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Abstract. Self-Variation Theory predicts increased stellar velocities on the outskirts of galaxies. 
The same Equation also predicts increased velocities of galaxies on the outskirts of galaxy clusters. 
Comparison with observational data requires the measurement of a constant of physics that 
appears in the gravitational field equations.  

1. Introduction 

With the substitutions 
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of the Theory of Self-Variation (see, [4]) we get the corresponding potential V  of the gravitational 
interaction,  
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In this Equation G  is the constant of gravity, M  the mass-source of the gravitational field, r  the 
distance from the mass M , u  the speed with which M  moves, υ  the speed with which the 
cause of the field moves and g  the intensity of the field.  

    The vector υ  is given by the equations c
r

υ
r

, where c  is the speed of light in vacuum (see 

[4], Fig. 1). The vectors υ  and g  may have either the same direction or opposite directions.  

2. The vectors υ and g  have opposite directions  

In the case that vectors υ  and g  have same opposite directions, g
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 from Equation 

(1) we get,   
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and by symbolizing  
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GM
                                                                                                                                                         (3)  

we get the following equation,  



2 
 

GM
V

r

g


   .                                                                                                                                             (4) 

From equations (4) and  
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                                                                                                                          (5) 

we get  

GM dV
V

r dr
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and equivalently we obtain   

dV GM
V

dr r
   .                                                                                                                                       (6) 

    The potential given by Equation (6) is the same either we consider the mass M  to be constant 
or to vary strictly as predicted by the principle of self-variation. Thus we solve the differential 
Equation (6) for constant mass M  (see, [1]).  

    By symbolizing  
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from Equation (6) we get  
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and with Equation (3) we get  
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    From Equation (9) we get  
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and equivalently we get  
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where k  is a constant.  

    From Equations (8) and (10) we get  
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From Equation (11) and transformation (7) we obtain the function  V V r  as given by the 

following equation,  
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    From Equations (12) and (5) we obtain the function  rg g  as given by the following 

equation,  
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    From Equations (13) and (7) we obtain the function  xg g  as given by the following 

equation,  
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From Equations (14) and (13) we obtain,  
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From the inequality     0g r r  g  and equation (15) we get,  
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    From Equations (3) and (4) we get,  
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Equation (17) relates the potential  V r  and the intensity    g r r g  of the gravitational 

field.  

3. Axial symmetry  

We apply the Gravitational Field Equations of section 2. In order to avoid complex calculations 
(which can be done in cases where it is essential) we present their simplest application. We 
present the case where a star moves in a circular orbit on the outskirts of a galaxy or a galaxy 
moves in a circular orbit on the outskirts of a galaxy cluster with speed U . In this case the following 
equation applies,  
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    The mass M  of a circular disk of radius r , thickness b  and constant density   is 2
M b r 

. Therefore, from Equations (3) and (7) we get 
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From Equations (15) and (20), (21) we get,  
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and with Equation (18) we obtain,  
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    For the Newtonian speed   is,  
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In Equation (23) is,    
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Thus, for 1n   we take the approach,  
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In this Equation it is U   if 2
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    From Equations (25), (19) and (24) we obtain,  
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Comparison with observational data (see, [1] - [3] and [5] – [12]) requires the measurement of 
the physical constant  .  

4. Spherical symmetry  

The mass M  of a sphere of radius r  and constant density   is 34

3
M r


 . Therefore, from 

Equations (3) and (7) we get 
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From Equations (15) and (28), (29) we get  
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and with Equation (18) we obtain,   
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    For the Newtonian speed   is,  
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In Equation (31) is,    
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In this Equation it is U   if 2
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    From Equations (33), (27) and (32) we obtain, 
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Comparison with observational data (see, [1] – [3] and [5] – [12]) requires the measurement of 
the physical constant  .  

5. The vectors υ and g  have same direction  

In the case that vectors υ  and g  have same direction, g
c


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gυ
 from Equation (1) we get,   
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    If u 0 , from Equation (35) we get  
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 This equation is the corresponding of (17).  

    From Equation (36), repeating the proof procedure of section 2 we get the following equations.  
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where K  is a constant. The equations for speed U  are analogous to those in sections 3 and 4.  

6. Conclusion  

Through the Equations of the Theory of Self-Variation we can investigate the gravitational field. 
Also, we can compare the results of this investigation with other theories, such as the General 
Theory of Relativity.  
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