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Abstract

We present a comprehensive quantum theory of spacetime events.
These events serve as a nexus where probabilities and spacetime geometry
coalesce, representing perhaps the most fundamental entities that embody
this synthesis. At the heart of our theory lies the ’Prescribed Measurement
Problem,’ an algorithm that extends the entropy maximization problem
of statistical physics into the quantum and geometric domains. Employ-
ing this algorithm, we systematically extrapolate a generalized quantum
theory of gravity from the measurement entropy of spacetime events, from
which general relativity and the Standard Model naturally emanate as in-
herent outcomes. Interestingly, the theory maintains coherence exclusively
within four-dimensional spacetime and encounters intrinsic disruptions
beyond this dimension, highlighting a quantum-geometric justification for
the four-dimensionality of our universe.

1 Introduction

The reconciliation of quantum mechanics with general relativity remains a fun-
damental objective in theoretical physics. The ’Prescribed Measurement Prob-
lem’ (PMP) emerges as a pivotal methodology within this endeavor, drawing
from the methodology of statistical mechanics. This problem posits a redefined
quantum measurement framework, where the traditional interpretation is sup-
planted by an approach based on the maximization of entropy subject to the
constraints of observed measurement outcomes.

In this paper, we extend the PMP to a comprehensive theory of spacetime
events, suggesting that the geometry of spacetime is emergent and probabilis-
tic, shaped by quantum interactions. The PMP ensures that the principles of
quantum mechanics are preserved while expanding the theory to incorporate
the dynamics of spacetime geometry. Within this framework, the principles
of general relativity and the Standard Model naturally arise, not as initial as-
sumptions but as inevitable outcomes of the intrinsic properties of quantized
four-dimensional spacetime events.
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The paper will further discuss the mathematical foundation and method-
ological rigor of this approach, alongside the theoretical disruptions that mani-
fest when attempting to extend our model beyond four-dimensional spacetime.
These disruptions highlight the boundary of the model’s applicability and un-
derscore the unique characteristics of spacetime events as they pertain to the
structure of the physical laws.

1.1 The Prescribed Measurement Problem

The Prescribed Measurement Problem (PMP) in quantum mechanics is directly
inspired by the foundational principles of statistical mechanics, where theory is
inherently constructed through a series of empirical measurements. Statistical
mechanics exemplifies a natural PMP, where the aggregation of energy measure-
ments informs the theoretical structure, leading to the derivation of the Gibbs
measure.

Recapitulating this approach, statistical mechanics commences with an em-
pirical sequence of energy measurements. These measurements, anticipated to
converge to an average value E, are utilized as defining constraints within the
theoretical formulation:

0 = E −


q∈Q
ρ(q)E(q) (1)

To derive a probability distribution, ρ(q), that maximizes entropy while adhering
to this constraint, the theory employs a Lagrange multiplier equation[1].

L(ρ,λ,β) = −kB


q∈Q
ρ(q) ln ρ(q)

  
Boltzmann entropy

+ λ



1−


q∈Q
ρ(q)





  
Normalization Constraint

+ β



E −


q∈Q
ρ(q)E(q)





  
Energy Measurement Constraint

(2)

Solving this yields the well-established Gibbs measure as the least biased prob-
ability measure for the constraint:

ρ(q) =
exp(−βE(q))
q∈Q exp(−βE(q))

(3)

Transitioning to quantum mechanics, the PMP framework asserts that a
correct quantum theory emerges naturally from an entropy maximization prob-
lem formulated with a sequence of measurement outcomes as constraints. This
proposition diverges from conventional interpretations that depend on the pos-
tulate of wavefunction collapse following a measurement, resulting in a singular
outcome. Instead, the PMP posits that these measurements can be system-
atically employed as constraints to directly infer both the initial state of the
quantum system and its evolution over time.

Quantum mechanics requires a more elaborate energy constraint than statis-
tical mechanics. As such, the sequence of energy measurements is intrinsically
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related to the Hamiltonian, which presides over the system’s unitary time evo-
lution. This connection necessitates an adapted form of the energy constraint
to encapsulate the proper quantum attributes. Unlike the scalar energy con-
straints in statistical mechanics, quantum mechanics demands a matrix-based
formulation to capture the phase information associated with quantum energy
measurements, as mandated by the Hamiltonian.

To accommodate this requirement, we introduce a matrix-based unitary-
evolution energy constraint, which is harmonious with unitary evolution and
respects the Born rule:

0 = tr


0 −E
E 0


− tr



q∈Q
ρ(q)


0 −E(q)

E(q) 0


(4)

This constraint is represented in matrix form and incorporates the system’s
energy characteristics and their phase without altering the probability measure.
Special attention is given to the computation of the trace, which if prematurely
simplified, would trivialize the constraint and, consequently, would eliminate
the solution space of the constraint. Instead, this unitary-evolution energy con-
straint is integrated into the entropy maximization problem, commonly em-
ployed in statistical mechanics. The resulting solution not only aligns with the
established quantum formalism but also simplifies it, rendering it one of the
most parsimonious formulations of quantum mechanics to date.

L = −


q∈Q
ρ(q) ln

ρ(q)

p(q)
  

Relative Shannon Entropy[2, 3]

+ λ



1−


q∈Q
ρ(q)





  
Normalization Constraint

+ τ



tr


0 −E
E 0


− tr



q∈Q
ρ(q)


0 −E(q)

E(q) 0





  
Unitary-Evolution Energy Constraint

(5)

We solve for ∂L(ρ,λ, t)/∂ρ = 0 as follows:

∂L(ρ,λ, τ)
∂ρ(q)

= − ln
ρ(q)

p(q)
− 1− λ− τ tr


0 −E(q)

E(q) 0


(6)

0 = ln
ρ(q)

p(q)
+ 1 + λ+ τ tr


0 −E(q)

E(q) 0


(7)

=⇒ ln
ρ(q)

p(q)
= −1− λ− τ tr


0 −E(q)

E(q) 0


(8)

=⇒ ρ(q) = p(q) exp(−1− λ) exp


−τ tr


0 −E(q)

E(q) 0


(9)

=
1

Z(τ)
p(q) exp


−τ tr


0 −E(q)

