic spacetime metric ds2 = gµνdxµdxν where do not exists a clear difference between
space and time.This generical form of the equations using tensor algebra is useful for differential geometry
where we can handle the spacetime metric tensor gµν in a way that keeps both space and time integrated in
the same mathematical entity (the metric tensor) and all the mathematical operations do not distinguish
space from time under the context of tensor algebra handling mathematically space and time exactly in
the same way.

However there are situations in which we need to recover the difference between space and time as for
example the evolution in time of an astrophysical system given its initial conditions.

The 3 + 1 ADM formalism allows ourselves to separate from the generic equation ds2 = gµνdxµdxν of
a given spacetime the 3 dimensions of space and the time dimension.(see pg [64(b)] [79(a)] in [12])

Consider a 3 dimensional hypersurface Σ1 in an initial time t1 that evolves to a hypersurface Σ2 in a
later time t2 and hence evolves again to a hypersurface Σ3 in an even later time t3 according to fig 2.1 pg
[65(b)] [80(a)] in [12].

The hypersurface Σ2 is considered and adjacent hypersurface with respect to the hypersurface Σ1 that
evolved in a differential amount of time dt from the hypersurface Σ1 with respect to the initial time t1.
Then both hypersurfeces Σ1 and Σ2 are the same hypersurface Σ in two different moments of time Σt and
Σt+dt.(see bottom of pg [65(b)] [80(a)] in [12])

The geometry of the spacetime region contained between these hypersurfaces Σt and Σt+dt can be de-
termined from 3 basic ingredients:(see fig 2.2 pg [66(b)] [81(a)] in [12])
(see also fig 21.2 pg [506(b)] [533(a)] in [11] where dxi + βidt appears to illustrate the equation 21.40
gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) at pg [507(b)] [534(a)] in [11])15

• 1)-the 3 dimensional metric dl2 = γijdxidxj with i, j = 1, 2, 3 that measures the proper distance
between two points inside each hypersurface

• 2)-the lapse of proper time dτ between both hypersurfaces Σt and Σt+dt measured by observers
moving in a trajectory normal to the hypersurfaces(Eulerian obsxervers) dτ = αdt where α is known
as the lapse function.

• 3)-the relative velocity βi between Eulerian observers and the lines of constant spatial coordinates
(dxi + βidt).βi is known as the shift vector.

15we adopt the Alcubierre notation here
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Combining the eqs (21.40),(21.42) and (21.44) pgs [507, 508(b)] [534, 535(a)] in [11]
with the eqs (2.2.5) and (2.2.6) pgs [67(b)] [82(a)] in [12] using the signature (−,+,+,+) we get the original
equations of the 3 + 1 ADM formalism given by the following expressions:

gµν =
(

g00 g0j

gi0 gij

)
=
(
−α2 + βkβ

k βj

βi γij

)
(254)

gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (255)

The components of the inverse metric are given by the matrix inverse :

gµν =
(

g00 g0j

gi0 gij

)
=

(
− 1

α2
βj

α2

βi

α2 γij − βiβj

α2

)
(256)

The spacetime metric in 3 + 1 is given by:

ds2 = gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (257)

But since dl2 = γijdxidxj must be a diagonalized metric then dl2 = γiidxidxi and we have:

ds2 = −α2dt2 + γii(dxi + βidt)2 (258)

(dxi + βidt)2 = (dxi)2 + 2βidxidt + (βidt)2 (259)

γii(dxi + βidt)2 = γii(dxi)2 + 2γiiβ
idxidt + γii(βidt)2 (260)

βi = γiiβ
i (261)

γii(βidt)2 = γiiβ
iβidt2 = βiβ

idt2 (262)

(dxi)2 = dxidxi (263)

γii(dxi + βidt)2 = γiidxidxi + 2βidxidt + βiβ
idt2 (264)

ds2 = −α2dt2 + γiidxidxi + 2βidxidt + βiβ
idt2 (265)

ds2 = (−α2 + βiβ
i)dt2 + 2βidxidt + γiidxidxi (266)

Note that the expression above is exactly the eq (2.2.4) pgs [67(b)] [82(a)] in [12].It also appears as eq
1 pg 3 in [1].
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With the original equations of the 3 + 1 ADM formalism given below:

ds2 = (−α2 + βiβ
i)dt2 + 2βidxidt + γiidxidxi (267)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−α2 + βiβ

i βi

βi γii

)
(268)

gµν =
(

g00 g0i

gi0 gii

)
=

(
− 1

α2
βi

α2

βi

α2 γii − βiβi

α2

)
(269)

and suppressing the lapse function making α = 1 we have:

ds2 = (−1 + βiβ
i)dt2 + 2βidxidt + γiidxidxi (270)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−1 + βiβ

i βi

βi γii

)
(271)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−1 βi

βi γii − βiβi

)
(272)

changing the signature from (−,+,+,+) to signature (+,−,−,−) we have:

ds2 = −(−1 + βiβ
i)dt2 − 2βidxidt− γiidxidxi (273)

ds2 = (1− βiβ
i)dt2 − 2βidxidt− γiidxidxi (274)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− βiβ
i −βi

−βi −γii

)
(275)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1 −βi

−βi −γii + βiβi

)
(276)

Remember that the equations given above corresponds to the generic warp drive metric given below:

ds2 = dt2 − γii(dxi + βidt)2 (277)

The warp drive spacetime according to Natario is defined by the following equation but we changed
the metric signature from (−,+,+,+) to (+,−,−,−)(pg 2 in [2])

ds2 = dt2 −
3∑

i=1

(dxi −Xidt)2 (278)

The Natario equation given above is valid only in cartezian coordinates.For a generic coordinates system
we must employ the equation that obeys the 3 + 1 ADM formalism:

ds2 = dt2 −
3∑

i=1

γii(dxi −Xidt)2 (279)
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Comparing all these equations

ds2 = (1− βiβ
i)dt2 − 2βidxidt− γiidxidxi (280)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− βiβ
i −βi

−βi −γii

)
(281)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1 −βi

−βi −γii + βiβi

)
(282)

ds2 = dt2 − γii(dxi + βidt)2 (283)

With

ds2 = dt2 −
3∑

i=1

γii(dxi −Xidt)2 (284)

We can see that βi = −Xi,βi = −Xi and βiβ
i = XiX

i with Xi as being the contravariant form of the
Natario shift vector and Xi being the covariant form of the Natario shift vector.Hence we have:

ds2 = (1−XiX
i)dt2 + 2Xidxidt− γiidxidxi (285)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1−XiX
i Xi

Xi −γii

)
(286)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1 Xi

Xi −γii + XiXi

)
(287)

Looking to the equation of the Natario vector nX(pg 2 and 5 in [2]):

nX = Xrsdrs + Xθrsdθ (288)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [2]):

Xrs = 2vsn(rs) cos θ (289)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (290)

But remember that dl2 = γiidxidxi = dr2 + r2dθ2 with γrr = 1 and γθθ = r2. Then the covariant shift
vector components Xrs and Xθ with r = rs are given by:

Xi = γiiX
i (291)

Xr = γrrX
r = Xrs = γrsrsX

rs = 2vsn(rs) cos θ = Xr = Xrs (292)

Xθ = γθθX
θ = rs2Xθ = −rs2vs(2n(rs) + (rs)n′(rs)) sin θ (293)
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The equations of the Natario warp drive in the 3 + 1 ADM formalism are given by:

ds2 = (1−XiX
i)dt2 + 2Xidxidt− γiidxidxi (294)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1−XiX
i Xi

Xi −γii

)
(295)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1 Xi

Xi −γii + XiXi

)
(296)

