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Abstract. In this article we present the gravitational field equations of the Self-Variation Theory. 
We formulate the differential equation for the gravitational interaction of two bodies and the 
orbits of the planets. Theory predicts increased stellar velocities on the outskirts of galaxies. It 
also predicts increased velocities of galaxies on the outskirts of galaxy clusters. A constant of 
physics appears in the gravitational field Equations. The measurement of this constant can be 
made from the available observational and experimental data. Knowing the value of the constant 
we have the exact prediction of Theory for the gravitational field. The first calculations give 
consistency of the Theory at the distance scales that we have observational data. Further 
investigation of the Equations of this article will give the complete, accurate prediction of the 
Theory of Self-Variation for the gravitational interaction.  

1. Introduction  

The Self-Variation principle postulates that the rest masses and charges of the fundamental 
particles slowly increase (in absolute value) with time, while simultaneously radiating negative 
energy in the surrounding spacetime in order to balance the energy of their rest mass / charge 
increase. Through a series of mathematical calculations described in detail in [5], this axiom 
necessarily involves a modification of the electromagnetic potential. For comparison the classical 
electromagnetic Liénard–Wiechert potentials are  
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whereas the corresponding Self-Variation potentials are  
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    The striking difference is that there is a second term in V , which is independent of the distance 
r , from the source charge and which has significant theoretical implications. Also the Equations 
for A , are not identical. We shall examine below the implications in detail for the gravitational 
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field. Notice that the field intensity resulting from either of the potentials (Liénard–Wiechert or 
Self-Variations) depends on the distance r . It is also crucial to realize that the electromagnetic 
potential of the Self - Variation Theory gives the correct field intensity, whether we consider the 
charge q, to be constant or varying in time in accordance with the principle of the Self-Variations. 
In the case of constant charges the field intensity of the Self-Variation potentials is exactly the 
same as the one implied by the Liénard–Wiechert potentials. However for charges which vary in 
time while satisfying the Self-Variation principle, the field intensity implied by the Self-Variation 
potential differs in an essential way. 

    The Liénard–Wiechert potentials are compatible with the Lorentz–Einstein transformations for 
constant charges but not for charges that vary in time. In contrast the Self-Variation potentials 
are compatible with the Lorentz–Einstein transformations both for constant charges and for 
charges that vary in time. In this sense the Self-Variation potentials present a much more strict 
formulation of the field potentials.  

Gravitational potential 

The Self-Variation potential for the gravitational interaction is derived from the above Equations 
of the electromagnetic Self-Variation potential by substituting the charge q , with the rest mass 

M , of the source of the gravitational field hence, 
0

4

q
GM


  , where G , is the constant of 

gravity and by substituting the acceleration of the particle in the electromagnetic field α , with 
the gravitational intensity of the field g , hence, α g . Also notice that now υ , represents the 

propagation velocity of the gravitational field, hence we must substitute the speed of light c , 
with the propagation speed of the gravitational field  , hence, c  . These substitutions lead 
to the corresponding gravitational potentials of the Self-Variation, 
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where u , is the velocity of the rest mass M , and r , is the distance from the rest mass M . 
Deriving the gravitational potentials in this way, implies that there is a gravitational analog to the 

magnetic field B , and has units 1
s
  (see [5], Equations (3) – (6)). Notice that in the limit case 

where the propagation speed of the gravitational field approaches infinity,    , we get the 
limit potential  

GM
V

r
  ,  

which is no other than the one of classical mechanics which assumed instant action of gravity at 
distance r . Below we consider the most simple case of a stationary source mass M ( u 0 ).  

2. Potential, propagation velocity and intensity of the gravitational field caused by a single mass 

M  
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Considering that the vectors υ  and g  have opposite directions,
r
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g  υ g , where   υ  and g  g . Then  
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Then from Equation (1) we have   
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Assuming the velocity of the mass M , is zero, u 0 , we get the simplified expression  
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Here we clearly see the departure from classical mechanics even for the simple case of a single 
non–moving source mass.  