E(q) 0


(10)
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where Z(τ) is obtained as

1 =


r∈Q
p(r) exp(−1− λ) exp


−τ tr


0 −E(r)

E(r) 0



(11)

=⇒ (exp(−1− λ))
−1

=


r∈Q
p(r) exp


−τ tr


0 −E(r)

E(r) 0


(12)

Z(τ) :=


r∈Q
p(r) exp


−τ tr


0 −E(r)

E(r) 0


(13)

The final result is:

ρ(q) =

p(q) exp


−τ tr


0 −E(q)

E(q) 0




r∈Q p(r) exp


−τ tr


0 −E(r)

E(r) 0

 (14)

By utilizing fundamental equivalences and substituting τ = t/ in a manner
analogous to β = 1/(kBT ), by noting that the trace drops down from the expo-
nential into the determinant (exp trM = det expM), and that the determinant
of such a matrix is equivalent to a complex norm, we can rearticulate this into
its more commonly recognized form:

ρ(q) =
p(q)exp(−itE(q)/)
r∈Q p(r)exp(−itE(r)/) (15)

We can now reverse-engineer the uniquely determined structure which resides
behind this probability measure.

In our previous paper[4], we have shown that all 5 traditional axioms of
quantum mechanics[5, 6] are provable from this solution:

Axiom 1 State Space: Every physical system is associated with a complex Hilbert
space, and the system’s state is described by a unit vector (or ray) in that
space.

Axiom 2 Observables: Physical observables are represented by Hermitian opera-
tors acting on the Hilbert space.

Axiom 3 Dynamics: The evolution of a quantum system over time is governed by
the Schrödinger equation, with the Hamiltonian operator representing the
total energy of the system.

Axiom 4 Measurement: Upon measurement of an observable, the system col-
lapses to one of the eigenstates of the corresponding operator, and the
measured value is one of the eigenvalues.
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Axiom 5 Probability Interpretation: The probability of obtaining a particular
measurement result is given by the squared magnitude of the projection
of the state vector onto the corresponding eigenstate.

Let us see how each axiom is recovered.
The wavefunction is identified by ”splitting the complex norm” into a com-

plex number and its conjugate. It is envisioned as a vector in a complex Hilbert
space, with the partition function acting as its inner product. Expressing the
relation in those terms:



q∈Q
p(q)exp(−itE(q)/) = Z = 〈ψ|ψ〉 (16)

where



ψ1(t)
...

ψn(t)



 =




exp(−itE(q1)/)

. . .

exp(−itE(qn)/)








ψ1(0)

...
ψn(0)



 (17)

and where p(q) is the probability associated to the initial preparation of the
wavefunction: p(qi) = 〈ψi(0)|ψi(0)〉. The entropy-maximization procedure au-
tomatically normalizes the result which associates here to a unit vector (or more
precisely, a ray). This demonstrates Axiom 1.

We now note that the energy constraint is unmodified by unitary transfor-
mations:

〈E〉 = 〈ψ|H |ψ〉 = 〈ψ|U†HU |ψ〉 (18)

Upon moving the solution out of its eigenbasis through unitary transformations,
we find that energy, E(q), generally transforms as an Hamiltonian operator:

|ψ(t)〉 = exp(−itH/) |ψ(0)〉 (19)

The dynamics emerge from differentiating the solution with respect to the
Lagrange multiplier. This is manifested as:

∂

∂t
|ψ(t)〉 = ∂

∂t
(exp(−itH/) |ψ(0)〉) (20)

= −iH/ exp(−itH/) |ψ(0)〉 (21)

= −iH/ |ψ(t)〉 (22)

=⇒ H |ψ(t)〉 = i
∂

∂t
|ψ(t)〉 (23)

Which is the Schrödinger equation. This demonstrates Axiom 3.
The statistical ensemble Q is defined such that the possible microstates E(q)

of the system corresponds to a specific eigenvalue of H. An observation can thus
be conceptualized as sampling from ρ(q, t), with the post-collapse state being the
occupied microstate q of Q. Consequently, when an observation or measurement
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occurs, the system invariably emerges in one of these microstates, which directly
corresponds to an eigenstate of H. Measured in the eigenbasis, the probability
distribution is:

ρ(q, t) =
1

〈ψ|ψ〉 (ψ(q, t))
†ψ(q, t) (24)

In scenarios where the probability measure ρ(q, τ) is described in a basis
different from its eigenbasis due to a unitary transformation, the probability
P (λi) of obtaining the eigenvalue λi is given as a projection on a eigenstate:

P (λi) = |〈λi|ψ〉|2 (25)

Here, |〈λi|ψ〉|2 signifies the squared magnitude of the amplitude of the state |ψ〉
when projected onto the eigenstate |λi〉. This demonstrates Axiom 4.

Any self-adjoint operator abides by the condition 〈Oψ|φ〉 = 〈ψ|Oφ〉. Mea-
sured in its eigenbasis, it aligns with a real-valued observable in statistical me-
chanics. This demonstrates Axiom 2.

Finally, we note that as the probability measure (Equation 15) reproduces
the Born rule, Axiom 5 is also demonstrated.

Revisiting quantum mechanics with this perspective offers a coherent and
unified narrative sufficient to entail the foundations of quantum mechanics (Ax-
iom 1, 2, 3, 4 and 5) through the principle of entropy maximization. The five
axioms are now theorems of the singular axiom given by Equation 4.

2 Results

Following the exposition of the ’Prescribed Measurement Problem’ (PMP) in
quantum mechanics, this section presents the concrete outcomes of applying
PMP principles to develop a quantum theory of spacetime events. Building
upon the theoretical scaffold provided by the PMP, we present an extended
framework that incorporates the dynamics of spacetime geometry as probabilis-
tic constructs influenced by quantum interactions.

Within the context of this framework, we will examine the natural emergence
of general relativity and the Standard Model not as presupposed entities but
as derivations from the intrinsic properties of a quantized, four-dimensional
spacetime. These derivations underscore the PMP’s capability to seamlessly
integrate the principles of quantum mechanics into a broader geometric context,
ensuring consistency with observed phenomena while predicting novel effects.