The matrix components 2× 2 evaluated separately for rs and θ gives the following results:16

gµν =
(

g00 g0r

gr0 grr

)
=
(

1−XrX
r Xr

Xr −γrr

)
(297)

gµν =
(

g00 g0r

gr0 grr

)
=
(

1 Xr

Xr −γrr + XrXr

)
(298)

gµν =
(

g00 g0θ

gθ0 gθθ

)
=
(

1−XθX
θ Xθ

Xθ −γθθ

)
(299)

gµν =
(

g00 g0θ

gθ0 gθθ

)
=
(

1 Xθ

Xθ −γθθ + XθXθ

)
(300)

Then the equation of the Natario warp drive spacetime with a constant speed vs in the original 3 + 1
ADM formalism is given by:

ds2 = (1−XiX
i)dt2 + 2Xidxidt− γiidxidxi (301)

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrsdt + Xθdθdt)− drs2 − rs2dθ2 (302)

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (303)

16Actually we know that the real matrix is a 3× 3 matrix with dimensions t rs and θ.Our 2× 2 approach is a simplification
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16 Appendix F:mathematical demonstration of the Natario warp drive
equation for a variable speed vs and a constant acceleration a in the
original 3 + 1 ADM Formalism according to MTW and Alcubierre

In the Appendix C we defined a variable bubble velocity vs due to a constant acceleration a as follows:

vs = 2n(rs)at (304)

And we obtained the Natario vector nX for a Natario warp drive with variable velocities defined as
follows:

nX = vs(2n(rs) cosθer − [2n(rs) + rsn′(rs)] sin θeθ) + rscosθ(2[atn′(rs)er + n(rs)aet]) (305)

nX = 2n(rs)at(2n(rs) cosθer − [2n(rs) + rsn′(rs)] sin θeθ) + rscosθ(2[atn′(rs)er + n(rs)aet]) (306)

nX = Xtet + Xrser + Xθeθ (307)

nX = Xtdt + Xrsdrs + Xθrsdθ (308)

Remember that x = rscosθ(see pg 5 in [2]). Considering a valid n(rs) as a Natario shape function being
n(rs) = 1

2 for large rs(outside the warp bubble) and n(rs) = 0 for small rs(inside the warp bubble) while
being 0 < n(rs) < 1

2 in the walls of the warp bubble also known as the Natario warped region(pg 5 in [2]) we
can see that the Natario vector given above satisfies the Natario requirements for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of
rs defined by Natario as the interior of the warp bubble and nX = vs(t) ∗ dx + x ∗ d(vs) with X = vs for
a large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the
warp bubble.(pg 4 in [2]).Working with some algebra we got:

nX = 2n(rs)rscosθaet + 2[2n(rs)2 + rsn′(rs)]atcosθer − 2n(rs)at[2n(rs) + rsn′(rs)] sin θeθ (309)

nX = 2n(rs)rscosθadt + 2[2n(rs)2 + rsn′(rs)]atcosθdrs− 2n(rs)at[2n(rs) + rsn′(rs)]rs sin θdθ (310)

The contravariant shift vector components Xt,Xrs and Xθ of the Natario vector are defined by:

Xt = 2n(rs)rscosθa (311)

Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ (312)

Xθ = −2n(rs)at[2n(rs) + rsn′(rs)] sin θ (313)
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Consider again a 3 dimensional hypersurface Σ1 in an initial time t1 that evolves to a hypersurface Σ2

in a later time t2 and hence evolves again to a hypersurface Σ3 in an even later time t3 according to fig
2.1 pg [65(b)] [80(a)] in [12].Considering now an accelerating warp drive then the amount of time needed
for the evolution of the hypersurface from Σ2 to Σ3 occurring in the lapse of time t3 is smaller than the
amount of time needed for the evolution of the hypersurface from Σ1 to Σ2 occurring in the lapse of time
t2 because due to the constant acceleration the speed of the warp bubble is growing from t2 to t3 and in
the lapse of time t3 the warp drive is faster than in the lapse of time t2.

The hypersurface Σ2 is considered and adjacent hypersurface with respect to the hypersurface Σ1 that
evolved in a differential amount of time dt from the hypersurface Σ1 with respect to the initial time t1.
Then both hypersurfeces Σ1 and Σ2 are the same hypersurface Σ in two different moments of time Σt and
Σt+dt.(see bottom of pg [65(b)] [80(a)] in [12])

The geometry of the spacetime region contained between these hypersurfaces Σt and Σt+dt can be de-
termined from 3 basic ingredients:(see fig 2.2 pg [66(b)] [81(a)] in [12])
(see also fig 21.2 pg [506(b)] [533(a)] in [11] where dxi + βidt appears to illustrate the equation 21.40
gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) at pg [507(b)] [534(a)] in [11])17

• 1)-the 3 dimensional metric dl2 = γijdxidxj with i, j = 1, 2, 3 that measures the proper distance
between two points inside each hypersurface

• 2)-the lapse of proper time dτ between both hypersurfaces Σt and Σt+dt measured by observers
moving in a trajectory normal to the hypersurfaces(Eulerian obsxervers) dτ = αdt where α is known
as the lapse function.Note that in a warp drive of constant velocity the elapsed times t2 and t3
are equal because the velocity do not varies between t2 and t3. Hence the lapse of proper time dτ
between both hypersurfaces Σt and Σt+dt is always the same as time goes by but for an accelerating
warp drive the elapsed time t3 is smaller than the elapsed time t2 so the lapse of proper time dτ
between both hypersurfaces Σt and Σt+dt becomes shorter and shorter as times goes by due to an
ever growing velocity generated by a constant acceleration.

• 3)-the relative velocity βi between Eulerian observers and the lines of constant spatial coordinates
(dxi + βidt).βi is known as the shift vector.

Combining the eqs (21.40),(21.42) and (21.44) pgs [507, 508(b)] [534, 535(a)] in [11]
with the eqs (2.2.5) and (2.2.6) pgs [67(b)] [82(a)] in [12] using the signature (−,+,+,+) we get the original
equations of the 3 + 1 ADM formalism given by the following expressions:

gµν =
(

g00 g0j

gi0 gij

)
=
(
−α2 + βkβ

k βj

βi γij

)
(314)

gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (315)

17we adopt the Alcubierre notation here
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The spacetime metric in 3 + 1 is given by:

ds2 = gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (316)

Remember that in an accelerating warp drive the lapse of proper time dτ between both hypersurfaces
Σt and Σt+dt becomes shorter and shorter as times goes by due to an ever growing velocity that makes
the warp drive moves faster and faster being this velocity generated by the extra terms in the Natario
vector.These extra terms must be inserted inside the spacetime metric in 3 + 1 using a mathematical
structure similar to the one of the lapse function as follows:

α2 = γtt(1 + βt)2 = γtt(1 + 2βt + βtβt) = (γtt + 2γttβ
t + γttβ

tβt) (317)

βt = γttβ
t (318)

Remember that here we are working with geometrized units in which c = 1 so γtt = 1

α2 = (1 + 2βt + βtβ
t) (319)

The spacetime metric in 3 + 1 is then given by:

ds2 = gµν dxµ dxν = −γtt(1 + βt)2dt2 + γij(dxi + βidt)(dxj + βjdt) (320)

Since dl2 = γijdxidxj must be a diagonalized metric then dl2 = γiidxidxi and we have:

ds2 = −α2dt2 + γii(dxi + βidt)2 (321)

ds2 = −γtt(1 + βt)2dt2 + γii(dxi + βidt)2 (322)

