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1 Università della Svizzera italiana
2 Indian Institute of Technology Patna

zenin.easa.panthakkalakath@usi.ch, neeraj.pcs17@iitp.ac.in, jimson@iitp.ac.in

Abstract

The challenges posed by epidemics and pandemics are im-
mense, especially if the causes are novel. This article intro-
duces a versatile open-source simulation framework designed
to model intricate dynamics of infectious diseases across di-
verse population centres. Taking inspiration from historical
precedents such as the Spanish flu and COVID-19, and ge-
ographical economic theories such as Central place theory,
the simulation integrates agent-based modelling to depict the
movement and interactions of individuals within different set-
tlement hierarchies. Additionally, the framework provides a
tool for decision-makers to assess and strategize optimal dis-
tribution plans for limited resources like vaccines or cures as
well as to impose mobility restrictions.

Introduction
A century ago, the Spanish flu (Trilla, Trilla, and Daer 2008)
infected over 500 million. One-third of the world popula-
tion at that time - in four successive waves in about two
years. Now, we have yet another viral infection that has
taken over the world by storm. The outbreak of COVID-
19 was first confirmed in Wuhan, China, in December 2019
(Sohrabi et al. 2020). The World Health Organization de-
clared a global public health emergency on 30 January 2020.
The pandemic has affected the health of the people and the
economy at large, which makes this a huge crisis.

An article in Washington post, titled ’Why outbreaks like
coronavirus spread exponentially, and how to ”flatten the
curve”’, written by Harry Stevens (Stevens 2020). The ar-
ticle talks about the mathematical modeling of how diseases
spread and the importance of social distancing. The article
shows the exponential nature of disease spread using simple
animation. It follows an Agent-Based Modelling approach
for the same. There have been a few attempts to recre-
ate similar modeling by others in the scientific community.
A renowned Mathematician and MATLAB creator, Cleve
Moler had created his own version of the COVID-19 sim-
ulator in MATLAB and published in his blog (Moler 2020).
Similar attempts to reproduce the same using Simulink
and Stateflow can be seen in a blog post by Guy Rouleau
(Rouleau 2020).

Studies indicate that there has been a massive decrease in
the number of people in the central districts of cities due to
the pandemic (Lehmann and Alessandretti 2020). It can be

interpreted that the reason for such a decline is because there
have been a huge number of people who migrated into such
centers for economic benefit, now returning to their native
region. It is safe to assume that an overwhelming majority of
these people come from lower-order settlements like smaller
towns and villages around these cities.

We do not know for certain if a vaccine or a cure would be
available soon. Even so, we must keep being optimistic and
trust the scientific community that we will have our hands
on either or both of these soon. In this article, we are assum-
ing that a vaccine would provide immunity to an uninfected
person. A cure would enable a sick person to be free of a
disease without making the person immune to the disease.

Once such a vaccine or a cure is developed, an adminis-
trative decision needs to be taken regarding how the vaccine
must be distributed. It is not far-fetched to think that such a
vaccine or cure would only be available in limited numbers
as the manufacturing facilities would be limited. With the
limited amount of resources at hand, the administration bod-
ies must attempt to make optimal decisions to minimize the
disease’s fatalities. Various parameters would affect such a
decision-making process. Some of these are the population
density, the number and percentage of infected people, the
number and percentage of people who had the disease and
recovered, the mobility of the people, quantity of the vaccine
or cure available at a given time and the frequency at which
the vaccine or cure can be procured.

This article presents a simulation framework that models
an environment containing different boundaries and agents
moving in the environment. The boundaries depict differ-
ent settlement hierarchy limits, such as city, town, or village
boundaries. The boundaries may or may not be permeable.
The agents moving in the environment depict the region’s
population and have properties to depict whether they are
infected, recovered/immune, or uninfected. The framework
is parameterized so that the positioning of the boundaries
and their impermeability can be changed. Also, the size, lo-
cation, and the initial number of infected people in a popu-
lation can be set before the start of the simulation. It is sug-
gested that the choice of modeling method is made based
on decision-makers’ requirements, type of problem and sys-
tem complexity, and its characteristics, which could also be
derived from economic models (Tako and Robinson 2018,
2012), Borshchev and Filippov (Borshchev and Filippov



2004), Brennan et al. (Brennan, Chick, and Davies 2006),
Chahal and Eldabi (Chahal and Eldabi 2010), McHaney et
al. (McHaney, Tako, and Robinson 2018).