In extending the foundational constraints of the PMP to encompass geomet-
ric phase-invariance, we explore a generalized formulation:

0 =
1

2
trM−



q∈Q
ρ(q)

1

2
trM(q) (26)

where M is a traceless n× n matrix.
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The derivation of the corresponding quantum theory from this constraint
follows an optimization process governed by the Lagrange multiplier method.
This process parallels the entropy maximization approach utilized in the initial
non-relativistic quantum mechanics discussion, extending its applicability to a
quantum-geometric framework.

2.1 The Lagrange Multiplier Equation

The optimization of the probability measure within the quantum framework
is methodically articulated through the Lagrange multiplier equation. This
mathematical construct is pivotal in ensuring that the derived probability dis-
tribution not only maximizes entropy but also satisfies the constraints imposed
by the postulated empirical measurements.

The formal expression of the Lagrange multiplier equation is as follows:

L(ρ,λ, τ) =−


q∈Q
ρ(q) ln

ρ(q)

p(q)
+ λ



1−


q∈Q
ρ(q)



+ τ



1

2
trM−



q∈Q
ρ(q)

1

2
trM(q)





(27)

This equation encapsulates the relative Shannon entropy, normalization con-
straint, and a phase-neutralized energy constraint specific to the quantum do-
main. The Shannon entropy reflects the informational disparity between the
probability distribution and the measurement outcome, the normalization con-
straint ensures the total probability equates to unity, and the phase-neutralized
energy constraint encodes the empirical data of geometric measurements within
a quantum system.

To find the probability distribution that maximizes this Lagrangian function,
we calculate the derivative with respect to ρ and set it to zero:

∂L(ρ,λ, τ)
∂ρ(q)

= − ln
ρ(q)

p(q)
− 1− λ− τ trM(q) (28)

0 = ln
ρ(q)

p(q)
+ 1 + λ+ τ trM(q) (29)

=⇒ ln
ρ(q)

p(q)
= −1− λ− τ trM(q) (30)

=⇒ ρ(q) = p(q) exp(−1− λ) exp (−τ trM(q)) (31)

=
1

Z(τ)
p(q) exp (−τ trM(q)) (32)

The partition function Z(τ), acting as a normalization constant, is subsequently
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determined:

1 =


r∈Q
p(r) exp(−1− λ) exp (−τ trM(r)) (33)

=⇒ (exp(−1− λ))
−1

=


r∈Q
p(r) exp (−τ trM(r)) (34)

Z(τ) :=


r∈Q
p(r) exp (−τ trM(r)) (35)

The resulting probability distribution, which optimally encodes the constraints
into the theoretical framework, is given by:

ρ(q) =
1

r∈Q p(r) exp

− 1

2τ trM(r)


  
Normalization Constant

exp


−1

2
τ trM(q)



  
Generalized Born Rule

p(q)
Prior

(36)

This formulation advances the Born rule to a generalized context, which not
only aligns with the core principles of quantum mechanics but, as found, also
reflects an awareness of the geometry of spacetime.

2.2 Linear Measurement Constraint in Two Dimensions

Our exploration of the linear measurement constraint begins in the two-dimensional
setting before progressing to the more intricate 3+1D spacetime.

In a two-dimensional framework, the measurement constraint is expressed
as:

1

2
trM =



q∈Q
ρ(q)

1

2
trM(q), where M(q) :=


x(q) y(q) + b(q)

y(q)− b(q) −x(q)



(37)

Here, the elements b(q), x(q), and y(q) are scalar functions parametrized by
q, characterizing the elements of a traceless matrix representative of the 2D
measurements.

The probability distribution for this two-dimensional case simplifies to:

ρ(q) =
1

Z
det


exp


x(q) y(q) + b(q)

y(q)− b(q) −x(q)


p(q) (38)

where

p(q) = det


a(q) + x(q) y(q) + b(q)
y(q)− b(q) a(q)− x(q)


= detϕ(q) (39)

2.3 Inner Product

The construction of a Hilbert space for our probability measure necessitates ex-
pressing the determinant as an inner product of multivectors. For this purpose,
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we begin by introducing the multivector representation of 2 × 2 real matrices
within the Clifford algebra framework:


a+ x y + b
y − b a− x


∼= a+ xx̂+ yŷ + bx̂ ∧ ŷ (40)

The Clifford conjugate, denoted by ‡, is defined as:

(a+ xx̂+ yŷ + bx̂ ∧ ŷ)‡ = a− xx̂− yŷ − bx̂ ∧ ŷ (41)

Using this representation, we establish that the determinant of the matrix, ex-
pressed through the geometric product, corresponds to an inner product:

u‡u = (a− xx̂− yŷ − bx̂ ∧ ŷ)(a+ xx̂+ yŷ + bx̂ ∧ ŷ) = a2 − x2 − y2 + b2

(42)

This inner product is equivalent to the determinant of the corresponding matrix:

det


a+ x y + b
y − b a− x


= a2 − x2 − y2 + b2 (43)

Over the group of GL+(4,R) matrices, the inner product of positive definite.

2.4 The General Linear Wavefunction Representation

The general linear wavefunction, represented by ϕ, can be expressed in a multi-
vector column vector form, encompassing the algebraic elements corresponding
to a 2× 2 matrix. This form enables the encapsulation of the matrix elements
within the geometric algebra framework, facilitating the transition to a Hilbert
space structure. The wavefunction ϕ is denoted as:

|ϕ〉〉 = 1√
Z




a1 + x1x̂+ y1ŷ + b1x̂ ∧ ŷ

...
an + xnx̂+ ynŷ + bnx̂ ∧ ŷ



 (44)

The Clifford conjugate transpose (row vector representation) of ϕ is obtained
by applying the Clifford conjugation to each multi-vector element:

〈〈ϕ| = 1√
Z




a1 + x1x̂+ y1ŷ + b1x̂ ∧ ŷ

...
an + xnx̂+ ynŷ + bnx̂ ∧ ŷ





‡

(45)

=
1√
Z


a1 − x1x̂− y1ŷ − bnx̂ ∧ ŷ . . . an − xnx̂− ynŷ − bnx̂ ∧ ŷ



(46)

This configuration allows us to define the inner product within the Hilbert
space as a sum of the matrix determinants of each entry:

〈〈ϕ|ϕ〉〉 = 1

Z


(a21 − x2

1 − y21 + b21) + · · ·+ (a2n − x2
n − y2n + b2n)


(47)
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2.5 Dynamics and the Generalized Schrödinger Equation

In our exploration of dynamics through the Prescribed Measurement Problem
(PMP), we discover that the solution naturally manifests in the Schrödinger
picture. This emergence:

d

dτ
|ψ(τ)〉 = d

dτ
(exp(−τM) |ψ(0)〉) (48)

= −M exp(−τM) |ψ(0)〉 (49)

= −M |ψ(τ)〉 (50)

=⇒ M |ψ(τ)〉 = − d

dτ
|ψ(τ)〉 (51)

is effectively a generalized form of the Schrödinger equation, steering the evolu-
tion of the system’s geometric phase.