From the Appendix E we can write the 3 + 1 metric as:

ds2 = (−α2 + βiβ
i)dt2 + 2βidxidt + γiidxidxi (323)

Note that the expression above is exactly the eq (2.2.4) pgs [67(b)] [82(a)] in [12].It also appears as eq
1 pg 3 in [1].Changing the signature from (−,+,+,+) to signature (+,−,−,−) we have:

ds2 = −(−α2 + βiβ
i)dt2 − 2βidxidt− γiidxidxi (324)

ds2 = (α2 − βiβ
i)dt2 − 2βidxidt− γiidxidxi (325)

ds2 = (1 + 2βt + βtβ
t − βiβ

i)dt2 − 2βidxidt− γiidxidxi (326)

gµν =
(

g00 g0i

gi0 gii

)
=
(

α2 − βiβ
i −βi

−βi −γii

)
(327)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1 + 2βt + βtβ
t − βiβ

i −βi

−βi −γii

)
(328)
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The warp drive spacetime according to Natario is defined by the following equation but we changed
the metric signature from (−,+,+,+) to (+,−,−,−) and we modified the equation to insert the terms
due to the lapse function α2.(pg 2 in [2])

ds2 = α2dt2 −
3∑

i=1

(dxi −Xidt)2 (329)

The Natario equation given above is valid only in cartezian coordinates.For a generic coordinates system
we must employ the equation that obeys the 3 + 1 ADM formalism:

ds2 = α2dt2 −
3∑

i=1

γii(dxi −Xidt)2 (330)

Comparing all these equations

ds2 = (α2 − βiβ
i)dt2 − 2βidxidt− γiidxidxi (331)

gµν =
(

g00 g0i

gi0 gii

)
=
(

α2 − βiβ
i −βi

−βi −γii

)
(332)

ds2 = α2dt2 − γii(dxi + βidt)2 (333)

α2 = γtt(1 + βt)2 (334)

α2 = (1 + 2βt + βtβ
t) (335)

ds2 = γtt(1 + βt)2dt2 − γii(dxi + βidt)2 (336)

ds2 = (1 + 2βt + βtβ
t − βiβ

i)dt2 − 2βidxidt− γiidxidxi (337)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1 + 2βt + βtβ
t − βiβ

i −βi

−βi −γii

)
(338)

With these

ds2 = α2dt2 −
3∑

i=1

γii(dxi −Xidt)2 (339)

ds2 = γtt(1−Xt)2dt2 −
3∑

i=1

γii(dxi −Xidt)2 (340)

α2 = γtt(1−Xt)2 = γtt(1− 2Xt + XtXt) = (γtt − 2γttX
t + γttX

tXt) = (1− 2Xt + XtX
t) (341)
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The generic equations for the Natario warp drive that obeys the 3+1 ADM formalism are given below:

ds2 = α2dt2 −
3∑

i=1

γii(dxi −Xidt)2 (342)

ds2 = γtt(1−Xt)2dt2 −
3∑

i=1

γii(dxi −Xidt)2 (343)

α2 = γtt(1−Xt)2 = γtt(1− 2Xt + XtXt) = (γtt − 2γttX
t + γttX

tXt) = (1− 2Xt + XtX
t) (344)

We can see that βi = −Xi,βi = −Xi and βiβ
i = XiX

i with Xi being the contravariant form of
the Natario shift vector and Xi being the covariant form of the Natario shift vector both for the spatial
components of the Natario vector.In the same way we can see that βt = −Xt,βt = −Xt and βtβ

t = XtX
t

with Xt being the contravariant form of the Natario shift vector and Xt being the covariant form of the
Natario shift vector for the time component of the Natario vector.Hence we have:

ds2 = (α2 −XiX
i)dt2 + 2Xidxidt− γiidxidxi (345)

ds2 = (1− 2Xt + XtX
t −XiX

i)dt2 + 2Xidxidt− γiidxidxi (346)

gµν =
(

g00 g0i

gi0 gii

)
=
(

α2 −XiX
i Xi

Xi −γii

)
(347)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− 2Xt + XtX
t −XiX

i Xi

Xi −γii

)
(348)

Looking to the equation of the Natario vector nX:

nX = Xtet + Xrser + Xθeθ (349)

nX = Xtdt + Xrsdrs + Xθrsdθ (350)

The contravariant shift vector components Xt,Xrs and Xθ of the Natario vector are defined by:

Xt = 2n(rs)rscosθa (351)

Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ (352)

Xθ = −2n(rs)at[2n(rs) + rsn′(rs)] sin θ (353)
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But remember that dl2 = γiidxidxi = dr2 + r2dθ2 with γrr = 1 and γθθ = r2. Remember also that
γtt = 1.Then the covariant shift vector components Xt,Xrs and Xθ with r = rs are given by:

Xt = γttX
t (354)

Xi = γiiX
i (355)

Xt = γttX
t = 2n(rs)rscosθa (356)

Xr = γrrX
r = Xrs = γrsrsX

rs = Xr = Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ (357)

Xθ = γθθX
θ = rs2Xθ = Xθ = −2n(rs)at[2n(rs) + rsn′(rs)]rs2 sin θ (358)

The equations of the Natario warp drive in the 3 + 1 ADM formalism are given by:

ds2 = (1− 2Xt + XtX
t −XiX

i)dt2 + 2Xidxidt− γiidxidxi (359)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− 2Xt + XtX
t −XiX

i Xi

Xi −γii

)
(360)

Then the equation of the Natario warp drive spacetime for a variable velocity and a constant acceleration
in the original 3 + 1 ADM formalism is given by:

ds2 = (1− 2Xt + XtX
t −XrsX

rs −XθX
θ)dt2 + 2(Xrsdrsdt + Xθdθdt)− drs2 − rs2dθ2 (361)

ds2 = (1− 2Xt + XtX
t −XrsX

rs −XθX
θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (362)
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17 Appendix G:Dimensional Reduction from c4

G to c2

G

The Alcubierre expressions for the Negative Energy Density in Geometrized Units c = G = 1 are given
by(pg 4 in [2])(pg 8 in [1]):18:

ρ = − 1
32π

vs2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (363)

ρ = − 1
32π

vs2

[
df(rs)
drs

]2

[
y2 + z2

rs2
] (364)

In this system all physical quantities are identified with geometrical entities such as lengths,areas or
dimensionless factors.Even time is interpreted as the distance travelled by a pulse of light during that
time interval,so even time is given in lengths.Energy,Momentum and Mass also have the dimensions of
lengths.We can multiply a mass in kilograms by the conversion factor G

c2
to obtain the mass equivalent in

meters.On the other hand we can multiply meters by c2

G to obtain kilograms.The Energy Density( Joules
meters3 )in

Geometrized Units have a dimension of 1
length2 and the conversion factor for Energy Density is G

c4
.Again

on the other hand by multiplying 1
length2 by c4

G we retrieve again ( Joules
meters3 ). 19.

This is the reason why in Geometrized Units the Einstein Tensor have the same dimension of the Stress
Energy Momentum Tensor(in this case the Negative Energy Density)and since the Einstein Tensor is
associated to the Curvature of Spacetime both have the dimension of 1

length2 .

G00 = 8πT00 (365)

Passing to normal units and computing the Negative Energy Density we multiply the Einstein Tensor
(dimension 1

length2 ) by the conversion factor c4

G in order to retrieve the normal unit for the Negative Energy
Density ( Joules

meters3 ).

