A Proof of Fermat's Last Theorem by Relating to Monic Polynomial Properties

Tae Beom Lee

Abstract: Fermat's Last Theorem(FLT) states that there is no natural number set $\{a, b, c, n\}$ which satisfies $a^n + b^n = c^n$ or $a^n = c^n - b^n$ when $n \ge 3$. In this thesis, we related LHS and RHS of $a^n = c^n - b^n$ to the constant terms of two monic polymials $x^n - a^n$ and $x^n - (c^n - b^n)$. By doing so, we could inspect whether these two polynomials can be identical when $n \ge 3$, i.e., $x^n - a^n = x^n - (c^n - b^n)$, which satisfies $a^n = c^n - b^n$. By inspecting the properties of two polynomials such as factoring, root structures and graphs, we found that $x^n - a^n$ and $x^n - (c^n - b^n)$ can't be identical when $n \ge 3$, except when trivial cases.

1. Introduction

FLT was inferred in 1637 by Pierre de Fermat, and was proved by Andrew John Wiles [1] in 1995. But the proof is not easy even for mathematicians, requiring more simple proof.

Let a, b, c, n be natural numbers, otherwise specified. We related FLT to the following two monic polynomials.

$$f(x) = x^n - a^n. \tag{1.1}$$

$$g(x) = x^{n} - (c^{n} - b^{n}).$$
(1.2)

If f(x) = g(x) is possible for $n \ge 3$, $a^n = c^n - b^n$ is satisfied, and FLT is false. But the factoring, root structure and graph properties of f(x) and g(x) do not allow f(x) = g(x) when $n \ge 3$. So, $a^n = c^n - b^n$ can't be satisfied for $n \ge 3$.

2. Basic Lemmas

The number of roots of $x^n - a^n$ is as follows, as in Figure 1 [2][3][4].

① **Odd** $n \ge 3$: One integer root and n-1 pairwise complex conjugate roots.

② **Even** $n \ge 4$: Two integer roots and n - 2 pairwise complex conjugate roots.

Figure 1. Number of roots examples of $x^n - 1^n$.

(a) Roots of $x^5 - 1^n = 0$.

(b) Roots of $x^6 - 1^n = 0$.

Lemma 2.1. Below (2.1) is the irreducible factoring of (1.1) over the complex field [5].

$$f(x) = x^{n} - a^{n} = \prod_{k=1}^{n} (x - ae^{\frac{2k\pi i}{n}}).$$
(2.1)

Proof. The *n* roots of (1.1) are $ae^{\frac{2k\pi i}{n}}$, $1 \le k \le n$, so, (2.1) is the irreducible factoring of (1.1) over the complex field.

Lemma 2.2. Below (2.2) is the irreducible factoring of $h(c, b) = c^n - b^n$ over the complex field.

$$h(c,b) = c^{n} - b^{n} = \prod_{k=1}^{n} (c - be^{\frac{2k\pi i}{n}})$$
(2.2)

Proof. The *n* roots of h(c,b) are $c = be^{\frac{2k\pi i}{n}}$, $1 \le k \le n$, so, (2.2) is the irreducible factoring of h(c,b) over the complex field.

Lemma 2.3. All n factors of (2.2) can't have same magnitude.

Proof. The *n* factors of (2.2) are $c - be^{\frac{2k\pi i}{n}}$, $1 \le k \le n$. Each factor can be considered as the difference vector between (c, 0) and $b(cos \frac{2k\pi}{n}, sin \frac{2k\pi}{n})$, as in Figure 2.

Figure 2. Vector factor examples of (2.2).

Because $|c - be^{\frac{2k\pi i}{n}}|$ is same only with its complex conjugate $|c - be^{\frac{-2k\pi i}{n}}|$, the magnitude of all factors of (2.2) can't be same for all k.

Lemma 2.4. A polynomial whose roots are all factors in (2.2) is (2.3) below.

$$p(x) = \prod_{k=1}^{n} \{x - (c - be^{\frac{2k\pi i}{n}})\}.$$
(2.3)

Proof. The *n* factors of (2.2) are $c - be^{\frac{2k\pi i}{n}}$, $1 \le k \le n$, and they are all involved in (2.3) as individual root. So, p(x) is a polynomial whose roots comprise all factors in (2.2).

Lemma 2.5. A polynomial with different root magnitude can't be of the form $x^n - a^n$, $n \ge 3$.

Proof. The *n* roots of $x^n - a^n$ are all located on a circle of radius *a* in the complex plane. But, if the magnitude of *n* roots is not all same, all roots can't be located on a same circle. So, a polynomial with different root magnitude can't be of the form $x^n - a^n$, $n \ge 3$.

Lemma 2.5 implies that f(x) = g(x) can't be achieved for $n \ge 3$, so, $a^n = c^n - b^n$ can't also be satisfied.

3. Graphical Interpretation of FLT and Proving Lemma

For graphical interpretation of FLT, example graphs of f(x) and p(x) are shown in Figure 3.

$$f(x) = x^n - a^n. \tag{1.1}$$

$$p(x) = \prod_{k=1}^{n} \{x - (c - be^{\frac{2k\pi i}{n}})\}.$$
(2.3)

Figure 3. Example graphs of f(x) and p(x).

(a) Graphs for n = 1.

(c) Graphs for odd $n \ge 3$.

(d) Graphs for even $n \ge 4$.