It is essential to underscore that the Schrödinger picture’s application within
PMP is not a limitation to non-relativistic contexts. Rather, the Schrödinger
picture, synonymous with the path integral formulation, is equally valid in rela-
tivistic settings. This equivalence is illustrated through the transition amplitude
relation:

〈ψf |e−iH(tf−ti)/|ψi〉 =


D[φ]eiS[φ]/, (52)

where the left side denotes the transition amplitude in the Schrödinger picture,
while the right side represents the path integral approach.

The PMP’s automatic production of a solution in the Schrödinger picture
reaffirms its standing as a viable and robust framework for quantum mechanics,
applicable to a wide range of physical situations including those requiring a
relativistic treatment.

2.6 Self-Adjoint Operators in the General Linear Frame-
work

Within the general linear wavefunction framework, observables are mathemat-
ically articulated as self-adjoint operators. The defining property of such an
observable O is that it satisfies the condition:

〈〈Oφ|ϕ〉〉 = 〈〈φ|Oϕ〉〉 (53)

For a two-state system, the observable O is represented as a 2× 2 matrix:

O =


o00 o01

o10 o11


(54)

Here, o00, o01, o10 and o11are multivectors, encapsulating the observable’s com-
ponents.
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The geometric product within the Clifford algebra framework equates to
matrix multiplication, leading to the following expressions:

〈〈Oφ|ϕ〉〉 = (o00φ1 + o01φ2)
‡ϕ1 + ϕ‡

1(o00φ1 + o01φ2)

+ (o10φ1 + o11φ2)
‡ϕ2 + ϕ‡

2(o10φ1 + o11φ2) (55)

= φ‡
1o

‡
00ϕ1 + φ‡

2o
‡
01ϕ1 + ϕ‡

1o00φ1 + ϕ‡
1o01φ2

+ φ‡
1o

‡
10ϕ2 + φ‡

2o
‡
11ϕ2 + ϕ‡

2o10φ1 + ϕ‡
2o11φ2 (56)

〈〈φ|Oϕ〉〉 = φ‡
1(o00ϕ1 + o01ϕ2) + (o00ϕ1 + o01ϕ2)

‡φ1

+ φ‡
2(o10ϕ1 + o11ϕ2) + (o10ϕ1 + o11ϕ2)

‡φ2 (57)

= φ‡
1o00ϕ1 + φ‡

1o01ϕ2 + ϕ‡
1o

‡
00φ1 + ϕ‡

2o
‡
01φ1

+ φ‡
2o10ϕ1 + φ‡

2o11ϕ2 + ϕ‡
1o

‡
10φ2 + ϕ‡

2o
‡
11φ2 (58)

The self-adjoint nature of O is confirmed if:

o‡
00 = o00 (59)

o‡
01 = o10 (60)

o‡
10 = o01 (61)

o‡
11 = o11 (62)

This implies that O is observable when O‡ = O, analogous to self-adjoint
operators in complex Hilbert spaces where O† = O.

The most general form of such an observable matrix O in our framework is:

O =


a00 a− xx̂− yŷ − bŷ ∧ ŷ

a+ xx̂+ yŷ + bx̂ ∧ ŷ a11


(63)

2.7 Real Eigenvalues for Observables

In the realm of geometric algebra, we investigate the nature of the eigenvalues
associated with an observable matrix O, ensuring they are real-valued. The
eigenvalues are determined by solving the characteristic equation derived from
the matrix’s determinant:

0 = det(O− λI) = det


a00 − λ a− xx̂− yŷ − bx̂ ∧ ŷ

a+ xx̂+ yŷ + bx̂ ∧ ŷ a11 − λ


, (64)

which, upon expansion, yields:

0 = (a00 − λ)(a11 − λ)− (a− xx̂− yŷ − bx̂ ∧ ŷ)(a+ xx̂+ yŷ + bx̂ ∧ ŷ) (65)

0 = (a00 − λ)(a11 − λ)− (a2 − x2 − y2 + b2), (66)
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This leads us to the eigenvalues:

λ = {1
2


a00 + a11 −


(a00 − a11)2 + 4(a2 − x2 − y2 + b2)


, (67)

1

2


a00 + a11 +


(a00 − a11)2 + 4(a2 − x2 − y2 + b2)


} (68)

It is crucial to acknowledge that if a2 − x2 − y2 + b2 < 0, the eigenvalues
could potentially be complex. However, within the scope of our analysis, we
concern ourselves with multivectors and general linear matrices that preserve
orientation, for which a2 − x2 − y2 + b2 ≥ 0. Hence, under these constraints,
our observables are guaranteed to possess real eigenvalues.

2.8 Probability-Preserving Transformations

In quantum mechanics, transformations that preserve the probability distribu-
tion of a quantum system are of fundamental importance. These are encap-
sulated by operators T that, when acting on a wavefunction |ϕ〉〉, satisfy the
condition 〈〈ϕ|T‡T|ϕ〉〉=1, indicating that T‡T is the identity operator I.