T00 =
c4

8πG
G00 (366)

Examine now the Alcubierre equations:

vs = dxs
dt is dimensionless since time is also in lengths.y2+z2

rs2 is dimensionless since both are given also in
lengths. f(rs) is dimensionless but its derivative df(rs)

drs is not because rs is in meters. So the dimensional
factor in Geometrized Units for the Alcubierre Energy Density comes from the square of the derivative and
is also 1

length2 .Remember that the speed of the Warp Bubble vs is dimensionless in Geometrized Units and

when we multiply directly 1
length2 from the Negative Energy Density in Geometrized Units by c4

G to obtain
the Negative Energy Density in normal units Joules

meters3 the first attempt would be to make the following:

ρ = −c4

G

1
32π

vs2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (367)

ρ = −c4

G

1
32π

vs2

[
df(rs)
drs

]2

[
y2 + z2

rs2
] (368)

18See Geometrized Units in Wikipedia
19See Conversion Factors for Geometrized Units in Wikipedia

56



But note that in normal units vs is not dimensionless and the equations above do not lead to the
correct dimensionality of the Negative Energy Density because the equations above in normal units are
being affected by the dimensionality of vs.

In order to make vs dimensionless again,the Negative Energy Density is written as follows:

ρ = −c4

G

1
32π

(
vs

c
)2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (369)

ρ = −c4

G

1
32π

(
vs

c
)2
[
df(rs)
drs

]2

[
y2 + z2

rs2
] (370)

Giving:

ρ = −c2

G

1
32π

vs2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (371)

ρ = −c2

G

1
32π

vs2

[
df(rs)
drs

]2

[
y2 + z2

rs2
] (372)

As already seen.The same results are valid for the Natario Energy Density

Note that from

ρ = −c4

G

1
32π

(
vs

c
)2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (373)

ρ = −c4

G

1
32π

(
vs

c
)2
[
df(rs)
drs

]2

[
y2 + z2

rs2
] (374)

Making c = G = 1 we retrieve again

ρ = − 1
32π

vs2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (375)

ρ = − 1
32π

vs2

[
df(rs)
drs

]2

[
y2 + z2

rs2
] (376)
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18 Appendix H:The Natario warp drive and the parallel contravariant
3 + 1 ADM Formalism for a constant speed vs

A 3 + 1 ADM contravariant formalism parallel to the original 3 + 1 ADM formalism according with the
equation (21.40) pg [507(b)] [534(a)] in [11]

gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (377)

using the signature (−,+,+,+) can be given by:

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (378)

Note that in the equation above all the essential 3 elements of the original 3 + 1 ADM formalism are
also present20.These elements are:

• 1)-the 3 dimensional metric dl2 = γijdxidxj with i, j = 1, 2, 3 that measures the proper distance
between two points inside each hypersurface.In this case dl =

√
γijdxidxj .

• 2)-the lapse of proper time dτ between both hypersurfaces Σt and Σt+dt measured by observers
moving in a trajectory normal to the hypersurfaces(Eulerian obsxervers) dτ = αdt where α is known
as the lapse function.

• 3)-the relative velocity βi between Eulerian observers and the lines of constant spatial coordinates
(
√

γiidxi + βidt).βi is known as the contravariant shift vector.

But since dl2 = γijdxidxj must be a diagonalized metric then dl2 = γiidxidxi dl =
√

γiidxi and we have
for the 3 + 1 spacetime metric the following result:

ds2 = gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)2 (379)

(
√

γiidxi + βidt)2 = γii(dxi)2 + 2
√

γiiβ
idxidt + (βidt)2 (380)

ds2 = −α2dt2 + γii(dxi)2 + 2
√

γiiβ
idxidt + (βidt)2 (381)

ds2 = −α2dt2 + (βidt)2 + 2
√

γiiβ
idxidt + γii(dxi)2 (382)

ds2 = (−α2 + [βi]2)dt2 + 2
√

γiiβ
idxidt + γiidxidxi (383)

ds2 = (−α2 + βiβi)dt2 + 2
√

γiiβ
idxidt + γiidxidxi (384)

20see Appendix E on the original 3 + 1 ADM formalism
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Then the equations of the Natario warp drive in the parallel contravariant 3 + 1 ADM formalism are
given by:

ds2 = (−α2 + βiβi)dt2 + 2
√

γiiβ
idxidt + γiidxidxi (385)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−α2 + βiβi √

γiiβ
i

√
γiiβ

i γii

)
(386)

The components of the inverse metric are given by the matrix inverse :21

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(387)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([−α2 + βiβi]× γii)− (

√
γiiβi ×√

γiiβi)

(
γii −√γiiβ

i

−√γiiβ
i −α2 + βiβi

)
(388)

Suppressing the lapse function α = 1 we have:

ds2 = (−1 + βiβi)dt2 + 2
√

γiiβ
idxidt + γiidxidxi (389)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−1 + βiβi √

γiiβ
i

√
γiiβ

i γii

)
(390)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(391)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([−1 + βiβi]× γii)− (

√
γiiβi ×√

γiiβi)

(
γii −√γiiβ

i

−√γiiβ
i −1 + βiβi

)
(392)

Changing the signature from (−,+,+,+) to (+,−,−,−) we should expect for:

ds2 = (1− βiβi)dt2 − 2
√

γiiβ
idxidt− γiidxidxi (393)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− βiβi −√γiiβ
i

−√γiiβ
i −γii

)
(394)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(395)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1− βiβi]×−γii)− (−√γiiβi ×−√γiiβi)

(
−γii

√
γiiβ

i

√
γiiβ

i 1− βiβi

)
(396)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1− βiβi]×−γii)− (

√
γiiβi ×√

γiiβi)

(
−γii

√
γiiβ

i

√
γiiβ

i 1− βiβi

)
(397)

21see Wikipedia:the free Encyclopedia on inverse or invertible matrices
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The equations of the Natario warp drive in the parallel contravariant 3 + 1 ADM formalism given by:

ds2 = (1− βiβi)dt2 − 2
√

γiiβ
idxidt− γiidxidxi (398)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− βiβi −√γiiβ
i

−√γiiβ
i −γii

)
(399)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(400)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1− βiβi]×−γii)− (−√γiiβi ×−√γiiβi)

(
−γii

√
γiiβ

i

√
γiiβ

i 1− βiβi

)
(401)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1− βiβi]×−γii)− (

√
γiiβi ×√

γiiβi)

(
−γii

√
γiiβ

i

√
γiiβ

i 1− βiβi

)
(402)

obeys the generic equation of a warp drive in the parallel contravariant 3 + 1 ADM formalism:

ds2 = dt2 − (
√

γiidxi + βidt)2 (403)

The warp drive spacetime according to Natario is defined by the following equation but we changed
the metric signature from (−,+,+,+) to (+,−,−,−)(pg 2 in [2])

ds2 = dt2 −
3∑

i=1

(dxi −Xidt)2 (404)

The Natario equation above given in oontravariant form is valid only in cartezian coordinates.For
a generic coordinates system in contravariant form we must employ the equation given by the parallel
contravariant 3 + 1 ADM formalism as being:

ds2 = dt2 −
3∑

i=1

(
√

γiidxi −Xidt)2 (405)

Note that βi = −Xi and βiβi = XiXi with Xi being the Natario contravariant shift vectors. Hence
we have:

ds2 = (1−XiXi)dt2 + 2
√

γiiX
idxidt− γiidxidxi (406)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1−XiXi √
γiiX

i

√
γiiX

i −γii

)
(407)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(408)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1−XiXi]×−γii)− (

√
γiiXi ×√

γiiXi)