    The gravitational field intensity  rg  is given by   
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hence from (4) we have  
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From Equation (2) in [5], we have that, dr cdw  . However using the symbols of the current 

article this eq is written as, dr dt  . From Equation (2) we get 
d

g
dt


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Equations we get  
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where with t , we have denoted the time of the observer. From Equation (7) we have, 2
2V a    

where a  is a constant. In the limiting case of zero potential, 0V   the gravitational field 
propagation speed tends to the speed of light in vacuum, that is, c  , hence we conclude that, 
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a c . Then  

2 2
2c V   .                                                                                                                                                (8) 

      From Equations (6), (7) and (8) we have   
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Let  
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where C  is a constant and let   
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Then from (9) we get a differential equation in the function f ,  
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Solving (12) for f , we have  
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where k , is the integration constant. Then from (11), (13) we have   
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Finally applying the transformation (10) to (14) we get the speed of propagation of the 
gravitational field, as derived from the Self-Variation gravitational potential, with respect to r ,   
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where 
2
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Then from Equations (8) and (14) we obtain the gravitational potential with respect to x ,   
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The gravitational field intensity  rg  is calculated as follows. From Equations (5) and (10) we get,   
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The function f  is given by Equation (13).  

3. Gravitational interaction of two bodies  

We study the case where a body of rest mass m  moves in the gravitational field of a stationary 
body of rest mass M m . From equations (17) and (10) we obtain the potential of the 
gravitational field with respect to r ,    
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From Equations (18) and (10) we obtain the gravitational field intensity with respect to r ,    
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For the application of Equations (19) and (20) the measurement of the constant k  is required.  

    In polar coordinates  ,r  , the orbits  r r   of the body of rest mass m  is given by the 

solution of the system of equations,  
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and  

  constantmV r K E   .                                                                                                                    (23) 

In these Equations t  is the time of the observer, L  and K  the angular momentum and the kinetic 

energy of the body of rest mass m , 
2

2

d r

dt
r  , 

d

dt


   and E  the mechanical energy of the system 

of the two bodies.  

    The solution of the system of equations (19) - (23) gives the orbit  r r   of the body of rest 

mass m . The orbits of the planets have been studied in detail. From the comparison of the 
theoretical prediction of equations (19) - (23) with the observational data for the orbits of the 
planets the value of the constant k  can be measured.  

    The Gravitational Equations of the Self-Variation Theory predict increased velocities of stars on 
the outskirts of galaxies, and of galaxies on the outskirts of galaxy clusters. In the case of a circular 
orbit ( 0r  ) we avoid the complex calculations required for the solution of the system of 
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Equations (19) - (23). In this case the velocity U  with which the body of mass m moves is given by 
the equation,  

2
U gr .                                                                                                                                                      (24) 
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    
2

2
U 2

2
f r arf r ar

c
  .                                                                                                            (25) 
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    Equation (25) gives the increased velocities of stars at the outskirts of galaxies and the increased 
velocities of galaxies at the outskirts of galaxy clusters. A first estimate for the constant  k  showed 
that it has a small value close to zero, 0k  . A more accurate value of the constant can be 
measured from the already known observational data (see, [1] – [3] and [6] – [15]).  

    The graphs of Equations (14), (17) and (26) are displaced in the frame of reference of an 
observer, which is not in the same point as the rest mass M . Indicatively, the graph of the velocity 
U , as given by Equation (26) is shifted up and to the right. The gravitational field distorts the 
observer's frame of reference.  

    The equations for the point mass give information about the distance over which the 
gravitational interaction acts (see, [4]). Indicatively, from equation (19) we get,  
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    We have formulated the Gravitational Field Equations for a point rest mass. By inserting into 
the Equations we have presented, the mass density or particle density and the current density we 
obtain the corresponding equations for any distribution of rest mass in space.  

    If the mass M  moves, whit velocity u 0 , Equation (3) applies. From Equations (3) and (5) we 
have  
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Then, from this Equations and (8) we obtain,  
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If u 0 , Equation (28) is equivalent to (9).  

    Compared to Equation (9), in equation (28), the velocity u  has implications for the Newtonian 
term  
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of the potential and the Self-variation term  
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For the Self-Variation term we have  
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    From the solution of equation (28) we get the velocity of propagation  rυ υ  of the 

gravitational field, the potential  V V r  and the intensity  rg g . Then for the gravitational 

interaction of the masses M  and m , we solve the system of Equations,  
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and  

  constantmV r K E   .  

    The orbits of the planets have been studied in detail. The sun moves in relation to the earth. 
Hence, for the exact value of the constant k , the application of Equation (28) to the solar system 
is required.  
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