Consider a two-state quantum system undergoing a general transformation
T, which can be expressed in matrix form with 2D multivector components u,
v, w, and x:

T =


u v
w x


, (69)

The Clifford conjugate product T‡T then unfolds as:

T‡T =


v‡ u‡

w‡ x‡

 
v w
u x


=


v‡v + u‡u v‡w + u‡x
w‡v + x‡u w‡w + x‡x


(70)

For the identity condition T‡T = I to be satisfied, we necessitate that:

v‡v + u‡u = 1 (71)

v‡w + u‡x = 0 (72)

w‡v + x‡u = 0 (73)

w‡w + x‡x = 1 (74)

These conditions are satisfied by:

T =
1√

v‡v + u‡u


v u

−eϕu‡ eϕv‡


, (75)

Here, u and v are 2D multivectors, and eϕ represents a unit multivector.
In the unitary case, when the vector part of the multivector vanishes (x → 0,

y → 0), we obtain:

U =
1

|a|2 + |b|2


a b

−eiθb† eiθa†


. (76)
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Here, T signifies a general linear extension of the unitary transformation to
two dimensions within the geometric algebra framework, thus broadening the
scope of unitary transformations to accommodate the rich structure of multi-
vectors.

2.9 Metric Operator

We introduce an operator ĝ, called the metric operator, defined as follows:

ĝϕ = IϕI−1 (77)

where I = x̂ ∧ ŷ is the pseudoscalar in two dimensions.
The action of ĝ on a multivector reverses the sign of its vector part while

preserving the sign of the scalar and bivector parts:

I(a+ xx̂+ yŷ + bx̂ ∧ ŷ)I−1 = (a− xx̂− yŷ + bx̂ ∧ ŷ) (78)

We can show that ĝ = ĝ‡ since:

I‡ϕ(I‡)−1 = (−I)ϕ(−I)−1 = IϕI−1. (79)

Applied to the inner product, the operator yields:

u‡ĝu = (a− xx̂− yŷ − bx̂ ∧ ŷ)(a− xx̂− yŷ + bx̂ ∧ ŷ) (80)

Expressed in matrix form, the multivectors and their transformations under ĝ
are:

u‡ = a


1 0
0 1


− x


1 0
0 −1


− y


0 1
1 0


− b


0 1
−1 0


=


a− x −y − b
−y + b a+ x



(81)

ĝu = a


1 0
0 1


− x


1 0
0 −1


− y


0 1
1 0


+ b


0 1
−1 0


=


a− x −y + b
−y − b a+ x



(82)

Notably, the matrix representation of u‡ is the transpose of ĝu. The inner
product thus results in a symmetric matrix:

u‡ĝu =


a− x −y − b
−y + b a+ x

 
a− x −y + b
−y − b a+ x


(83)

=


(a− x)2 + (−y − b)2 (a− x)(−y + b) + (−y − b)(a+ x)

(−y + b)(a− x) + (a+ x)(−y − b) (−y + b)2 + (a+ x)2



(84)

For multivectors with non-zero determinant, such as the elements of the
general linear wavefunction, this product assures a non-degenerate symmetric
matrix.
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The set of all matrices u such that uTu = g for a given metric forms an
equivalence class in the space GL+(2, R)/SO(2), representing dilation and shear
transformations.

Parameterizing the multivectors over (x, y), we obtain a metric over a 2D
manifold:

u(x, y)‡ĝu(x, y) = u(x, y)Tu(x, y) = g(x, y) (85)

where g(x, y) is the metric tensor.

2.10 Metric Superposition and Interference

Consider a two-state quantum system represented by the wavefunction |ϕ〉〉:

|ϕ〉〉 = 1√
Z


u
v


(86)

where u and v are multivectors, and Z is the normalization constant.
For an invariant transformation U that satisfies U‡U = I, such as the

Hadamard transformation:

U =


1√
2

1√
2

1√
2

− 1√
2


(87)

applying U to |ϕ〉〉 results in a superposed state:


1√
2

1√
2

1√
2

− 1√
2


1√
Z


u
v


=

1√
Z


1√
2
u+ 1√

2
v

1√
2
u− 1√

2
v


(88)

This superposition embodies a combination of spacetime geometries that,
upon measurement, can exhibit interference effects. The probability amplitude
of the superposition is:

1√
2Z

(u+ v)‡
1√
2Z

(u+ v) =
1

2Z
(u‡ + v‡)(u+ v) (89)

=
1

2Z
(u‡u+ u‡v + v‡u+ v‡v) (90)

=
1

2Z
(u‡u+ v‡v  
superposition

+u‡v + v‡u  
interference

) (91)

which decomposes into a term representing the superposition of the individual
states (u‡u + v‡v) and a term describing the interference (u‡v + v‡u). The
complexity of this interference surpasses that found in systems described by
complex wavefunctions due to the multivector nature of u and v.

In the special case where vector components are absent (ϕ with x̂, ŷ →
0), the interference simplifies to the conventional complex interference pattern
observed in quantum mechanics.
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Thus, an invariant transformation such as U applied to the system allows for
the exploration of rich interference phenomena within the geometric framework,
revealing nuances of quantum behavior through the lens of metric and geometric
superposition.

2.11 Metric Measurement

Consider a two-state system described by the wavefunction |ϕ〉〉:

|ϕ〉〉 = 1√
Z


u
v


(92)

where u and v are multivectors, and Z is the normalization constant.
We apply the metric operator ĝ to this system:

〈〈ϕ|ĝ|ϕ〉〉 = 1

Z
(u‡ĝu+ v‡ĝv) (93)

Given that u‡ is the transpose of ĝu, and similarly for v, the inner product
simplifies to:

=
1

Z
(gu + gv) (94)

where gu and gv denote the individual metrics associated with u and v, respec-
tively.

The result reveals that the operator ĝ effectively computes the expectation
value of the metric, which is a superposition of the metrics corresponding to the
states u and v, each weighted by their respective probabilities:

〈〈ϕ|ĝ|ϕ〉〉 = 〈g〉 (95)

This expectation value, 〈g〉, is the average metric of the system. It encapsulates
the probabilistic nature of the quantum states and their contributions to the
overall geometry of the system as perceived through measurement.

2.12 Transition to Classical Gravity via Metric Operator

The application of the metric operator in quantum measurements forges a con-
ceptual link to classical gravitational theories. This connection is maintained
through the adherence to two fundamental symmetries: translational symmetry
T (2) and rotational symmetry SO(2). The former, signifying translations in
2D, is inherent in the normalization process of the quantum state, while the
latter preserves the rotational invariance of the system’s metric properties.