Preliminaries
Central Place Theory
Introduced in 1933, Central Place Theory is a theory (Berry
and Garrison 1958) that attempts to explain the spatial dis-
tribution of human settlements. The theory was originally
analyzed by a German geographer named Walter Christaller.
This theory was the foundation of cities’ study as cities’ sys-
tems, rather than simple hierarchies or single entities. The
theory is based on various assumptions. All regions have an
isotropic surface with evenly distributed population and re-
sources, having similar cost and quality for goods and ser-
vices, and consumers having similar purchasing power.

The theory proposes a hexagonal grid (or honeycomb)
structure of distribution of cities, towns, and villages. Effec-
tively, there shall be higher-order settlements surrounded by
lower-order settlements in the grid. Each higher-order set-
tlements shall be equidistant from other higher-order settle-
ments, and so is the case with lower-order settlements.

Agent-Based Modeling
Agent-Based Modeling is a style of modeling for simulat-
ing autonomous agents’ actions and interactions in an envi-
ronment to predict the emergence of complex group behav-
iors. It is a kind of microscale model that enables simula-
tion of multiple agents performing simultaneous operations
and interacting between themselves and the environment in
which they reside in. The simulation may also involve differ-
ent decision-making heuristics and learning rules or adaptive
processes. In an analysis, Epstein (Epstein 2009) suggests
that ABM is appropriate for modeling pandemics.

The origin of the idea of agent-based modeling can be
traced back to the Von Neumann Machine, which was de-
signed in the 1940s. It was a theoretical self-replicating ma-
chine in a cellular automata environment. This method has
recently been used to model and simulates various scenar-
ios, including, but not limited to, automated driving, cog-
nitive, social simulation, satellite constellation modeling,
multi-robot systems, etc.

Framework Development
Our goal is to create a framework that people can use to ex-
tend it to model disease spreading scenarios and distribution
of vaccines and/or medicine. During the development pro-
cess, several assumptions were made, and only some fea-
tures were prioritized.

Assumptions
The following assumptions were made while developing the
framework. This was done in order to simplify the develop-
ment process.
1. All persons in the model are identical. Age, immunity

level, or any other factors are not considered. The fatality
of a person is randomly determined during the simula-
tion.

2. A person may move freely in accordance with a ran-
domly assigned velocity and direction until it encounters
the boundary. The velocity is assigned during the start of
the simulation and the magnitude remains unchanged.

3. As a person encounters the boundary, the person may ei-
ther cross the boundary or get reflected from the bound-
ary. Whether a person bounces off or crosses the bound-
ary is determined in accordance with the probability
value assigned to each boundary in the setup.

4. A person may acquire the disease when close to an in-
fected person while within a particular distance from the
infected person, and in accordance with the transmission
probability.

5. A person who gets cured of the disease without having
the medicine shall become immune.

6. An uninfected person who receives the vaccine becomes
immune.

7. Only an uninfected person may receive the vaccine.
8. An infected person who receives the medicine becomes

equivalent to be uninfected. The person shall not become
immune.

9. Only an infected person may receive the medicine.
10. A person who is infected may die in accordance with a

probability value.
11. A person may get cured after being infected for a fixed

period of time (or iterations).

Features
The key features supported by the framework are:

1. Ability to draw straight line boundaries at different ori-
entations that may be permeable, impermeable, or partial
permeable. The user can set a value for the probability
of whether a person encountering the boundary would be
reflected or transmitted.

2. Ability to define a region inside which people (as agents)
can be generated. The center coordinate and the radius of
the region need to be specified along with the number of
people that need to be generated within that region and
the number of people in that who are infected.

3. Ability to specify parameters related to disease spread
radius, probability of disease transmission for a person
within spread radius of an infected person, probability of
getting killed at any time-step while being sick and time
period to be free from being sick.

