A Proof of Fermat's Last Theorem by Relating to Monic Polynomial Properties

Tae Beom Lee

Abstract

Fermat's Last Theorem(FLT) states that there is no natural number set $\{a, b, c, n\}$ which satisfies $a^{n}+b^{n}=c^{n}$ or $a^{n}=c^{n}-b^{n}$ when $n \geq 3$. In this thesis, we related LHS and RHS of $a^{n}=c^{n}-b^{n}$ to the constant terms of two monic polymials $x^{n}-a^{n}$ and $x^{n}-$ ($c^{n}-b^{n}$). By doing so, we could inspect whether these two polynomials can be identical when $n \geq 3$, i.e., $x^{n}-a^{n}=x^{n}-\left(c^{n}-b^{n}\right)$, which satisfies $a^{n}=c^{n}-b^{n}$. By inspecting the properties of two polynomials such as factoring, root structures and graphs, we found that $x^{n}-a^{n}$ and $x^{n}-\left(c^{n}-b^{n}\right)$ can't be identical when $n \geq 3$, except when trivial cases.

1. Introduction

FLT was inferred in 1637 by Pierre de Fermat, and was proved by Andrew John Wiles [1] in 1995. But the proof is not easy even for mathematicians, requiring more simple proof.

Let a, b, c, n be natural numbers, otherwise specified. We related FLT to the following two monic polynomials.

$$
\begin{align*}
& f(x)=x^{n}-a^{n} . \tag{1.1}\\
& g(x)=x^{n}-\left(c^{n}-b^{n}\right) . \tag{1.2}
\end{align*}
$$

If $f(x)=g(x)$ is possible for $n \geq 3, a^{n}=c^{n}-b^{n}$ is satisfied, and FLT is false. But the factoring, root structure and graph properties of $f(x)$ and $g(x)$ do not allow $f(x)=g(x)$ when $n \geq 3$. So, $a^{n}=c^{n}-b^{n}$ can't be satisfied for $n \geq 3$.

2. Basic Lemmas

The number of roots of $x^{n}-a^{n}$ is as follows, as in Figure 1 [2][3][4].
(1) Odd $n \geq 3$: One integer root and $n-1$ pairwise complex conjugate roots.
(2) Even $n \geq 4$: Two integer roots and $n-2$ pairwise complex conjugate roots.

Figure 1. Number of roots examples of $x^{n}-1^{n}$.

(a) Roots of $x^{5}-1^{n}=0$.

(b) Roots of $x^{6}-1^{n}=0$.

Lemma 2.1. Below (2.1) is the irreducible factoring of (1.1) over the complex field [5].

$$
\begin{equation*}
f(x)=x^{n}-a^{n}=\prod_{k=1}^{n}\left(x-a e^{\frac{2 k \pi i}{n}}\right) . \tag{2.1}
\end{equation*}
$$

Proof. The n roots of (1.1) are $a e^{\frac{2 k \pi i}{n}}, 1 \leq k \leq n$, so, (2.1) is the irreducible factoring of (1.1) over the complex field.
Lemma 2.2. Below (2.2) is the irreducible factoring of $h(c, b)=c^{n}-b^{n}$ over the complex field.

$$
\begin{equation*}
h(c, b)=c^{n}-b^{n}=\prod_{k=1}^{n}\left(c-b e^{\frac{2 k \pi i}{n}}\right) \tag{2.2}
\end{equation*}
$$

Proof. The n roots of $h(c, b)$ are $\mathrm{c}=b e^{\frac{2 k \pi i}{n}}, 1 \leq k \leq n$, so, (2.2) is the irreducible factoring of $h(c, b)$ over the complex field.

Lemma 2.3. All n factors of (2.2) can't have same magnitude.
Proof. The n factors of (2.2) are $\mathrm{c}-b e^{\frac{2 k \pi i}{n}}, 1 \leq k \leq n$. Each factor can be considered as the difference vector between $(c, 0)$ and $b\left(\cos \frac{2 k \pi}{n}, \sin \frac{2 k \pi}{n}\right)$, as in Figure 2.