Consider the wavefunction normalization condition as an integral over the
manifold M:



M

√
−g detϕ d2x < ∞ (96)

15



which remains invariant under global translations, thereby reflecting T (2) sym-
metry in the structure of the quantum framework.

Furthermore, the metric expectation value 〈〈ϕ|ĝ|ϕ〉〉 = 〈g〉 respects SO(2)
symmetry through its invariance under special orthogonal transformations:

(Lϕ)TLϕ = ϕTLTLϕ = ϕTϕ (97)

where L is an SO(2) transformation matrix. This showcases rotational symme-
try in the context of the metric tensor g.

Elevating these global symmetries to local ones indicates the progression to-
ward a gauge theory predicated on the Poincaré group. This advancement aligns
with the Einstein-Cartan theory, an extension of general relativity that incor-
porates torsion alongside curvature, offering a richer geometric interpretation of
spacetime.

The quantum-to-classical transition here is remarkably natural, requiring no
additional axioms. The metric operator does more than measure; it acts as a
bridge between quantum mechanics and the geometry of spacetime. It is this
effortless shift that reveals the classical theory of gravity within our quantum
framework, aligning seamlessly with the principles of the Einstein-Cartan theory.

2.13 Fock Space Construction

A Fock space is a quantum state space that accommodates systems with varying
particle numbers, extending the concept to events in a two-dimensional (2D)
context. It is constructed mathematically as a direct sum of tensor products
of single-particle Hilbert spaces, allowing for the representation of states with
different numbers of quanta:

F(H) =

∞

n=0

H⊗n. (98)

For a system composed of two Hilbert spaces, H1 and H2, the symmetric
and antisymmetric combinations of wavefunctions ψ1 and ψ2 are given by:

Symmetric:
1√
2
(ψ1 ⊗ ψ2 + ψ2 ⊗ ψ1), (99)

Antisymmetric:
1√
2
(ψ1 ⊗ ψ2 − ψ2 ⊗ ψ1). (100)

In the context of a 2D geometric algebra framework, the tensor product
H1 ⊗H2 remains invariant under the group of rotations SO(2) and translations
R. This invariance manifests itself in the property that any scalar a and bivector
b commute with all elements of the geometric algebra, thus preserving the tensor
product structure:

1√
2
(ψ1 ⊗ ea+bψ1 − ea+bψ1 ⊗ ψ1) =

1√
2
(ea+bψ1 ⊗ ψ1 − ea+bψ1 ⊗ ψ1) (101)

= 0. (102)
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This expression illustrates that the antisymmetric part of the tensor product
vanishes under such transformations, demonstrating the robustness of the con-
structed Fock space against local geometric transformations.

Through the Fock space formalism, we can elegantly capture the quantum
behavior of a system with a fluctuating number of entities, which is especially
pertinent in describing a universe with a dynamical spacetime fabric where
events can be created and annihilated.

2.14 Linear Measurement Constraint in 3+1 Dimensions

When extending our considerations to the framework of three spatial dimensions
plus one time dimension (3+1D), the measurement constraint is appropriately
adapted to account for the complexity of higher-dimensional spacetime. The
constraint for a 3+1D system is formalized as:

0 =
1

4
trM−



q∈Q
ρ(q)

1

4
trM(q), (103)

where each M(q) denotes a traceless 4 × 4 matrix associated with the state
q. This matrix representation encapsulates the dynamics of the system while
maintaining the traceless condition.

2.15 Introducing the ”Double-Copy” Inner Product in 3+1
Dimensions

In the context of 3+1 dimensions, we can express any 4×4 real matrix using the
real Majorana representation. Such a matrix, denoted by M, has the following
general form:

M =





a+ x− f02 + q −z − f13 + w − b f03 − f23 − p− v y + f01 + f12
−z − f13 + w + b a− x− f02 − q y + f01 + f12 f03 − f23 − p− v
f03 + f23 − p+ v y − f01 + f12 a+ x+ f02 − q −z − f13 − w + b
y + f01 − f12 −f03 − f23 − p+ v −z + f13 − w − b a− x+ f02 + q



 ,

(104)

Posing a = 0 ensures that M is traceless.
This matrix corresponds to a multi-vector in geometric algebra, which en-

compasses various grades including scalar, vector, bivector, pseudo-vector, and
pseudo-scalar components:

M ∼=a (105)

+ tt̂+ xx̂+ yŷ + zẑ (106)

+ f01t̂ ∧ x̂+ f02t̂ ∧ ŷ + f03t̂ ∧ ẑ+ f12x̂ ∧ ŷ + f13x̂ ∧ ẑ+ f23ŷ ∧ ẑ (107)

+ vt̂ ∧ x̂ ∧ ŷ + wt̂ ∧ x̂ ∧ ẑ+ pt̂ ∧ ŷ ∧ ẑ+ qx̂ ∧ ŷ ∧ ẑ (108)

+ bt̂ ∧ x̂ ∧ ŷ ∧ ẑ (109)
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In the 3+1-dimensional construct, a simple inner product is insufficient to
define a Hilbert space over the GL+(4,R) group. Instead, a more complex
”double-copy” inner product is essential:

〈〈ϕ|ϕ〉〉 = ⌊ϕ‡ϕ⌋3,4ϕ‡ϕ. (110)

The Clifford conjugate, denoted by ϕ‡, reverses the signs of the bivector and
pseudo-vector components:

ϕ‡ = a+ x− f − v + b. (111)

The blade 3-4 conjugate, represented as ⌊ψ⌋3,4, modifies the signs of the
pseudo-vector and pseudo-scalar components:

⌊ϕ⌋3,4 = a+ x+ f − v − b. (112)

When these elements are combined, the result is a scalar equivalent to the
determinant[7] of the associated 4× 4 real matrix:

det(M) = ⌊ϕ‡ϕ⌋3,4ϕ‡ϕ. (113)

This ”double-copy” inner product provides a means to encapsulate the intri-
cate properties of the higher-dimensional spacetime framework, crucial for the
coherent development of a geometric-quantum theory in 3+1D.

