DIMINISHING RETURNS OBSERVED FROM Al MUSIC MODELS

BY CLIFFORD NJOROGE

FORWARD

This report is dedicated to examining the factors that contribute to the substandard quality observed in
music generated by various Al models. The acknowledgment of this issue suggests that the quality of Al-
generated music currently falls short of established standards. The purpose of this report is to conduct a
thorough investigation into the underlying reasons behind this phenomenon, offering valuable insights
for readers interested in the intersection of artificial intelligence and music composition.

The focus of our analysis is on the music produced by a range of Al models, indicating that the problem is
not confined to a specific system but extends across different implementations of artificial intelligence.
By undertaking this examination, we aim to provide a comprehensive understanding of the factors
influencing the perceived substandard quality.

Our report will delve into the intricacies of Al-generated music, exploring elements such as the
algorithms utilized, the datasets employed during training, the complexity of the models, and potential
shortcomings in capturing the nuanced aspects of musical expression. The term "phenomenon" is used
to highlight that the substandard quality is not a random occurrence but a complex and multifaceted
issue that requires a deeper understanding.

By unraveling the contributing factors, this report aims to equip readers with a nuanced perspective on
the challenges associated with Al-generated music. The findings presented herein could have
implications not only for the developers and researchers in the field of artificial intelligence but also for
musicians, music enthusiasts, and anyone intrigued by the evolving landscape of creative technologies.
Ultimately, this examination seeks to contribute to the ongoing dialogue surrounding the integration of
Al in music composition and inspire potential improvements in the quality of Al-generated musical
output.

Generative Adversarial Networks

GANs are a type of machine learning framework that can generate new data
from a given dataset. They consist of two neural networks: a generator and a
discriminator. The generator tries to create realistic data, while the
discriminator tries to distinguish between real and fake data. The two networks
compete with each other until the generator can fool the discriminator. GANs
can be used for various applications, such as generating images, music, text, or
3D models.

MUSEGAN

For our first generative adversarial model we used the Musegan generative model which uses three
models for symbolic multi-track music generation under the framework of generative adversarial
networks (GANs). The three models, which differ in the underlying assumptions and accordingly the
network architectures, are referred to as the jamming model, the composer model and the hybrid
model. We trained the proposed models on a dataset of about 3000 bars of jazz midi.

The diminishing returns observed from this type of generative model occur when the predictive results
are converted into midi, it is not clear what is the appropriate way to write the predicted results back
into midi as the paper mentions using the “pypianoroll.Multitrack® module which requires both an array
of stacked Boolean values from the predictions and a dictionary containing the frequency sampling rate
(fs) which cannot be obtained from the model predictions. Another issue is when using the generative
class of neural networks, we are dealing with converting random noise back into real world
images/audio. For our input we generate normalized random noise with the class “torch.randn” which
returns a tensor filled with random numbers from a normal distribution with mean 0 and variance 1 (also
called the standard normal distribution)

ie, outi ~ N(0,1)

This similar procedure is used in the generator training phase to generate/emulate real piano roll vectors
from random distributed noise. In the end we settled to use ‘'mido’, which amalgamates all form of midi
music processing to write our predictions into music

Investigating diminishing returns from music generation with MuseGan

In music theory each note or is generated within a digital audio workstation (DAW) with a unique time
signature, and a specific frequency sampling rate. Each note represents a midi key from range 0 to 127
whereas a chord which is a fundamental concept in music theory and composition refers to a group of
three or more notes played or heard simultaneously. Chords are the building blocks of harmony and
provide the harmonic framework for melodies and musical compositions. Each chord in the DAW
contains an octave which can be used to represent the type of instrument being played and each chord
can be broken down into multiple constituent notes with their unique time signature and pitch. Musegan
has a proper representation of this by using the package pypianoroll which breaks each midi note into

machine representation of an array of Boolean: on/off, 1/0, True/False.

60 - 0 1 1 1
61 - 0 011
62 — 0 1 11

| 0 0 01

Where this break occurs is in the complexity of analyzing different octaves; instrument representations
when generating chord progressions. Chord progression within a DAW can represent musical
annotations in their respective octaves relatively easily as shown below:

o we w0 17:05:2) ™
- L A = ¥

» N YD NI O dn P Playhst - Arrangement
“* “

BPano 13

3.