(
−γii −√γiiX

i

−√γiiX
i 1−XiXi

)
(409)
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For the equations of the Natario warp drive in the parallel contravariant 3 + 1 ADM formalism:

ds2 = (1−XiXi)dt2 + 2
√

γiiX
idxidt− γiidxidxi (410)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1−XiXi √
γiiX

i

√
γiiX

i −γii

)
(411)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(412)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1−XiXi]×−γii)− (

√
γiiXi ×√

γiiXi)

(
−γii −√γiiX

i

−√γiiX
i 1−XiXi

)
(413)

And looking to the equation of the Natario vector nX(pg 2 and 5 in [2]):

nX = Xrsdrs + Xθrsdθ (414)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [2]):

Xrs = 2vsn(rs) cos θ (415)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (416)

But remember that dl2 = γijdxidxj = dr2 + r2dθ2 with γrr = 1,γθθ = r2 √γrr = 1
√

γθθ = r and
r = rs.Then the equation of the Natario warp drive in the parallel contravariant 3 + 1 ADM formalism is
given by:

ds2 = (1−XiXi)dt2 + 2
√

γiiX
idxidt− γiidxidxi (417)

ds2 = (1−XrsXrs −XθXθ)dt2 + 2(Xrsdrsdt + Xθrsdθdt)− drs2 − rs2dθ2 (418)

ds2 = (1−XrsXrs −XθXθ)dt2 + 2(Xrsdrs + Xθrsdθ)dt− drs2 − rs2dθ2 (419)

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (420)

Note that the equation of the Natario vector nX(pg 2 and 5 in [2]) appears twice in the equation above
due to the non-diagonalized shift components:

nX = Xrsdrs + Xθrsdθ (421)

As a matter of fact expanding the term

√
γiiX

idxi = Xrsdrs + Xθrsdθ (422)

we recover again the Natario vector since γrr = 1,γθθ = rs2 √γrr = 1
√

γθθ = rs
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19 Appendix I:mathematical demonstration of the Natario warp drive
equation for a variable speed vs and a constant acceleration a in the
parallel contravariant 3 + 1 ADM Formalism

In the Appendix C we defined a variable bubble velocity vs due to a constant acceleration a as follows:

vs = 2n(rs)at (423)

And we obtained the Natario vector nX for a Natario warp drive with variable velocities defined as
follows:

nX = Xtet + Xrser + Xθeθ (424)

nX = Xtdt + Xrsdrs + Xθrsdθ (425)

The contravariant shift vector components Xt,Xrs and Xθ of the Natario vector are defined by:

Xt = 2n(rs)rscosθa (426)

Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ (427)

Xθ = −2n(rs)at[2n(rs) + rsn′(rs)] sin θ (428)
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Consider again a 3 dimensional hypersurface Σ1 in an initial time t1 that evolves to a hypersurface Σ2

in a later time t2 and hence evolves again to a hypersurface Σ3 in an even later time t3 according to fig
2.1 pg [65(b)] [80(a)] in [12].Considering now an accelerating warp drive then the amount of time needed
for the evolution of the hypersurface from Σ2 to Σ3 occurring in the lapse of time t3 is smaller than the
amount of time needed for the evolution of the hypersurface from Σ1 to Σ2 occurring in the lapse of time
t2 because due to the constant acceleration the speed of the warp bubble is growing from t2 to t3 and in
the lapse of time t3 the warp drive is faster than in the lapse of time t2.

The hypersurface Σ2 is considered and adjacent hypersurface with respect to the hypersurface Σ1 that
evolved in a differential amount of time dt from the hypersurface Σ1 with respect to the initial time t1.
Then both hypersurfeces Σ1 and Σ2 are the same hypersurface Σ in two different moments of time Σt and
Σt+dt.(see bottom of pg [65(b)] [80(a)] in [12])

The geometry of the spacetime region contained between these hypersurfaces Σt and Σt+dt can be de-
termined from 3 basic ingredients:(see fig 2.2 pg [66(b)] [81(a)] in [12]) illustrated by the equation :22

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (429)

• 1)-the 3 dimensional metric dl2 = γijdxidxj with i, j = 1, 2, 3 that measures the proper distance
between two points inside each hypersurface.In this case dl =

√
γijdxidxj .

• 2)-the lapse of proper time dτ between both hypersurfaces Σt and Σt+dt measured by observers
moving in a trajectory normal to the hypersurfaces(Eulerian obsxervers) dτ = αdt where α is known
as the lapse function.Note that in a warp drive of constant velocity the elapsed times t2 and t3
are equal because the velocity do not varies between t2 and t3. Hence the lapse of proper time dτ
between both hypersurfaces Σt and Σt+dt is always the same as time goes by but for an accelerating
warp drive the elapsed time t3 is smaller than the elapsed time t2 so the lapse of proper time dτ
between both hypersurfaces Σt and Σt+dt becomes shorter and shorter as times goes by due to an
ever growing velocity generated by a constant acceleration.

• 3)-the relative velocity βi between Eulerian observers and the lines of constant spatial coordinates
(
√

γiidxi + βidt).βi is known as the contravariant shift vector.

But since dl2 = γijdxidxj must be a diagonalized metric then dl2 = γiidxidxi dl =
√

γiidxi and we have
for the 3 + 1 spacetime metric the following result:

ds2 = gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)2 (430)

ds2 = (−α2 + βiβi)dt2 + 2
√

γiiβ
idxidt + γiidxidxi (431)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−α2 + βiβi √

γiiβ
i

√
γiiβ

i γii

)
(432)

22we adopt also the Alcubierre notation here
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Remember that in an accelerating warp drive the lapse of proper time dτ between both hypersurfaces
Σt and Σt+dt becomes shorter and shorter as times goes by due to an ever growing velocity that makes
the warp drive moves faster and faster being this velocity generated by the extra terms in the Natario
vector.These extra terms must be inserted inside the spacetime metric in 3 + 1 using a mathematical
structure similar to the one of the lapse function as follows:

α2 = (
√

γtt + βt)2 = (γtt + 2
√

γttβ
t + βtβt) (433)

Remember that here we are working with geometrized units in which c = 1 so γtt = 1

α2 = (1 + 2βt + βtβt) (434)

The spacetime metric in 3 + 1 is then given by:

ds2 = gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)2 (435)

ds2 = (−α2 + βiβi)dt2 + 2
√

γiiβ
idxidt + γiidxidxi (436)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−α2 + βiβi √

γiiβ
i

√
γiiβ

i γii

)
(437)

ds2 = gµν dxµ dxν = −(1 + 2βt + βtβt)dt2 + (
√

γiidxi + βidt)2 (438)

ds2 = (−(1 + 2βt + βtβt) + βiβi)dt2 + 2
√

γiiβ
idxidt + γiidxidxi (439)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−(1 + 2βt + βtβt) + βiβi √

γiiβ
i

√
γiiβ

i γii

)
(440)

Changing the signature from (−,+,+,+) to signature (+,−,−,−) we have:

ds2 = gµν dxµ dxν = α2dt2 − (
√

γiidxi + βidt)2 (441)

ds2 = (α2 − βiβi)dt2 − 2
√

γiiβ
idxidt− γiidxidxi (442)

gµν =
(

g00 g0i

gi0 gii

)
=
(

α2 − βiβi −√γiiβ
i

−√γiiβ
i −γii

)
(443)

ds2 = gµν dxµ dxν = (1 + 2βt + βtβt)dt2 − (
√

γiidxi + βidt)2 (444)

ds2 = ((1 + 2βt + βtβt)− βiβi)dt2 − 2
√

γiiβ
idxidt− γiidxidxi (445)

gµν =
(

g00 g0i

gi0 gii

)
=
(

(1 + 2βt + βtβt)− βiβi −√γiiβ
i

−√γiiβ
i −γii

)
(446)
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The warp drive spacetime according to Natario is defined by the following equation but we changed
the metric signature from (−,+,+,+) to (+,−,−,−) and we modified the equation to insert the terms
due to the lapse function α2.(pg 2 in [2])

ds2 = α2dt2 −
3∑

i=1

(dxi −Xidt)2 (447)