Figure 2. Vector factor examples of (2.2).

(a) $n=5$ example.

(b) $n=6$ example.

Because $\left|c-b e^{\frac{2 k \pi i}{n}}\right|$ is same only with its complex conjugate $\left|c-b e^{\frac{-2 k \pi i}{n}}\right|$, the magnitude of all factors of (2.2) can't be same for all k.
Lemma 2.4. A polynomial whose roots are all factors in (2.2) is (2.3) below.

$$
\begin{equation*}
p(x)=\prod_{k=1}^{n}\left\{x-\left(c-b e^{\frac{2 k \pi i}{n}}\right)\right\} . \tag{2.3}
\end{equation*}
$$

Proof. The n factors of (2.2) are $c-b e^{\frac{2 k \pi i}{n}}, 1 \leq k \leq n$, and they are all involved in (2.3) as individual root. So, $p(x)$ is a polynomial whose roots comprise all factors in (2.2).
Lemma 2.5. A polynomial with different root magnitude can't be of the form $x^{n}-a^{n}, n \geq 3$.
Proof. The n roots of $x^{n}-a^{n}$ are all located on a circle of radius a in the complex plane. But, if the magnitude of n roots is not all same, all roots can't be located on a same circle. So, a polynomial with different root magnitude can't be of the form $x^{n}-a^{n}, n \geq 3$.

Lemma 2.5 implies that $f(x)=g(x)$ can't be achieved for $n \geq 3$, so, $a^{n}=c^{n}-b^{n}$ can't also be satisfied.

3. Graphical Interpretation of FLT and Proving Lemma

For graphical interpretation of FLT, example graphs of $f(x)$ and $p(x)$ are shown in Figure 3.

$$
\begin{align*}
& f(x)=x^{n}-a^{n} . \tag{1.1}\\
& p(x)=\prod_{k=1}^{n}\left\{x-\left(c-b e^{\frac{2 k \pi i}{n}}\right)\right\} . \tag{2.3}
\end{align*}
$$

Figure 3. Example graphs of $f(x)$ and $p(x)$.

We get $f(x)$ by vertically moving $y=x^{n}$ by $-a^{n}$. We get $p(x)$ by horizontally moving $y=x^{n}$ by c and vertically moving by $-(-b)^{n}$.

$$
\begin{align*}
p(x)= & \prod_{k=1}^{n}\left\{(x-c)-\left(-b e^{\frac{2 k \pi i}{n}}\right)\right\}= \\
& \prod_{k=1}^{n}\left\{X-\left(-b e^{\frac{2 k \pi i}{n}}\right)\right\}= \tag{3.1}\\
& X^{n}-(-b)^{n}, X=x-c .
\end{align*}
$$

In graph view, FLT is equivalent to the moving of $p(x)$ to overlap $f(x)$, to find possible solutions that satisfy $a^{n}=c^{n}-b^{n}$. Moving $p(x)$ is equivalent to varying the integer values $(b, c), b \leq a<c$, i.e., moving $p(x)$ vertically or horizontally by integer steps. When any of (b, c) makes two graphs overlap, a solution $a^{n}=c^{n}-b^{n}$ is found, and FLT is false. To make two graphs overlap, the following two steps are required.
(1) Horizontal movement that makes $X=x-c$ in (3.1) to be $X=x$, i.e., $c=0$.
(2) Vertical movement that makes constant terms a^{n} and $c^{n}-b^{n}$ equal.

In Figure 3 (a), when $n=1, p(x)$ always overlaps $f(x)$ for $a=c-b$. In Figure 3 (b), when $n=2, p(x)$ overlaps $f(x)$ for Pythagorean triples, $a^{2}=c^{2}-b^{2}=(c-b)(c+b)$. When $n=1,2$, all roots of $f(x)$ and $p(x)$ affect the (x, y)-intercepts of the graphs, and there are infinitely many solutions.