4. Ability to specify parameters related to lockdown im-
plementation. There are parameters to specify at what
threshold the ratio of the number of sick people to the
total population lockdown must be implemented and re-
voked. While under lockdown, the people’s mobility un-
der lockdown would be multiplied by a lockdown mobil-
ity multiplier parameter, which assumes a value between
0 and 1.

5. Ability to distribute vaccine and/or medicines with pa-
rameters to specify the quantity, the start time-step, the
frequency at which these get replenished and the mode
of distribution. The framework supports four modes of



vaccine and medicine distribution based on the statistical
state of the agents in the region. These are:

(a) ”equitable”: Distribution proportional to the number of
uninfected people in the region at the given time.

(b) ”maximumInfection”: Distribution prioritizing re-
gions with maximum number of infected cases first.

(c) ”maximumUninfected”: Distribution prioritizing re-
gions with maximum number of uninfected people
first.

(d) ”infectedAndUninfected”: Distribution prioritizing re-
gions with maximum number of sum of uninfected and
infected people first.

Implementation
The framework is implemented in JavaScript with HTML
and CSS to support the visualization. It can load all the
simulation parameters from a JSON file. These parameters
include everything related to boundaries and their orienta-
tion, region generation and population information, disease
transmission, lockdown implementation, and vaccine and
medicine distribution.

The framework loads the boundaries in the orientation
specified by the endpoints by reflecting on the boundary
parameters specified in the aforementioned JSON file. The
line’s color is in accordance with the value of the boundary’s
impermeability and the value for the angle of orientation.
During the simulation, the agents read the boundary’s color
when encountered to compute the impermeability value. If
it is decided that the agent is to be reflected from the bound-
ary, the orientation angle comes in handy to calculate the
direction of motion post reflection.

People are the agents in this simulation. Uninfected peo-
ple are represented with a black dot. The color changes to
red when they get infect and to green when they recover or
get immune. People who die are deleted from the simulation
from that point forward.

Simulation Methodology
Using the framework, we can set up different scenarios in-
volving different kinds of borders according to area layouts
and people’s simple behavior in different regions. A user of
this framework trying to model a city or town of his/her in-
terest can decide on the boundaries and other parameters.

Once the environment model is ready, the user can try
simulating without adding any vaccine or cure into the sim-
ulation and observe if the data output is similar to what the
actual city has been providing in the past many months. If
not, the user can keep tweaking the parameters until the val-
ues come close to the actual data.

Now that the model is behaving similar to the real-world
scenario, we can add in vaccines and/or cure to the equa-
tion and run different simulations and observe the results.
Try to find the decisions involving the least amount of fatal-
ity, which is the decision that the administration must make
regarding vaccine distribution.

Below mentioned are the steps that one must follow to use
the framework to model for their region.

1. Create a new JSON file named ’myRegion.json’. Edit the
variable named ’environmentJSONFile’ in ’script.js’ file
to point to this file.

2. Start by drawing the boundaries. Create a variable named
”boundaries”, which is an array of arrays. Each child ar-
ray represents a boundary, with each of its elements being
X-coordinate of the first point, Y-coordinate of the first
point, X-coordinate of the second point, Y-coordinate
of the second point, and impermeability. The value of
impermeability ranges between 0 and 1, 0 means com-
pletely permeable, and 1 means completely imperme-
able.

3. Define the region inside which persons get generated.
Add in a variable named ”regions,” which is an array
of objects. Each object corresponds to a circular region
inside which the specified number of people gets gen-
erated. The properties of the object are ”id”, ”popula-
tion”, ”infected”, ”center”, ”radius” and ”mobilityFac-
tor”, which corresponds to a string identity of the re-
gion, total population in the region, number of infected
people in the region, geographic center coordinate of the
region (an array having two values corresponding to X-
coordinate and Y-coordinate), the radius of the region and
mobility factor (which corresponds to the velocity of the
people in the simulation).

4. Finally, define other environmental parameters ”bound-
aryThickness”, ”spreadRadius”, ”curePeriod” and ”kill-
Probability”. Environmental parameters like ”lockdown-
StartThreshold”, ”lockdownEndThreshold” and ”lock-
downMobilityMultiplier”. These may be chosen in ac-
cordance with how the Government usually reacts to the
situation. Environmental parameters related to vaccine
and medicine distribution may be set to a value such that
it wouldn’t make any impact, say we set the quantity to
zero.