We get f(x) by vertically moving $y = x^n$ by $-a^n$. We get p(x) by horizontally moving $y = x^n$ by *c* and vertically moving by $-(-b)^n$.

$$p(x) = \prod_{k=1}^{n} \{ (x-c) - (-be^{\frac{2k\pi i}{n}}) \} =$$

$$\prod_{k=1}^{n} \{ X - (-be^{\frac{2k\pi i}{n}}) \} =$$

$$X^{n} - (-b)^{n}, X = x - c.$$
(3.1)

In graph view, FLT is equivalent to the moving of p(x) to overlap f(x), to find possible solutions that satisfy $a^n = c^n - b^n$. Moving p(x) is equivalent to varying the integer values $(b, c), b \le a < c$, i.e., moving p(x) vertically or horizontally by integer steps. When any of (b, c) makes two graphs overlap, a solution $a^n = c^n - b^n$ is found, and FLT is false. To make two graphs overlap, the following two steps are required.

- 1 Horizontal movement that makes X = x c in (3.1) to be X = x, i.e., c = 0.
- ② Vertical movement that makes constant terms a^n and $c^n b^n$ equal.

In Figure 3 (a), when n = 1, p(x) always overlaps f(x) for a = c - b. In Figure 3 (b), when n = 2, p(x) overlaps f(x) for Pythagorean triples, $a^2 = c^2 - b^2 = (c - b)(c + b)$. When n = 1, 2, all roots of f(x) and p(x) affect the (x, y)-intercepts of the graphs, and there are infinitely many solutions.

But, when $n \ge 3$, the advent of complex roots, which do not appear in graphs, makes situations quite different from those of when n = 1, 2. Figure 3 (c) and (d) show that when p(x) overlaps f(x), a = c - b or $a^2 = c^2 - b^2$ should be satisfied, which contradicts to $a^n = c^n - b^n$, $n \ge 3$. This is because the complex roots can't affect the (x, y)-intercepts of the graphs. So, any integer step movements of p(x) can't satisfy p(x) = f(x) when $n \ge 3$.

When $n \ge 3$, moving p(x) to overlap f(x) is equivalent to making all n roots in $\prod_{k=1}^{n} (c - be^{\frac{2k\pi i}{n}})$ same as those in $\prod_{k=1}^{n} ae^{\frac{2k\pi i}{n}}$. Hence Lemma 3.1.

Lemma 3.1. When $n \ge 3$, to make every n roots in $\prod_{k=1}^{n} (c - be^{\frac{2k\pi i}{n}})$ exactly match to those in $\prod_{k=1}^{n} ae^{\frac{2k\pi i}{n}}$, c = 0, a = -b must be satisfied.

Proof. The complex number identity states that if x + iy = u + iv, then x = u, y = v [6]. To satisfy $\prod_{k=1}^{n} ae^{\frac{2k\pi i}{n}} = \prod_{k=1}^{n} (c - be^{\frac{2k\pi i}{n}})$, keeping all *n* roots in LHS and RHS identical, $ae^{\frac{2k\pi i}{n}} = c - be^{\frac{2k\pi i}{n}}$ must be satisfied.

$$a(\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}) = c - b(\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}).$$
$$a\sin\frac{2k\pi}{n} = -b\sin\frac{2k\pi}{n}, \ a = -b.$$
$$a\cos\frac{2k\pi}{n} = c - b\cos\frac{2k\pi}{n}, \ c = 0.$$

So, c = 0, a = -b.

Lemma 3.1 comprises above mentioned step (1) and step (2), where step (1) makes c = 0 and step (2) makes $a^n = c^n - b^n = -b^n$. That is to say, only trivial solutions can satisfy $a^n = c^n - b^n$ for $n \ge 3$.

4. Conclusion

In this thesis, we related LHS and RHS of $a^n = c^n - b^n$ to the constant terms of two monic polynomials $x^n - a^n$ and $x^n - (c^n - b^n)$. By doing so, the proof of FLT is simplified to the proof of whether the two polynomials can be identical when $n \ge 3$. The properties of the two poynomials such as factoring, root structures and graphs showed that $x^n - (c^n - b^n) = x^n - a^n$ can't be achieved for $n \ge 3$, hence $a^n \ne c^n - b^n$ for $n \ge 3$. When n =1, 2, there can be infinitely many $x^n - a^n = x^n - (c^n - b^n)$ solutions, but when $n \ge 3$, the advent of the complex roots latches further solutions, except for trivial ones. That is to say, as for the solutions of $a^n + b^n = c^n$, a + b = c is the first and last solution for odd n, and $a^2 + b^2 = c^2$ is the first and last solution for even n.

References

- [1] Andrew John Wiles, Modular elliptic curves and Fermat's Last Theorem, Annals of Mathematics, 141 (1995), 443-551.
- [2] https://en.wikipedia.org/wiki/Rational_root_theorem
- [3] https://en.wikipedia.org/wiki/Root_of_unity
- [4] https://en.wikipedia.org/wiki/Cyclotomic_polynomial
- [5] https://en.wikipedia.org/wiki/Absolutely_irreducible
- [6] Erwin Kreyszig, Advanced Engineering Mathematics, 10th edition, 2011

List of Figures

1	Number of roots examples of $x^n - 1$	1
2	Vector factor examples of (2.2)	2
3	Example graphs of $f(x)$ and $p(x)$	3