JPano)

. (b

P Bass) 3 Bass

Guitar
JBass JBass
[os— es—— [on— p——

nnn
[Si38Ea38ia040]

OCTAVE REPRESENTATION IN FL STUDIO

In pypianoroll or any other midi processing utility this octave representation does not exist and
whatever octave used when parsing the predictions into midi is inherently an infinite value that cannot
be set. In jazz music, the most common octave for chord voicings and melodic lines typically ranges
between C3 and C5. Here's a breakdown of the common octave ranges used in jazz:

1. Bass (C2 - C3): The bass guitar or double bass often plays in this range, providing the
foundational low end of the harmony.

2. Chords and Comping (C3 - C5): Piano, guitar, and other chordal instruments often play in this
range. The mid-range is suitable for comping (accompanying) and playing chord voicings.

3. Melody (C4 - C6): Melodic instruments like saxophones, trumpets, and vocals usually perform in
this range. It allows for expressiveness and facilitates smooth melodic phrases.

4. Upper Extensions (C6 - C7): Jazz musicians might use this higher range for adding upper chord
extensions, such as the 9th, 11th, or 13th, when soloing or comping.

Although, these octave ranges are not strict rules, and jazz musicians often explore different registers to
create unique sounds and effects. The choice of octave range may also depend on the specific
instrument, musical context, and personal style of the performer. If we observe the pypianoroll
representation of notes into midi, we are only looking at 3 aspects of the tune generated from the
predictions being the; note, timestep, and harmonics. We do not look at the chord progression, octave
roots and DAW representation between chords and notes. Chords are typically created by stacking
specific intervals (distances between notes) on top of each other. The most basic type of chord is a triad,
which consists of three notes: the root, the third, and the fifth.

Wave GAN-IMAGE

This representation seeks to streamline the method of generating the data from midi and then taking the
observed prediction directly back into midi. Midi files explicitly describe the pitch and time of every note
played:

}'k
@, 0, Header, 1, 3, 384
1, @, Start_track
1, 0, Time_signature, 4, 2, 24, 8
1, @, Tempo, 500000
1, 110040, End_track
2, 0, Start_track
2, 0, Text_t, "harpsichord: John Sankey"
2, 0, Title_t, "Track 1"
2, 0, Note_on_c, 1, 70, 127
2, 0, Note_on_c, 1, 76, 127
2, 40, Note on c, 1, 64, 127 _‘, _\
5 240 Note_on_c, 1 60, 127 \ (:
2 1200 Note_off_c, 1, 76,
2 1246, Note_on_c, 1,@
= Note_off c, 1,

, 1089, Note_on_c,

2

2 1ald 0
2

2, 1680 Note_on_c, 1 76 127

2

2,

, 2000, Note off c, 1, 48, @

Owen
Oitver 2000, Note off c, 1, 64, © —\—'\mP

O.84% oo "0, 4604, - 0-A5%

Richart

We can use this Idelogy to graph a 2d image representation of our midi file i.e.:

High (CT7)
(C6)

(C5) |

PITCH

(C3)

(C2)
Low (A1)

Where up and down represents higher and lower in pitch(note), and in semitone intervals as shown
below:

1?\ 1 semitone
senmtone
i cemitona An4lllll ;;; N
Gﬁ4

1 semitone
1 semitol
— M=y ji’ -

The right and left of the midi 2d image represent forward and backward in time in 20™" of a second
intervals:

A white pixel represents a note being played and a black pixel means no note being played. But therein
lies an issue; when looking at the image we can see the color scheme red blue and white. Musegan-
image works faster on smaller images of within 100X50 resolution therefore we needed to resize the
images to fit a constant resolution of 96x64 which corresponds to 3.2 seconds. Since this is too short, we
introduce a new layer where we encode more information per pixel by taking apart the red green and
blue channels of each pixel, treat each channel as a separate pixel placed horizontally. We can then turn
each of these Mini pixels on or off independently of the others. In short can encode 27 bits of pixel
information into just 9 bits of information using this method, conversely, we can extend;

] 0.05secs
64RGB pixels x ——— = 3.2secs
1pixel
To;
192 el 0.05secs 9.2
¥ — =Y,
onof f pixels Tpixel secs

The image version of this GAN can seamlessly encode, train and decode music back into midi files which
addresses the prior issue of how the predictions can be restored back into midi.

It also addresses the issue of octave/ instrument representation whereby constituent notes are
deciphered from their chord progression into pitches that are represented in a 2D RGB color format

Diminishing returns of musegan image
- The caveat of this method is that it fails to use the intuitive the spatial nature of convolutional filters.

- All directions are similar so there’s no sense of before and after, therefore it is nearly impossible to
learn “if then” concepts like After Note “C5” will move to “C1”, but not “C4”".