5. Run the simulation, download the result, and observe
whether the simulation results are coherent with the dis-
ease spread information for the city at hand. If not, check
and modify the environmental parameters until the data
is coherent enough.

6. Now, modify the parameters related to vaccine and
medicine distribution in accordance with the potential fu-
ture availability of the same.

To showcase the framework’s capability, we have come
up with a region layout involving hexagonal grids. The
hexagons in the grid would represent villages, towns, or
cities. The Central Place Theory inspires this layout and the
modeling of many cities may be similar to this.

The hexagonal grids were programmatically generated
and the values for boundary impermeability and the val-
ues for initial population and infected people in each region
were entered manually. As explained in the aforementioned
points, the parameters were tweaked until a reasonable sim-
ulation result was observed with the values for vaccine and
medicine quantities set to zero.

In all the scenarios that we are trying to simulate, we are
keeping some parameters constant. The values for these pa-
rameters can be seen in Table 1.



Figure 1: A screenshot showcasing the hexagonal grid (hon-
eycomb) layout depicting different settlement hierarchies
and dots depicting the population in the region.

Figure 2: A screenshot focusing the central city location.
Here we can clearly see the dots with different colors. Black
depicts people who are uninfected, red depicts people who
are currently infected, and green depicts people who have
recovered from the disease and are immune to it.

In the hexagonal grid, the city, towns, and villages were
placed, as shown in Figure 3. The total population, the num-
ber of infected people in each region type, and the people’s
mobility factor in these regions are mentioned in Table 2.

Parameter name Value
spreadRadius 5

curePeriod 250
killProbability 0.005

transmissionProbability 0.7

Table 1: Parameters used in the simulation that were kept
constant across various scenarios.

Hierarchy Population Infected Mobility
City 750 5 1

Town 100 5 3
Village 15 1 5

Table 2: Initial conditions for different settlement hierar-
chies assumed in the simulation. The values may be con-
sidered scaled.

The value of the impermeability of the borders were de-
cided based on who shares the border. Even during a pan-
demic, the border between a city and a village would be
more permeable compared to the the border between a vil-
lage and a town, which would be more permeable that the
border between two villages. This is because people from
villages would be dependent on nearby towns and cities for
economic activities. Even during a pandemic situation, such
an activity would be required to ensure survival of the popu-
lation. The values of the same that we adopted for this sim-
ulation is shown in Table 3.

Between hierarchies Impermeability
City-Village 0.7

Town-Village 0.8
Village-Village 1

Table 3: The border impermeability values between different
settlement hierarchy.

Arranging cities, villages, and towns in such an arrange-
ment enables capturing the phenomenon of population mi-
gration from higher orders of settlements to lower orders of
settlements during a pandemic time. It is also important to
differentiate the central city’s statistical data to that of the
entire region. A correlation between these two sets of statis-
tics is important, as a survey that doesn’t consider such a
migration would have missing links.

Results

After the development, the framework was put to test to
observe the simulation results under various circumstances.
These are described in the following subsections. Note that
the simulation was conducted for a hypothetical hexagonally
divided regions having population scaled to smaller num-
bers.



Figure 3: An image depicting the placement of city, towns
and villages in a hexagonal grid.

Simulation Results without Vaccine, Cure or
Lockdown
If no restrictions are imposed by the administrative authori-
ties, the scenario would end up something similar to what is
depicted in Figures 4 and 5.
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Figure 4: The aggregate simulation results for all the regions
when no vaccine, medicine or lockdown were implemented.

At the end of the simulation, the statistics of the number
of people who where dead and recovered are mentioned in
Table 4.

Simulation Results with lockdown
Simulation was conducted wherein lockdown was imple-
mented whenever more than 10% were infected and revoked
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Figure 5: The simulation results for the central city when no
vaccine, medicine or lockdown were implemented.

Parameter name Value
Initial Population 1530
Simulation Period 1905

Total Immune 675
Total Dead 82

Table 4: Tabulated final results for all the regions when no
vaccine, medicine or lockdown were implemented.

whenever less than 2% were infected in any particular re-
gion. The parameter values for the same is described in Ta-
ble 5.