The Natario equation given above is valid only in cartezian coordinates.For a generic coordinates system
we must employ the equation that obeys the parallel contravariant 3 + 1 ADM formalism:

ds2 = α2dt2 −
3∑

i=1

(
√

γiidxi −Xidt)2 (448)

The term α2 is now defined by the following expression:

α2 = (
√

γtt −Xt)2 = (γtt − 2
√

γttX
t + XtXt) (449)

Suppressing the summing convention then the Natario warp drive equation in the parallel contravariant
3 + 1 ADM formalism now becomes:

ds2 = (
√

γtt −Xt)2dt2 − (
√

γiidxi −Xidt)2 (450)

Note that in the equation given above a remarkable mathematical structure appears:the term
√

γtt is
associated with the time coordinate while the term

√
γii is associated with the remaining spatial coordinates.

Remember that here we are working with geometrized units in which c = 1 so γtt = 1 hence the term α2

can be given by:

α2 = (1−Xt)2 = (1− 2Xt + XtXt) (451)

The Natario warp drive equation in the parallel contravariant 3 + 1 ADM formalism now becomes:

ds2 = (1−Xt)2dt2 − (
√

γiidxi −Xidt)2 (452)

ds2 = (1− 2Xt + XtXt −XiXi)dt2 + 2
√

γiiX
idxidt− γiidxidxi (453)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− 2Xt + XtXt −XiXi √
γiiX

i

√
γiiX

i −γii

)
(454)
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The Natario warp drive equation in the parallel contravariant 3 + 1 ADM formalism is then given by:

ds2 = (1− 2Xt + XtXt −XiXi)dt2 + 2
√

γiiX
idxidt− γiidxidxi (455)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− 2Xt + XtXt −XiXi √
γiiX

i

√
γiiX

i −γii

)
(456)

Looking to the equation of the Natario vector nX defined for a variable velocity vs and a constant
acceleration a according to the Appendix C :

nX = Xtet + Xrser + Xθeθ (457)

nX = Xtdt + Xrsdrs + Xθrsdθ (458)

The contravariant shift vector components Xt,Xrs and Xθ of the Natario vector are defined by:

Xt = 2n(rs)rscosθa (459)

Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ (460)

Xθ = −2n(rs)at[2n(rs) + rsn′(rs)] sin θ (461)

But remember that dl2 = γijdxidxj = dr2 + r2dθ2 with γrr = 1,γθθ = r2 √γrr = 1
√

γθθ = r and
r = rs.Then the equation of the Natario warp drive in the parallel contravariant 3 + 1 ADM formalism
for a variable velocity vs and a constant acceleration a is given by:

ds2 = (1− 2Xt + XtXt −XrsXrs −XθXθ)dt2 + 2(Xrsdrsdt + Xθrsdθdt)− drs2 − rs2dθ2 (462)

ds2 = (1− 2Xt + XtXt −XrsXrs −XθXθ)dt2 + 2(Xrsdrs + Xθrsdθ)dt− drs2 − rs2dθ2 (463)

ds2 = (1− 2Xt + (Xt)2 − (Xrs)2 − (Xθ)2)dt2 + 2(Xrsdrs + Xθrsdθ)dt− drs2 − rs2dθ2 (464)
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20 Appendix J:The Natario warp drive and the parallel covariant 3 + 1
ADM Formalism for a constant speed vs

A 3 + 1 ADM covariant formalism parallel to the original 3 + 1 ADM formalism according with the
equation (21.40) pg [507(b)] [534(a)] in [11]

gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (465)

using the signature (−,+,+,+) can be given by:

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (466)

Note that in the equation above all the essential 3 elements of the original 3 + 1 ADM formalism are
also present23.These elements are:

• 1)-the 3 dimensional metric dl2 = γijdxidxj with i, j = 1, 2, 3 that measures the proper distance
between two points inside each hypersurface.In this case dl =

√
γijdxidxj .

• 2)-the lapse of proper time dτ between both hypersurfaces Σt and Σt+dt measured by observers
moving in a trajectory normal to the hypersurfaces(Eulerian obsxervers) dτ = αdt where α is known
as the lapse function.

• 3)-the relative velocity βi between Eulerian observers and the lines of constant spatial coordinates
(
√

γiidxi + βidt).βi is known as the covariant shift vector defined as : βi = γijβ
j .

But since dl2 = γijdxidxj must be a diagonalized metric then dl2 = γiidxidxi dl =
√

γiidxi and we have
for the 3 + 1 spacetime metric the following result:

ds2 = gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)2 (467)

(
√

γiidxi + βidt)2 = γii(dxi)2 + 2
√

γiiβidxidt + (βidt)2 (468)

ds2 = −α2dt2 + γii(dxi)2 + 2
√

γiiβidxidt + (βidt)2 (469)

ds2 = −α2dt2 + (βidt)2 + 2
√

γiiβidxidt + γii(dxi)2 (470)

ds2 = (−α2 + [βi]2)dt2 + 2
√

γiiβidxidt + γiidxidxi (471)

ds2 = (−α2 + βiβi)dt2 + 2
√

γiiβidxidt + γiidxidxi (472)

23see Appendix E on the original 3 + 1 ADM formalism
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Then the equations of the Natario warp drive in the parallel covariant 3+1 ADM formalism are given
by:

ds2 = (−α2 + βiβi)dt2 + 2
√

γiiβidxidt + γiidxidxi (473)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−α2 + βiβi

√
γiiβi√

γiiβi γii

)
(474)

The components of the inverse metric are given by the matrix inverse :24

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(475)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([−α2 + βiβi]× γii)− (

√
γiiβi ×

√
γiiβi)

(
γii −√γiiβi

−√γiiβi −α2 + βiβi

)
(476)

Suppressing the lapse function α = 1 we have:

ds2 = (−1 + βiβi)dt2 + 2
√

γiiβidxidt + γiidxidxi (477)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−1 + βiβi

√
γiiβi√

γiiβi γii

)
(478)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(479)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([−1 + βiβi]× γii)− (

√
γiiβi ×

√
γiiβi)

(
γii −√γiiβi

−√γiiβi −1 + βiβi

)
(480)

Changing the signature from (−,+,+,+) to (+,−,−,−) we should expect for:

ds2 = (1− βiβi)dt2 − 2
√

γiiβidxidt− γiidxidxi (481)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− βiβi −√γiiβi

−√γiiβi −γii

)
(482)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(483)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1− βiβi]×−γii)− (−√γiiβi ×−√γiiβi)

(
−γii

√
γiiβi√

γiiβi 1− βiβi

)
(484)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1− βiβi]×−γii)− (

√
γiiβi ×

√
γiiβi)

(
−γii

√
γiiβi√

γiiβi 1− βiβi

)
(485)

24see Wikipedia:the free Encyclopedia on inverse or invertible matrices
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The equations of the Natario warp drive in the parallel covariant 3 + 1 ADM formalism given by:

ds2 = (1− βiβi)dt2 − 2
√

γiiβidxidt− γiidxidxi (486)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− βiβi −√γiiβi

−√γiiβi −γii

)
(487)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(488)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1− βiβi]×−γii)− (−√γiiβi ×−√γiiβi)