- Pixel color values exist on a spectrum of 0 to 1. This is not discrete and thus leads to blurry ideas of
where notes should be played.

- As compared to the piano roll version of musegan the multitrack function has a key word argument that
allows us to turn of the drums which fail to follow the harmonics observed from chord progression. The
image method however fails to do this and thus leads to overall harmonic representation when training
the model. Trying to turn off the drums in rgb format ends up chopping the training data and thus one is
restricted to only using midi files with no drum instruments

- GAN overshooting where the unpredictable nature of the discriminator does not always measure
quality well, allowing the generator to outsmart the discriminator quickly before any reasonable images
have been generated

TRANSFORMERS

GPT3-MUSIC

The Generative Pre-Trained Transformer or GPT model has achieved astonishing results when dealing
with Natural Language Processing (NLP) tasks. However, the model architecture is not exclusive to NLP
and has been utilized to solves other problem such as time-series prediction or music generation. In this
approach we convert the MIDI into piano roll format with a sampling interval of every 16th note. As such
the piano roll is a 2D array of size (song_len, 128) where song_len is the total number of 16th notes in
the song and 128 is the number of possible pitches in a MIDI song.

This data encoding approach represents the music note for every constant time interval, thus, allowing
us to represent the whole song into a compact 2D array. From here, we can carry out a similar approach
to word encoding which is index-based encoding every combination of pitches then feed them into an
embedding layer. We decided to not include the velocity features as this will cause our pitch combination
vocabulary to explode. And the 16th note was the optimal interval as it can represent the music details
accurately enough while also keeping our piano roll array from getting too stretched out.

We used Python “pretty-midi° and "music21 to aid the data parsing and processing steps. To extract the
piano part, we filter out the streams that contain the greatest number of notes (as this is often the case
for piano streams).

For the architecture GPT utilizes solely the decoder block of the transformer architecture and it stacks
these decoder block on top of one another to increase the complexity of the network.

Text Task
Prediction | Classifier

12x

Masked Multi
Self Attention

Text & Position Embed

For the embedding of token and position, we use the sine and cosine function.
. pos
PE(pos,Zi) = Sln(—zi)
10000%modet
pos
PE(pos,2i+1) = COS(—zi)
10000%modet

As can be seen in the class below:
A tokenizer.py - C:\Users\cliffordkleinsr\Documents\Clido_Projects\gpt_music\mugen\archs\tokenizer.py (3.11.3)
File Edit Format Run Options Window Help

torch.nn as nn, torch

TokenAndPositionEmbedding (nn.Module) :

__init__ (self, maxlen, vocab_size, embed dim):

super (TokenAndPositionEmbedding, self)._ init_ ()

self.token emb = nn.Embedding (num embeddings=vocab_size, embedding dim=embed_dim)
self.vocab_size = vocab_size

self.embed dim = embed dim

self.maxlen = maxlen

self.maximum position_encoding = 10000

Define the positional encoding as a constant tensor
self.register_buffer('pos_encoding', self.positional_encoding(self.maximum position_encoding, self.embed_dim))

def get_angles(self, pos, i, d _model):
angle_rates = 1 / torch.pow (10000, (2 * (i // 2)) / d_model)
return pos * angle_rates

def positional_encoding(self, position, d_model):

angle_rads = self.get_angles(torch.arange (position) [:,
torch.arange (d_model) [N
d_model)

angle_rads([:, 0::2] = torch.sin(angle_rads([:, 0::2])

angle_rads([:, 1l::2] = torch.cos(angle_rads([:, 1::2])

pos_encoding = angle_rads.unsqueeze (0)

X pos_encoding.float ()

def forward(self, x):
maxlen = x.size(-1)
Use the pre-defined positional encoding
pos_encoding = self.pos_encoding[:, :maxlen, :]
x = self.token emb(x)
return X + pos_encoding

)

@ gpt2_model.py - C:\Users\cliffordkleinsr\Documents\Clido_Projects\gpt_music\mugen\archs\gpt2_model.py (3.11.3)

File Edit Format Run Options Window Help

torch,toxch.nn nn
.tokenizer TokenAndPositionEmbedding
.transforme Transfor

tside the create_model function

odel (nn.Module) :
__(self, maxlen, vocab_size, embed dim, num heads, feed forward dim, num transformer_blocks, dropout_rate):
r (TransformerModel, self)._ inic_ ()
self.embedding layer = TokenAndPositionEmbedding (maxlen, vocab_size, embed_dim)
self.cransformer_blocks = juleList ([