Parameter name Value
lockdownStartThreshold 0.1
lockdownEndThreshold 0.02

lockdownMobilityMultiplier 0.1

Table 5: Simulation parameters used to implement lock-
down.
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Figure 6: The aggregate simulation results for all the regions
when lockdown was implemented.

At the end of the simulation, the statistics of the number
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Figure 7: The simulation results for the central city when
lockdown was implemented.

of people who where dead and recovered are mentioned in
Table 6.

Name Value
Initial Population 1530
Simulation Period 2804

Total Immune 367
Total Dead 39

Table 6: Tabulated final results for all the regions with lock-
down.

We can observe that there would be four waves when a
lockdown is implemented in such a manner.

Simulation Results with Vaccine distribution
Simulations were conducted with all four supported meth-
ods of vaccine distribution. These are mentioned in the sub-
sequent paragraphs, figures and tables. In all the cases, vac-
cine distribution starts at 300 time-step with a quantity of
200 units and the quantity gets replenished after every 100
subsequent time-step.

Firstly, let us observe the results when vaccine is dis-
tributed equitably i.e., proportional to the number of unin-
fected people in the region at the given time. The parameter
values for the same is described in Table 7.

Parameter name Value
vaccineDistributionStartTime 300
vaccineDistributionFrequency 100
vaccineDistributionQuantity 200

vaccineDistributionMechanism ”equitable”

Table 7: Simulation parameters used when vaccine distribu-
tion mode was ”equitable”.

At the end of the simulation, the statistics of the number
of people who where dead and recovered are mentioned in
Table 8.
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Figure 8: The aggregate simulation results for all the regions
when vaccine distribution mode was ”equitable”.

0 200 400 600 800 1000 1200 1400

Simulation time-steps

0

100

200

300

400

500

600

700

800

N
u

m
b

e
r 

o
f 

P
e

o
p

le

Uninfected

Sick

Cured/Immune

Dead

Figure 9: The simulation results for the central city when
vaccine distribution mode was ”equitable”.

Name Value
Initial Population 1530
Simulation Period 1481

Total Immune 634
Total Dead 89

Table 8: Tabulated final results for all the regions with vac-
cine distribution mode ”equitable”.

Secondly, let us observe the results when vaccine is dis-
tributed prioritizing regions with maximum number of in-
fected cases first. The parameter values for the same is de-
scribed in Table 9.

Parameter name Value
vaccineDistributionStartTime 300
vaccineDistributionFrequency 100
vaccineDistributionQuantity 200

vaccineDistributionMechanism ”maximumInfection”

Table 9: Simulation parameters used when vaccine distribu-
tion mode was ”maximumInfection”.
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Figure 10: The simulation results for all the regions when
vaccine distribution mode was ”maximumInfection”.
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Figure 11: The simulation results for the central city when
vaccine distribution mode was ”maximumInfection”.

At the end of the simulation, the statistics of the number
of people who where dead and recovered are mentioned in
Table 10.

Name Value
Initial Population 1530
Simulation Period 1481

Total Immune 663
Total Dead 72

Table 10: Tabulated final results for all the regions with vac-
cine distribution mode ”maximumInfection”.

Thirdly, let us observe the results when vaccine is dis-
tributed prioritizing regions with maximum number of un-
infected people first. The parameter values for the same is
described in Table 11.

At the end of the simulation, the statistics of the number
of people who where dead and recovered are mentioned in
Table 12.

Fourthly, let us observe the results when vaccine is dis-
tributed prioritizing regions with highest sum of infected and

Parameter name Value
vaccineDistributionStartTime 300
vaccineDistributionFrequency 100
vaccineDistributionQuantity 200

vaccineDistributionMechanism ”maximumUninfected”

Table 11: Simulation parameters used when vaccine distri-
bution mode was ”maximumUninfected”.
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Figure 12: The simulation results for all the regions when
vaccine distribution mode was ”maximumUninfected”.
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Figure 13: The simulation results for the central city when
vaccine distribution mode was ”maximumUninfected”.