(
−γii

√
γiiβi√

γiiβi 1− βiβi

)
(489)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1− βiβi]×−γii)− (

√
γiiβi ×

√
γiiβi)

(
−γii

√
γiiβi√

γiiβi 1− βiβi

)
(490)

obeys the generic equation of a warp drive in the parallel covariant 3 + 1 ADM formalism:

ds2 = dt2 − (
√

γiidxi + βidt)2 (491)

The warp drive spacetime according to Natario is defined by the following equation but we changed
the metric signature from (−,+,+,+) to (+,−,−,−)(pg 2 in [2])

ds2 = dt2 −
3∑

i=1

(dxi −Xidt)2 (492)

The Natario equation above given in contravariant form is valid only in cartezian coordinates.For a
generic coordinates system in covariant form we must employ the equation given by the parallel covariant
3 + 1 ADM formalism as being:

ds2 = dt2 −
3∑

i=1

(
√

γiidxi −Xidt)2 (493)

with Xi = γiiX
i

Note that βi = −Xi and βiβi = XiXi with Xi being the covariant Natario shift vectors. Hence we
have:

ds2 = (1−XiXi)dt2 + 2
√

γiiXidxidt− γiidxidxi (494)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1−XiXi
√

γiiXi√
γiiXi −γii

)
(495)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(496)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1−XiXi]×−γii)− (

√
γiiXi ×

√
γiiXi)

(
−γii −√γiiXi

−√γiiXi 1−XiXi

)
(497)
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For the equations of the Natario warp drive in the parallel covariant 3 + 1 ADM formalism:

ds2 = (1−XiXi)dt2 + 2
√

γiiXidxidt− γiidxidxi (498)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1−XiXi
√

γiiXi√
γiiXi −γii

)
(499)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(500)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1−XiXi]×−γii)− (

√
γiiXi ×

√
γiiXi)

(
−γii −√γiiXi

−√γiiXi 1−XiXi

)
(501)

And looking to the equation of the Natario vector nX(pg 2 and 5 in [2]):

nX = Xrsdrs + Xθrsdθ (502)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [2]):

Xrs = 2vsn(rs) cos θ (503)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (504)

But remember that dl2 = γijdxidxj = dr2 + r2dθ2 with γrr = 1,γθθ = r2 √γrr = 1
√

γθθ = r and
r = rs.Then the covariant shift vector components Xrs and Xθ with r = rs are given by:

Xi = γiiX
i (505)

Xr = γrrX
r = Xrs = γrsrsX

rs = 2vsn(rs) cos θ = Xr = Xrs (506)

Xθ = γθθX
θ = rs2Xθ = −rs2vs(2n(rs) + (rs)n′(rs)) sin θ (507)

It is possible to construct a covariant form for the Natario vector nX defined as ncX as follows:

ncX = Xrsdrs + Xθrsdθ (508)

With the covariant shift vector components Xrs and Xθ defined as shown above:
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The equation of the Natario warp drive in the parallel covariant 3 + 1 ADM formalism is given by:

ds2 = (1−XiXi)dt2 + 2
√

γiiXidxidt− γiidxidxi (509)

ds2 = (1−XrsXrs −XθXθ)dt2 + 2(Xrsdrsdt + Xθrsdθdt)− drs2 − rs2dθ2 (510)

ds2 = (1−XrsXrs −XθXθ)dt2 + 2(Xrsdrs + Xθrsdθ)dt− drs2 − rs2dθ2 (511)

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (512)

Note that the equation of the covariant Natario vector ncX appears twice in the equation above due
to the non-diagonalized shift components:

ncX = Xrsdrs + Xθrsdθ (513)

As a matter of fact expanding the term

√
γiiXidxi = Xrsdrs + Xθrsdθ (514)

we recover again the covariant form of the Natario vector since γrr = 1,γθθ = rs2 √γrr = 1
√

γθθ = rs
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21 Appendix K:mathematical demonstration of the Natario warp drive
equation for a variable speed vs and a constant acceleration a in the
parallel covariant 3 + 1 ADM Formalism

In the Appendix C we defined a variable bubble velocity vs due to a constant acceleration a as follows:

vs = 2n(rs)at (515)

And we obtained the Natario vector nX for a Natario warp drive with variable velocities defined as
follows:

nX = Xtet + Xrser + Xθeθ (516)

nX = Xtdt + Xrsdrs + Xθrsdθ (517)

The contravariant shift vector components Xt,Xrs and Xθ of the Natario vector are defined by:

Xt = 2n(rs)rscosθa (518)

Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ (519)

Xθ = −2n(rs)at[2n(rs) + rsn′(rs)] sin θ (520)
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Consider again a 3 dimensional hypersurface Σ1 in an initial time t1 that evolves to a hypersurface Σ2

in a later time t2 and hence evolves again to a hypersurface Σ3 in an even later time t3 according to fig
2.1 pg [65(b)] [80(a)] in [12].Considering now an accelerating warp drive then the amount of time needed
for the evolution of the hypersurface from Σ2 to Σ3 occurring in the lapse of time t3 is smaller than the
amount of time needed for the evolution of the hypersurface from Σ1 to Σ2 occurring in the lapse of time
t2 because due to the constant acceleration the speed of the warp bubble is growing from t2 to t3 and in
the lapse of time t3 the warp drive is faster than in the lapse of time t2.

The hypersurface Σ2 is considered and adjacent hypersurface with respect to the hypersurface Σ1 that
evolved in a differential amount of time dt from the hypersurface Σ1 with respect to the initial time t1.
Then both hypersurfeces Σ1 and Σ2 are the same hypersurface Σ in two different moments of time Σt and
Σt+dt.(see bottom of pg [65(b)] [80(a)] in [12])

The geometry of the spacetime region contained between these hypersurfaces Σt and Σt+dt can be de-
termined from 3 basic ingredients:(see fig 2.2 pg [66(b)] [81(a)] in [12]) illustrated by the equation :25

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (521)

• 1)-the 3 dimensional metric dl2 = γijdxidxj with i, j = 1, 2, 3 that measures the proper distance
between two points inside each hypersurface.In this case dl =

√
γijdxidxj .

• 2)-the lapse of proper time dτ between both hypersurfaces Σt and Σt+dt measured by observers
moving in a trajectory normal to the hypersurfaces(Eulerian obsxervers) dτ = αdt where α is known
as the lapse function.Note that in a warp drive of constant velocity the elapsed times t2 and t3
are equal because the velocity do not varies between t2 and t3. Hence the lapse of proper time dτ
between both hypersurfaces Σt and Σt+dt is always the same as time goes by but for an accelerating
warp drive the elapsed time t3 is smaller than the elapsed time t2 so the lapse of proper time dτ
between both hypersurfaces Σt and Σt+dt becomes shorter and shorter as times goes by due to an
ever growing velocity generated by a constant acceleration.

• 3)-the relative velocity βi between Eulerian observers and the lines of constant spatial coordinates
(
√

γiidxi + βidt).βi is known as the covariant shift vector defined as : βi = γijβ
j .

