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ABSTRACT

Deep learning has revolutionized the approach to com-
plex data-driven problems, specifically in medical imaging,
where its techniques have significantly raised efficiency in
organ segmentation. The urgent need to enhance the depth
and precision of organ-based classification is an essential
step towards automation of medical operation and diag-
nostics. The research aims to investigate the effect and
potential advantages transformer models have on binary
semantic segmentation, the method utilized for the project.
Hence, I employed the SegFormer model, for its lightweight
architecture, as the primary deep learning model, along-
side the Unet. A custom 2D computerized tomography (CT)
scan dataset was assembled, CT-Org2D through meticu-
lous operations. Extensive experiments showed that, in
contrast to the selected models, the task’s simplicity re-
quired a redesigned Unet architecture with reduced com-
plexity. This model yielded impressive results: Precision,
Recall, and IOU scores of 0.91, 0.92, and 0.85 respectively.
The research serves as a starting point, motivating further
exploration, through different methodologies, to achieve
even greater efficiency in organ segmentation.

1 Introduction

Fifteen million Americans have various operations
performed annually, all of which carry a significant risk
of unfavorable results. Several major issues may arise
as a result of these operations’ decreased accuracy and
precision. More painful scarring results from larger
incisions made during surgery and from the surgeon’s
limited range of motion to access certain areas. Apart
from the potential for mistakes, these surgeries are very
expensive overall, not only for the average patient but also
for the hospitals that have to pay for the procedures.By
2025, hospital expenses are projected to average $40
million annually, accounting for medical staff, equipment,
and other costs [2].
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Figure 1: Different views in CT-Org’s volumetric 3D im-
age with the features and their corresponding labels

With the implementation of robotic assistance, the neces-
sity for human-medical assistance will grow obsolete as
new advances in the intersection of the medical and Al
worlds take place. The automation of surgical help has the
potential to significantly change the medical industry by
ensuring consistent precision, lowering surgical expenses,
and enabling a reliable method of healthcare [9].

The initial stage in developing the knowledge required for
automated procedures is through organ segmentation. This
project emphasized binary semantic segmentation, where
each pixel is labeled according to its class. The method
uses downsampling for computational efficiency and up-
sampling to achieve the target image size, utilizing Max
Pooling and Unpooling functions with specific strides and
padding. Several architectures were explored and tested on,
including transformers. Transformers have recently had a
significant impact on the area of computer vision, which
motivated me to research their limitations and abilities on
semantic segmentation.
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1.1 Model Architecture

Convolutional Neural Networks (CNN) are used to extract
features, recognize patterns, and categorize various ele-
ments of an image. Traditional neural networks are slower
and less effective at capturing features than CNNs. A CNN
consists of: Convolutional, Pooling, and Fully-connected
layers. All of the nodes are connected by these layers,
which also help to extract features using filters and kernels
by lowering complexity and parameter requirements. One
of the characteristics that makes them successful is their
ability to preserve information while reducing the high
dimensionality of images.
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Figure 2: A visual representation of architectures from
both Transformers(left) and CNNs(right)[2].

Parallel processing and self-attention mechanisms are fea-
tures of the Transformers architecture, which is frequently
employed in Natural Language Processing (NLP). Its self-
attention component gives various components of an im-
age different weights of importance. This is essential for
capturing long-range dependencies, relationships between
patches that are far apart from one another. The ability
for independent and simultaneous evaluation of certain
data points is known as parallel processing. In contrast, a
recurrent neural network (RNN) examines each input point
separately and dependently uses previous input for the
current one. Transformers require significantly more data
than the typical CNN, and as a result of this and parallel
processing, their training times are typically longer.

2 Related Works

Numerous approaches and data types have been used in
considerable research on the effectiveness of models in a
variety of activities. Zettler et al. show that 2D U-Net mod-
els are more effective than 3D U-Net models in terms of
speed and low memory costs [3]. Even while the 3D model
had slightly more favorable results than the other model,
they all concluded that this couldn’t possibly justify the
computer resources that were wasted on it. The 3D model
also worked with its respective 3D images data, which
increased, even more, memory usage and rendering time.
Similarly, Dia et al. use transformer-based architectures
for multi-modal medical imaging classification [4]. The
authors discuss their struggle to find a solution to the prob-
lem of medical imaging tasks not having sufficient data

required to work with transformers. By creating a model
that combines the benefits of a CNN’s low level feature
extraction and a transformer’s long range dependencies,
they are able to tackle this problem.

3 Methodology

I was motivated to select a 3D volume dataset (Ct-Org)
with 6 classes: liver, lung, bladder, kidney, bone, and brain,
to address the lack of 2D data online and customize it
towards the task [1]. The data was gathered from CT scans
of patients who had conditions or lesions in one or more of
the organs specified. The images came from a wide variety
of sources, including abdominal and full-body; contrast
and non-contrast; and low-dose and high-dose CT scans. I
condensed the original scans from 512 x 512 with varying
depths, ranging from 74 to 987, to slices of 285 x 277 by
rotating the view from axial(bottom view) to coronal(front
view) for better organ visibility. This resulted in 512 slices
per volume, creating a total of 71680 slices. The data was
split into training (75%) and testing (25%) sets by volume
to maintain slice grouping, and 20% of the training set was
further separated for validation. The slices were sorted and
identified using a specific naming convention(Ex.Volume-
0_Slice-0).