Name Value
Initial Population 1530
Simulation Period 1510

Total Immune 594
Total Dead 85

Table 12: Tabulated final results for all the regions with vac-
cine distribution mode ”maximumUninfected”.

uninfected people first. The parameter values for the same is
described in Table 13.

At the end of the simulation, the statistics of the number
of people who where dead and recovered are mentioned in
Table 14.



Parameter name Value
vaccineDistributionStartTime 300
vaccineDistributionFrequency 100
vaccineDistributionQuantity 200

vaccineDistributionMechanism ”infectedAndUninfected”

Table 13: Simulation parameters used when vaccine distri-
bution mode was ”infectedAndUninfected”.
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Figure 14: The simulation results for all the regions when
vaccine distribution mode was ”infectedAndUninfected”.
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Figure 15: The simulation results for the central city when
vaccine distribution mode was ”infectedAndUninfected”.

Name Value
Initial Population 1530
Simulation Period 1385

Total Immune 581
Total Dead 77

Table 14: Tabulated final results for all the regions with vac-
cine distribution mode ”infectedAndUninfected”.

Medicine only distribution
Firstly, let us observe the results when medicine is dis-
tributed equitably i.e., proportional to the number of unin-
fected people in the region at the given time. The parameter

values for the same is described in Table 15.

Parameter name Value
medicineDistributionStartTime 300
medicineDistributionFrequency 100
medicineDistributionQuantity 200

medicineDistributionMechanism ”equitable”

Table 15: Simulation parameters used when medicine distri-
bution mode was ”equitable”.
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Figure 16: The aggregate simulation results for all the re-
gions when medicine distribution mode was ”equitable”.

0 200 400 600 800 1000 1200 1400 1600 1800

Simulation time-steps

0

100

200

300

400

500

600

700

800

N
u
m

b
e
r 

o
f 
P

e
o
p
le

Uninfected

Sick

Cured/Immune

Dead

Figure 17: The simulation results for the central city when
medicine distribution mode was ”equitable”.

At the end of the simulation, the statistics of the number
of people who where dead and recovered are mentioned in
Table 16.

Secondly, let us observe the results when medicine is dis-
tributed prioritizing regions with maximum number of in-
fected cases first. The parameter values for the same is de-
scribed in Table 17.

At the end of the simulation, the statistics of the number
of people who where dead and recovered are mentioned in
Table 18.



Name Value
Initial Population 1530
Simulation Period 1618

Total Immune 566
Total Dead 81

Table 16: Tabulated final results for all the regions with
medicine distribution mode ”equitable”.

Parameter name Value
medicineDistributionStartTime 300
medicineDistributionFrequency 100
medicineDistributionQuantity 200

medicineDistributionMechanism ”maximumInfection”

Table 17: Simulation parameters used when medicine distri-
bution mode was ”maximumInfection”.
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Figure 18: The simulation results for all the regions when
medicine distribution mode was ”maximumInfection”.
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Figure 19: The simulation results for the central city when
medicine distribution mode was ”maximumInfection”.

Thirdly, let us observe the results when medicine is dis-
tributed prioritizing regions with maximum number of un-
infected people first. The parameter values for the same is
described in Table 19.

At the end of the simulation, the statistics of the number

Name Value
Initial Population 1530
Simulation Period 1334

Total Immune 645
Total Dead 75

Table 18: Tabulated final results for all the regions with
medicine distribution mode ”maximumInfection”.

Parameter name Value
medicineDistributionStartTime 300
medicineDistributionFrequency 100
medicineDistributionQuantity 200

medicineDistributionMechanism ”maximumUninfected”

Table 19: Simulation parameters used when medicine distri-
bution mode was ”maximumUninfected”.
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Figure 20: The simulation results for all the regions when
medicine distribution mode was ”maximumUninfected”.
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Figure 21: The simulation results for the central city when
medicine distribution mode was ”maximumUninfected”.

of people who where dead and recovered are mentioned in
Table 20.

Fourthly, let us observe the results when medicine is dis-
tributed prioritizing regions with highest sum of infected and
uninfected people first. The parameter values for the same is



Name Value
Initial Population 1530
Simulation Period 1553

Total Immune 713
Total Dead 96

Table 20: Tabulated final results for all the regions with
medicine distribution mode ”maximumUninfected”.

described in Table 21.