TransformerBlock (embed_dim, num heads, feed forward_dim, dropout_rate)
range (num_transformer_ blocks)

1)
self.output_layer = nn.Linear (embed_dim, vocab_size)

Compute pos na nd store it as a constant buffer

self.register_buffer(
orward(self, inputs):
x = self.embedding_layer (inputs)
transformer_block self.transformer_blocks:
x = transformer_block(x)
outputs = self.output_layer (x)
outputs, x

self.embedding_lay

.positional_encoding (maxlen, embed dim))

odel (maxl vocab_size

1 inside tt

1, vocab size,

model

The final model consists of this tokenizer with 3 blocks of our transformer model with Self-attention and
casual masking

The final model can be trained on random information and used to generate midis using the encoding
function used in the tokenizer block, which in our case utilizes the sci-kit learn multi label binarizer.

Diminishing returns of gpt3-music
There are signs of overfitting during the evaluation process although we tried to increase the dropout
rate, we believe this problem will subdue even when given a larger dataset.

Given the fact that we translated this model from TensorFlow to PyTorch it was observed each
framework methodology, including neuron activation and layer definition i.e., “keras.Layers.Dense and
"Pytorch.nn.Sequential” works inherently differently during the model generation. There are also
differences when using the “keras.preprocessing” backend within the TensorFlow framework and classical
PyTorch training loop in terms of how each handles its gradient accumulation, loss functions and output
view comparisons with ground truth.

Finally, TensorFlow usage of the gradient tape does not implement L2 penalties which is a technique
used in machine learning and optimization to prevent overfitting and improve the generalization
performance of a model as observed with the PyTorch optimizers™ framework.

It can be implemented on the Keras model compilation stage but since we have token embedding and
fixed buffers for positional encoding this is not possible for our case as can be seen in the pytorch
implementation: see below

Define the posi

D it
self.register_ buff

j as a C stant tensor

g', self.positional_encoding(self.maximum position_encoding, self.embed_dim))

pt positional encoding registry buffer not implemented in keras version

12 _lambda = 1le-6
optimizer = optim.Adam(model.parameters(), lr=1e-4, weight_decay=12_lambda)
criterion = nn.CrossEntropylLoss()

output = "Models™
trainner = Trainner(model, criterion, optimizer, output)
trainner.train(t_dataloader = train_loader, v_dataloader=val_loader)

12 penalty in present PyTorch trainer

callbacks_list = [checkpoint, gen_callback]

history = model.fit(x=my_training_batch_generator,
callbacks=callbacks_list,
epochs=epochs,
verbose=1,
validation_data=my_validation_batch_generator)

L2 penalty absent in tf.keras trainer

Further steps

In the next Attempt we will seek to resolve all these diminishing returns observed with prior
architectures through intuitive music representation, the process of generation will be starlight forward
and thus the backlogs observed from harmonic loss, Gan overshooting and chord progression with
constituent octave implementation

REFERENCES

MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation
and Accompaniment. Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, Yi-Hsuan Yang. (2018). In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18)arXiv:1709.062981.

Wave GAN: Frequency-aware GAN for High-Fidelity Few-shot Image Generation. Zhenyu Zhang,
Xiangyu He, Yifan Zhang, Bo Zhang, Jian Sun. (2021). In Proceedings of the 2021 IEEE/CVF International
Conference on Computer Vision (ICCV 2021)arXiv:2207.07288>.

Towards the Generation of Musical Explanations with GPT-3. David R. Winer, Gil Weinberg. (2022). In
Proceedings of the 11th International Conference on Computational Creativity (ICCC 2020)Springer Link3.

GPT-2: Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, |. (2019). Language models are
unsupervised multitask learners. OpenAl blog, 1(8), 9'

Pypianoroll: Dong, H. W., Hsiao, W. Y., & Yang, Y. H. (2018). Pypianoroll: Open source python package for
handling multitrack pianorolls. In Late-breaking demos of the 19th International Society for Music
Information Retrieval Conference (ISMIR)?

Pretty MIDI: Cuthbert, M. S., & Ariza, C. (2010). music21: A toolkit for computer-aided musicology and
symbolic music data. In Proceedings of the 11th International Society for Music Information Retrieval
Conference (ISMIR)®

Music21: Cuthbert, M. S., & Ariza, C. (2010). music21: A toolkit for computer-aided musicology and
symbolic music data. In Proceedings of the 11th International Society for Music Information Retrieval
Conference (ISMIR)*