But since dl2 = γijdxidxj must be a diagonalized metric then dl2 = γiidxidxi dl =
√

γiidxi and we have
for the 3 + 1 spacetime metric the following result:

ds2 = gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)2 (522)

ds2 = (−α2 + βiβi)dt2 + 2
√

γiiβidxidt + γiidxidxi (523)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−α2 + βiβi

√
γiiβi√

γiiβi γii

)
(524)

25we adopt also the Alcubierre notation here
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Remember that in an accelerating warp drive the lapse of proper time dτ between both hypersurfaces
Σt and Σt+dt becomes shorter and shorter as times goes by due to an ever growing velocity that makes
the warp drive moves faster and faster being this velocity generated by the extra terms in the Natario
vector.These extra terms must be inserted inside the spacetime metric in 3 + 1 using a mathematical
structure similar to the one of the lapse function as follows:

α2 = (
√

γtt + βt)2 = (γtt + 2
√

γttβt + βtβt) (525)

Remember that here we are working with geometrized units in which c = 1 so γtt = 1

α2 = (1 + 2βt + βtβt) (526)

The spacetime metric in 3 + 1 is then given by:

ds2 = gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)2 (527)

ds2 = (−α2 + βiβi)dt2 + 2
√

γiiβidxidt + γiidxidxi (528)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−α2 + βiβi

√
γiiβi√

γiiβi γii

)
(529)

ds2 = gµν dxµ dxν = −(1 + 2βt + βtβt)dt2 + (
√

γiidxi + βidt)2 (530)

ds2 = (−(1 + 2βt + βtβt) + βiβi)dt2 + 2
√

γiiβidxidt + γiidxidxi (531)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−(1 + 2βt + βtβt) + βiβi

√
γiiβi√

γiiβi γii

)
(532)

Changing the signature from (−,+,+,+) to signature (+,−,−,−) we have:

ds2 = gµν dxµ dxν = α2dt2 − (
√

γiidxi + βidt)2 (533)

ds2 = (α2 − βiβi)dt2 − 2
√

γiiβidxidt− γiidxidxi (534)

gµν =
(

g00 g0i

gi0 gii

)
=
(

α2 − βiβi −√γiiβi

−√γiiβi −γii

)
(535)

ds2 = gµν dxµ dxν = (1 + 2βt + βtβt)dt2 − (
√

γiidxi + βidt)2 (536)

ds2 = ((1 + 2βt + βtβt)− βiβi)dt2 − 2
√

γiiβidxidt− γiidxidxi (537)

gµν =
(

g00 g0i

gi0 gii

)
=
(

(1 + 2βt + βtβt)− βiβi −√γiiβi

−√γiiβi −γii

)
(538)
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The warp drive spacetime according to Natario is defined by the following equation but we changed
the metric signature from (−,+,+,+) to (+,−,−,−) and we modified the equation to insert the terms
due to the lapse function α2.(pg 2 in [2])

ds2 = α2dt2 −
3∑

i=1

(dxi −Xidt)2 (539)

The Natario equation given above is valid only in cartezian coordinates.For a generic coordinates system
we must employ the equation that obeys the parallel covariant 3 + 1 ADM formalism:

ds2 = α2dt2 −
3∑

i=1

(
√

γiidxi −Xidt)2 (540)

The term α2 is now defined by the following expression:

α2 = (
√

γtt −Xt)2 = (γtt − 2
√

γttXt + XtXt) (541)

Suppressing the summing convention then the Natario warp drive equation in the parallel covariant
3 + 1 ADM formalism now becomes:

ds2 = (
√

γtt −Xt)2dt2 − (
√

γiidxi −Xidt)2 (542)

Note that in the equation given above a remarkable mathematical structure appears:the term
√

γtt is
associated with the time coordinate while the term

√
γii is associated with the remaining spatial coordinates.

Remember that here we are working with geometrized units in which c = 1 so γtt = 1 hence the term α2

can be given by:

α2 = (1−Xt)2 = (1− 2Xt + XtXt) (543)

The Natario warp drive equation in the parallel covariant 3 + 1 ADM formalism now becomes:

ds2 = (1−Xt)2dt2 − (
√

γiidxi −Xidt)2 (544)

ds2 = (1− 2Xt + XtXt −XiXi)dt2 + 2
√

γiiXidxidt− γiidxidxi (545)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− 2Xt + XtXt −XiXi
√

γiiXi√
γiiXi −γii

)
(546)
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The Natario warp drive equation in the parallel covariant 3 + 1 ADM formalism is then given by:

ds2 = (1− 2Xt + XtXt −XiXi)dt2 + 2
√

γiiXidxidt− γiidxidxi (547)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− 2Xt + XtXt −XiXi
√

γiiXi√
γiiXi −γii

)
(548)

Looking to the equation of the Natario vector nX defined for a variable velocity vs and a constant
acceleration a according to the Appendix C :

nX = Xtet + Xrser + Xθeθ (549)

nX = Xtdt + Xrsdrs + Xθrsdθ (550)

The contravariant shift vector components Xt,Xrs and Xθ of the Natario vector are defined by:

Xt = 2n(rs)rscosθa (551)

Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ (552)

Xθ = −2n(rs)at[2n(rs) + rsn′(rs)] sin θ (553)

But remember that dl2 = γijdxidxj = dr2 + r2dθ2 with γrr = 1,γθθ = r2 √γrr = 1
√

γθθ = r and
r = rs.The covariant shift vector components Xt,Xrs and Xθ with r = rs are given by:

Xt = γttX
t (554)

Xi = γiiX
i (555)

Xt = γttX
t = 2n(rs)rscosθa (556)

Xr = γrrX
r = Xrs = γrsrsX

rs = Xr = Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ (557)

Xθ = γθθX
θ = rs2Xθ = Xθ = −2n(rs)at[2n(rs) + rsn′(rs)]rs2 sin θ (558)

Then the equation of the Natario warp drive in the parallel covariant 3 + 1 ADM formalism for a
variable velocity vs and a constant acceleration a is given by:

ds2 = (1− 2Xt + XtXt −XrsXrs −XθXθ)dt2 + 2(Xrsdrsdt + Xθrsdθdt)− drs2 − rs2dθ2 (559)

ds2 = (1− 2Xt + XtXt −XrsXrs −XθXθ)dt2 + 2(Xrsdrs + Xθrsdθ)dt− drs2 − rs2dθ2 (560)

ds2 = (1− 2Xt + (Xt)2 − (Xrs)2 − (Xθ)2)dt2 + 2(Xrsdrs + Xθrsdθ)dt− drs2 − rs2dθ2 (561)
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22 Remarks

References [11],[12],[13],[14],[15],[22],[23],[24],[25],[26],[27] and [28] are standard textbooks used to study
General Relativity or warp drive spacetimes and these books are available or in paper editions or in elec-
tronic editions all in Adobe PDF Acrobat Reader.

We have the electronic editions of all these books

In order to make easy the reference cross-check of pages or equations specially for the readers of the paper
version of the books we adopt the following convention:when we refer for example the pages [507, 508(b)]
or the pages [534, 535(a)] in [11] the (b) stands for the number of the pages in the paper edition while the
(a) stands for the number of the same pages in the electronic edition displayed in the bottom line of the
Adobe PDF Acrobat Reader
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23 Epilogue

• ”The only way of discovering the limits of the possible is to venture a little way past them into the
impossible.”-Arthur C.Clarke26

• ”The supreme task of the physicist is to arrive at those universal elementary laws from which the
cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition,
resting on sympathetic understanding of experience, can reach them”-Albert Einstein2728

26special thanks to Maria Matreno from Residencia de Estudantes Universitas Lisboa Portugal for providing the Second
Law Of Arthur C.Clarke

27”Ideas And Opinions” Einstein compilation, ISBN 0− 517− 88440− 2, on page 226.”Principles of Research” ([Ideas and
Opinions],pp.224-227), described as ”Address delivered in celebration of Max Planck’s sixtieth birthday (1918) before the
Physical Society in Berlin”

28appears also in the Eric Baird book Relativity in Curved Spacetime ISBN 978− 0− 9557068− 0− 6
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