Parameter name Value
medicineDistributionStartTime 300
medicineDistributionFrequency 100
medicineDistributionQuantity 200

medicineDistributionMechanism ”infectedAndUninfected”

Table 21: Simulation parameters used when medicine distri-
bution mode was ”infectedAndUninfected”.
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Figure 22: The simulation results for all the regions when
medicine distribution mode was ”infectedAndUninfected”.
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Figure 23: The simulation results for the central city when
medicine distribution mode was ”infectedAndUninfected”.

At the end of the simulation, the statistics of the number

of people who where dead and recovered are mentioned in
Table 22.

Name Value
Initial Population 1530
Simulation Period 1517

Total Immune 600
Total Dead 78

Table 22: Tabulated final results for all the regions with
medicine distribution mode ”infectedAndUninfected”.

Simultaneous Vaccine and Medicine distribution
With medicine and vaccine distribution starting at 300 time-
step with a quantity of 200 units and getting replenished af-
ter every 100 time-steps -Vaccine prioritizing regions with
maximum number of the sum of uninfected and infected
people first and medicine prioritizing regions with maximum
number of infected people first - Lockdown enforced when
more than 10% infected and revoked when less than 2% in-
fected. The parameter values for the same is described in
Table 23.

Parameter name Value
lockdownStartThreshold 0.1
lockdownEndThreshold 0.02

lockdownMobilityMultiplier 0.1
vaccineDistributionStartTime 300
vaccineDistributionFrequency 100
vaccineDistributionQuantity 200

vaccineDistributionMechanism ”infectedAndUninfected”
medicineDistributionStartTime 300
medicineDistributionFrequency 100
medicineDistributionQuantity 200

medicineDistributionMechanism ”maximumInfection”

Table 23: Simulation parameters used when medicine distri-
bution mode was ”infectedAndUninfected”.
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Figure 25: The simulation results for the central city with
lockdown imposition, and, vaccine and medicine distribu-
tion
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Figure 24: The simulation results for all the regions with
lockdown imposition, and, vaccine and medicine distribu-
tion

At the end of the simulation, the statistics of the number
of people who where dead and recovered are mentioned in
Table 24.

Name Value
Initial Population 1530
Simulation Period 2123

Total Immune 334
Total Dead 45

Table 24: Tabulated final results for all the regions with
medicine distribution mode ”infectedAndUninfected”.

Conclusions
The designed framework is able to simulate wide variety of
scenarios. Indeed, there are infinitely many possible combi-
nations of vaccine and medicine distribution that can be, and
some of these were explored in this article. Based on dif-
ferent social and economic conditions, the decision makers
may tweak different parameters to virtually test their deci-
sion making skills in the future using this framework. How-
ever, do note that the framework does have some assump-
tions, and it may be improved in the future to have less of
them.
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Appendix
Code and data
The implementation code, generated data, results and
analysis are available in https://github.com/zenineasa/
frameworkForVaccineAndCureDistribution.

Hardware and software setup
The specifications for the device and the software libraries
used to perform the simulations are described in Table 25
and Table 26. However, note that the framework developed
to run on any modern computer using a modern browser, ir-
respective of the operating system. Although we used MAT-
LAB for analysing and interpreting the results, one could
alternatively use Python or Excel.

Component Specification
Hardware Lenovo ideapad 330-15ARR
Processor AMD Ryzen 5 2500U
No. of cores 8
Graphics AMD Radeon vega 8 graphics
Memory 8 GB (2× 4 GB DDR4 @ 2400 MHz)
OS Ubuntu 20.04.02 LTS

Table 25: Specification of the machine used for performance
evaluation

Software / Library Version
Google Chrome 86.0.4240.183
MATLAB R2020b

Table 26: Versions of different software and libraries used

Choosing to build a new framework
The reason for building a framework that can run on a mod-
ern browser was motivated by the fact that these are free to
use, have immense capabilities, and are nearly universally
accessible. Decision makers need not require programmers
to try different strategies and observe the potential outcome
of their decisions. Ease of use and access were our primary
priority while developing this framework.