But, when $n \geq 3$, the advent of complex roots, which do not appear in graphs, makes situations quite different from those of when $n=1,2$. Figure 3 (c) and (d) show that when $p(x)$ overlaps $f(x), a=c-b$ or $a^{2}=c^{2}-b^{2}$ should be satisfied, which contradicts to $a^{n}=c^{n}-b^{n}, n \geq 3$. This is because the complex roots can't affect the (x, y)-intercepts of the graphs. So, any integer step movements of $p(x)$ can't satisfy $p(x)=f(x)$ when $n \geq 3$.

When $n \geq 3$, moving $p(x)$ to overlap $f(x)$ is equivalent to making all n roots in $\prod_{k=1}^{n}\left(c-b e^{\frac{2 k \pi i}{n}}\right)$ same as those in $\prod_{k=1}^{n} a e^{\frac{2 k \pi i}{n}}$. Hence Lemma 3.1.
Lemma 3.1. When $n \geq 3$, to make every n roots in $\prod_{k=1}^{n}\left(c-b e^{\frac{2 k \pi i}{n}}\right)$ exactly match to those in $\prod_{k=1}^{n} a e^{\frac{2 k \pi i}{n}}, c=0, a=-b$ must be satisfied.

Proof. The complex number identity states that if $x+i y=u+i v$, then $x=u, y=v$ [6]. To satisfy $\prod_{k=1}^{n} a e^{\frac{2 k \pi i}{n}}=\prod_{k=1}^{n}\left(c-b e^{\frac{2 k \pi i}{n}}\right)$, keeping all n roots in LHS and RHS identical, $a e^{\frac{2 k \pi i}{n}}=c-b e^{\frac{2 k \pi i}{n}}$ must be satisfied.

$$
\begin{aligned}
& a\left(\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}\right)=c-b\left(\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}\right) . \\
& \operatorname{a\operatorname {sin}\frac {2k\pi }{n}=-b\operatorname {sin}\frac {2k\pi }{n},a=-b.} \\
& \operatorname{acos} \frac{2 k \pi}{n}=c-b \cos \frac{2 k \pi}{n}, c=0 .
\end{aligned}
$$

So, $c=0, a=-b$.
Lemma 3.1 comprises above mentioned step (1) and step (2), where step (1) makes $c=0$ and step (2) makes $a^{n}=c^{n}-b^{n}=-b^{n}$. That is to say, only trivial solutions can satisfy $a^{n}=c^{n}-b^{n}$ for $n \geq 3$.

4. Conclusion

In this thesis, we related LHS and RHS of $a^{n}=c^{n}-b^{n}$ to the constant terms of two monic polynomials $x^{n}-a^{n}$ and $x^{n}-\left(c^{n}-b^{n}\right)$. By doing so, the proof of FLT is simplified to the proof of whether the two polynomials can be identical when $n \geq 3$. The properties of the two poynomials such as factoring, root structures and graphs showed that x^{n} -$\left(c^{n}-b^{n}\right)=x^{n}-a^{n}$ can't be achieved for $n \geq 3$, hence $a^{n} \neq c^{n}-b^{n}$ for $n \geq 3$. When $n=$ 1,2 , there can be infinitely many $x^{n}-a^{n}=x^{n}-\left(c^{n}-b^{n}\right)$ solutions, but when $n \geq 3$, the advent of the complex roots latches further solutions, except for trivial ones. That is to say, as for the solutions of $a^{n}+b^{n}=c^{n}, a+b=c$ is the first and last solution for odd n, and $a^{2}+b^{2}=c^{2}$ is the first and last solution for even n.

References

[1] Andrew John Wiles, Modular elliptic curves and Fermat's Last Theorem, Annals of Mathematics, 141 (1995), 443-551.
[2] https://en.wikipedia.org/wiki/Rational_root_theorem
[3] https://en.wikipedia.org/wiki/Root_of_unity
[4] https://en.wikipedia.org/wiki/Cyclotomic_polynomial
[5] https://en.wikipedia.org/wiki/Absolutely_irreducible
[6] Erwin Kreyszig, Advanced Engineering Mathematics, 10th edition, 2011

List of Figures

2 Vector factor examples of (2.2) ... 2
3 Example graphs of $f(x)$ and $p(x) \ldots \ldots$