2.16 Metric Measurement in 3+1 Dimensions

In previous discussions, we introduced the metric operator ĝ, defined by its
action on a multivector u as ĝu = IuI−1. When applied to a multivector in
3+1 dimensions, the operator transforms as follows:

ĝu = I(a+ x+ f + v + b)I−1 (114)

= a+ x− f − v + b (115)

= u‡. (116)

This action reverses the signs of the bivector and pseudo-vector parts, yielding
the Clifford conjugate of the original multivector u.

We proceed to examine the metric operator’s influence on the ”double-copy”
inner product:

⌊ϕ‡ĝϕ⌋3,4(ĝϕ)‡ϕ = ⌊(ϕ‡)2⌋3,4ϕ2 = ψ†ψ = g, (117)

where ψ denotes ϕ2, ψ represents the reverse of ψ, and ψ† is the blade-4 conju-
gate of ψ, analogous to the complex conjugate in its operation.

Interestingly, the metric operator simplifies the ”double-copy” inner product
to a single-copy form, more aligned with familiar quantum mechanical inner
products.
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It’s important to note that in the 3+1-dimensional framework, the equiv-
alence class of matrices derived from this reduced inner product does not lie
within GL+(4,R)/SO(3, 1) but is instead associated with GL+(4,R)/Spinc(3, 1).
This distinction will have significant ramifications for a gauge theory of gravity,
which will be explored in subsequent section.

2.17 Gauge Theory of Gravity with Spinc(3,1) Symmetry
(Sketch)

The formulation of a gravity theory within this framework echoes the princi-
ples of Einstein-Cartan theory, yet it expands the symmetry group to include
Spinc(3,1), intertwining a U(1) phase factor with the standard Lorentz trans-
formations. The development of a Lagrangian for such a theory involves several
key steps:

1. Variable Definitions:

• eaµ: The vierbein (tetrad) field, acting as a bridge between the Lorentzian
tangent space and the spacetime manifold.

• ωab
µ : The spin connection, enabling parallel transport within the tan-

gent space and defining the covariant derivative.

• Aµ: The U(1) gauge field corresponding to the extended Spinc(3,1)
symmetry, introducing electromagnetic-like interactions in the geo-
metric framework.

2. Gauging the Symmetries:

• Translations: Adapt the partial derivatives to covariant derivatives,
incorporating the spin connection to account for the affine structure
of spacetime.

• Spinc(3,1) Transformations: Implement gauging procedures for
both Lorentz and U(1) components, intricately combining them to
form the complete Spinc gauge group.

3. Curvature and Torsion 2-forms:

• Lorentz Part: Define Rab as dωab + ωa
c ∧ ωcb, representing the

curvature of spacetime.

• U(1) Part: Formulate F = dA, analogous to the electromagnetic
field strength tensor.

• Torsion: Express T a = dea + ωa
b ∧ eb, encapsulating spacetime tor-

sion.

4. Lagrangian Construction:

19



• Integrate the Einstein-Cartan Lagrangian in terms of tetrads and spin
connection, including curvature and torsion terms. For the Spinc(3,1)
extension, incorporate the U(1) field strength F , resulting in:

SEC =

 
1

2κ
abcd e

a ∧ eb ∧Rcd − α

2
T a ∧ Ta + F ∧ F + Lmatter



(118)

where:

• κ is Einstein’s gravitational constant, and α is the coupling constant
associated with the torsion term.

• The Hodge star operator  maps forms to their duals, essential for
constructing the scalar quantities in the action.

• Lmatter encapsulates the matter field contributions.

This action integrates both the dynamics of general relativity and the ad-
ditional degrees of freedom from Spinc symmetry, potentially accommodating
spinor fields and additional gauge interactions within the gravity theory.

2.18 Standard Model Symmetries

We recall that the bilinear form ψγ0ψ is conserved under Dirac dynamics and
corresponds to the Dirac current in the David Hestene’s formulation of the
wavefunction using geometric algebra. We now introduce the transformation[8,
9] T = f1 exp(f2 + b2), and explore the global gauges preserving this invariance:

ψγ0ψ = reverse(f1 exp(f2 + b2)ψ)γ0f1 exp(f2 + b2)ψ (119)

= ψ exp(−f2 + b2)(−f1)γ0f1 exp(f2 + b2)ψ (120)

Let us first investigate (−f1)γ0f1. First let us pose:

E = f01t̂ ∧ x̂+ f02t̂ ∧ ŷ + f03t̂ ∧ ẑ (121)

B = f12x̂ ∧ ŷ + f13x̂ ∧ ẑ+ f23ŷ ∧ ẑ (122)

such that f = E+B.

−(E+B)γ0(E+B) = γ0(E−B)(E+B) (123)

= γ0(E
2 +B2) (124)

= (f2
01 + f2

02 + f2
03 + f2

12 + f2
13 + f2

23)γ0 (125)

+ 2(−f02f12 + f03f13)γ1 (126)

+ 2(−f01f12 + f03f23)γ2 (127)

+ 2(−f01f13 + f02f23)γ3 (128)

The equation remains invariant if f2
01+ f2

02+ f2
03+ f2

12+ f2
13+ f2

23 = 1 and if the
cross products vanish. The result is isomorphic to a SU(3) group invariance.

20



Now, we investigate the exponential term:

exp(−E−B+ b)γ0 exp(E+B+ b) (129)

= γ0 exp(E−B− b) exp(E+B+ b) (130)

= γ0 exp(2E) (131)

The relation remains invariant if E = 0. In the case the exponential is given as

exp

f12x̂ ∧ ŷ + f13x̂ ∧ ẑ+ f23ŷ ∧ ẑ+ bt̂ ∧ x̂ ∧ ŷ ∧ ẑ


(132)

and it can be written as

exp(i(f12σz + f13σy + f23σz + b)) (133)

The result is a SU(2)xU(1) group invariance.
These analyses lead to the complete gauge group that conserves Dirac dy-

namics for this transformation:

U(1)× SU(2)× SU(3) (134)

mirroring the gauge symmetries of the Standard Model of particle physics.
Extending these symmetries from global to local naturally introduces gauge

fields corresponding to the electromagnetic, weak, and strong forces. The local
gauge invariance principle demands the inclusion of gauge bosons—photons,
W and Z bosons, and gluons—facilitating interactions in accordance with the
Standard Model.