Figure 3: Sequential Slices at different depths/layers in a
3D labeled volume

3.1 Model Selection and Parameters

Model Parameters | Model Size | # of Layers
Custom-Unet 550,000 2.2 mb 51
SegFormer 47 million 180 mb 5
UnetVggl16&19 | 31 million 109 mb 51
UnetResnet50 20 million 79.4 mb 176

Table 1: Comparative data table of models. Showcases the
different characteristics for all models employed in this
study.

To represent the findings of transformers as a whole, the
SegFormer model was chosen for this task, alongisde Un-
ets, because of its functionality in semantic segmentation.
This model avoids complex decoders, making the model
lightweight. This results in the MLP decoders combin-
ing information from different layers [5]. Ultimately, its
simple design contributes to its efficiency.



Model Precision Recall IOU Score
UnetVggl6 0.96 0.41 0.37
UnetVggl9 0.95 0.35 0.36
UnetResnet50 0.96 0.37 0.39
Segformer 0.56 0.33 0.26
Custom Unet 0.91 0.92 0.85

Table 2: Model performance metrics. Presents the
results through various evaluation metrics, allowing
for comparison in efficiency.

3.2 Data Preprocessing

In my new dataset, Ct-Org2D, the features (input) were
grayscaled, but the labels were RGB. I duplicated the
grayscaled channel twice so I could work with differ-
ent models, then I combined all the outputs to get a three-
channel image. This prevented the color from being added
and also allowed me to use the 3-channel features and la-
bels with ease. Alternatively, I may have customized the
model’s layers to meet my singular channel requirement.

3.3 Model Training Process

For both the training and testing, the learning rate and batch
size were set to 0.001 and 32, respectively. Both of which
caused the speeds to become significantly slower. The
Adam optimizer was chosen over SGD for its adaptiveness
to adjust the weights better. The models ran for 20 epochs,
but the scores usually converged after 8-10 epochs

4 Experiments

4.1 Experiment Setup

Google Colab Pro was used for running the code. The
software gave access to efficient GPUs such as A100
and NVIDIA Tesla T4 for faster runtimes. Using higher
memory settings, 25.5 GB of RAM was given. For the first
half of the study, the PyTorch framework was employed
for data collecting and analysis. Pytorch outperformed
Keras and Tensorflow in terms of working-well with
huge datasets and overall flexibility. Pytorch, however,
demonstrated to be less incompatible with debugging,
displaying images, and ability to handle complex models,
especially transformers[8]. Hence, for the training, testing,
and visualization phases, I utilized Keras/Tensorflow 2.13.
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Figure 4: The graph depicts the convergence rates of a
model across epochs using a Dice BCE Loss Function.

Important Libraries:

1. SimpleITK - Extracts each slice and different character-
istics(Ex. Shape, Views) from various volumes.

2. Matplotlib - Visualizes the predicted masks and in-
put/output after being converted to a NumPy array.

3. Shutil - Relocates thousands of images to their respec-
tive training/testing drive folders.

4.2 Performace Metrics

To evaluate the performance, several key metrics were
utilized: Precision, Recall, and IOU Score. Due to the
task’s focus on binary segmentation, the IOU Score served
as the benchmark metric for comparison. All metrics’
values range from 0 to 1, representing the probability in
different aspects of the task: Each metric represents the
probability, from O to 1, related to a unique element in the
task:

Precision The accuracy of true predictions relative
to the entire set of outcomes[7]. In other words, it
represents the proportion of events the model correctly
predicted to be positive. To guarantee that non-organ
regions are excluded from the segmentation, precision is
essential.

TruePositives
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Recall The measure of the percentage of actual positive
results that the model accurately predicts. High recall is es-
sential for segmenting organs since it guarantees thorough
coverage of the entire organ. Insufficient recollection may
result in insufficient segmentation, which may produce
incorrect representations of the organ’s size and shape.
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IOU Score The overlap between the predicted regions and
the ground truth. It is the most reliable metric for accurate
binary segmentation.

TruePositives

TruePositives + FalseNegatives + FalsePositives

3

4.3 Results

In Table 2, the evaluation scores are presented for pre-
cision, recall, and IOU score obtained from each model.
It becomes evident that Segformer and the Unet models
with more complex backbones had trouble adjusting to
the binary segmentation task’s simplicity. This ultimately
resulted in issues with overfitting. As a result, I developed
a custom Unet model with fewer layers and nodes, which
effectively reduced the size and complexity of the model
as a whole. However, this model produced considerable
results, supporting the idea that a model’s complexity must
correspond to that of the task.

5 Conclusion

The study’s findings highlight a significant aspect of
model selection and personalization. It becomes clear that
for certain segmentation tasks, baseline models might not
always yield the best results. Customization is a crucial
tactic that enables alignment with the inherent features
and challenges of the work. Notably, the performance of
the custom Unet model, trained on a single dataset with
minimal hypertuning and within a straightforward work
environment showcases the potential for personalized
model design. This demonstrates that even with minimal
resources and adjustments, it is possible to achieve
considerable improvements in accuracy and consistency.

Throughout the project, several limitations influ-
enced the research process and results. One significant
constraint was the computational resources limited by the
work environment, including available RAM and software
challenges. The size of the dataset made the problems
much more difficult, leading to frequent timeouts and
extended execution delays during debugging phases.
Therefore, I created a more manageable subset of the data
for troubleshooting.

5.1 Future Work

One could broaden the task’s scope to include multi-
segmentation in order to improve this project even further.
This would open the doors to more model options includ-
ing intricate transformer architectures that would fit the
complexity needs of the task. Another option is the addi-
tion of three dimensions to the task and utilizing various
3D datasets. The room for improvement is endless in the
field of Organ Segmentation.
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