Thus, this theoretical structure not only accommodates the gravitational
dynamics via Einstein-Cartan theory and the extended symmetry of Spinc(3,1)
but also coherently adds the Standard Model, providing a comprehensive de-
scription of fundamental interactions.

2.19 Dimensional Constraints on Quantum Geometry

Our exploration extends the quantum-geometric theory up to 4D spacetime.
However, attempts to extrapolate this model to higher dimensions, specifically
at 5D and beyond, encounter insurmountable disruptions. These disruptions act
as natural constraints on the dimensionality of spacetime within our framework,
suggesting an inherent dimensional limit for its applicability.

In dimensions six and above, the mathematical structure we rely upon col-
lapses. Acus et al.’s work [10] in 6D geometric algebra reveals that the de-
terminant, defined by a norm via self-products, does not extend to 6D. Their
exhaustive search failed to produce a norm defined in this way, indicating a
fundamental obstruction to formulating a quantum-geometric theory in higher
dimensions.

Their findings suggest that a multivector norm in 6D cannot be represented
as a linear combination of self-products, as illustrated by the following general-
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ized expressions:

a40 − 2a20a
2
47 + b2a

2
0a

2
47p412p422 + 〈additional monomials〉 = 0, (135)

... (136)

〈more equations with numerous monomials〉. (137)

Simplifying to special cases where the 6D multivector comprises only a scalar
and a grade 4 element illustrates the fundamental difficulty:

s(B) = b1Bf5(f4(B)f3(f2(B)f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))). (138)

Even in this special case, we find that constructing a linear relationship for
observables is not possible; event real part of the observable cannot be satisfied
from the multivector norm:

b1OBf5(f4(B)f3(f2(B)f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) (139)

= b1Bf5(f4(B)f3(f2(B)f1(B))) + b2OBg5(g4(B)g3(g2(B)g1(B))). (140)

Hence, our definition of observables as self-adjoint operators is unattainable
in 6D, as not even real numbers (except O = 1) can satisfy the necessary condi-
tions, making higher dimensions fundamentally unobservable in the quantum-
geometric sense of this paper.

Odd dimensions further complicate matters as the norm veers into the realm
of complex numbers, deviating from the expected determinant of associated
matrices. In these dimensions, the norm appears as a product of a determinant
and its complex conjugate:

〈u,u〉 = (detu)† detu. (141)

This result does not align with the determinants derived from our entropy
maximization procedure, which are crucial for the physical interpretations in
our model. The discrepancy effectively excludes 3D, 5D, and all higher odd
dimensions, confining the validity of our model to 0D, 1D, 2D, and the physi-
cally pertinent 4D spacetime, where it appears to incorporate gravity and the
Standard Model.

3 Discussion

This paper has ventured into the intricate domain of quantum-geometric theory,
elucidating its robust applicability up to the four-dimensional fabric of space-
time. Our theoretical construct posits a quantum foundation for the geometry
of spacetime, rooted in the principles of entropy maximization and constrained
by measurement outcomes—a framework we have coined as the Prescribed Mea-
surement Problem (PMP). The extension of PMP to spacetime events has un-
veiled a rich interplay between quantum mechanics and general relativity, with
the two theories emerging naturally from the same probabilistic underpinnings.
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Notably, the exploration of higher-dimensional spaces, specifically at 5D
and above, has unearthed fundamental limitations. The inability to define self-
adjoint observables via an inner product in 6D signifies a theoretical boundary,
suggesting that our universe’s quantum-geometric structure is inherently four-
dimensional and unobservable beyond. This revelation aligns with the physical
universe we observe, where general relativity and the Standard Model operate
within a four-dimensional spacetime continuum.

Furthermore, this paper has tentatively touched upon the realm of quan-
tum gravity. By introducing a metric operator and considering its implications
for a general linear quantum framework, we have set the stage for a potential
unification of gravity with quantum mechanics. This approach beckons further
exploration into the quantum nature of spacetime, where the geometry itself is
subject to quantum superpositions and probabilistic interpretations. Our inves-
tigation has led to the construction of a theoretical framework where spacetime
is not merely a passive stage for quantum phenomena but a dynamic participant
that evolves with each quantum event.

• Wavefunction Normalization and Spacetime:

The concept of wavefunction normalization has been extended to include
the entirety of spacetime, proposing a wavefunction that is normalized
across both space and time. This approach recognizes that quantum events
are not confined to spatial parameters but are fundamentally temporal
occurrences as well. The implication is a more nuanced understanding of
quantum states, where events are defined not just by their spatial coordi-
nates but also by their temporal context.

• Fock Space and Quantum Event Dynamics:

The application of Fock space to a variable number of quantum events sug-
gests a universe where the topology of spacetime is subject to fluctuations,
and events can spontaneously emerge or dissolve. Such a perspective aligns
with a dynamic view of spacetime, where the quantum underpinnings are
as malleable as the events they encompass. The potential fluctuations in
spacetime topology speak to a universe that is far more interactive and
mutable than previously conceived.

• Metric Operator and Dynamic Spacetime Geometry

The introduction of a metric operator, which allows spacetime geometry
to be dynamically defined at each quantum event, integrates quantum ef-
fects directly into the structure of spacetime. This concept suggests that
spacetime geometry could exhibit quantum superposition, with implica-
tions that challenge the classical view of a static and continuous spacetime
fabric.

• Generalization of the Born Rule

The extension of the Born rule, traditionally associated with probabil-
ity in quantum mechanics, to encompass the determinant which eventu-
ally lead to the gauge symmetries of the standard model indicates that
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quantum probabilities may underlie the observed symmetries in particle
physics. This generalization uncovers a fundamental relationship between
the probabilistic aspects of quantum mechanics and the forces and parti-
cles defined within the standard model.

• Measurement-Induced Spacetime Metrics

Our theory permits the superposition of spacetime metrics and introduces
the notion of partial wavefunction collapses through a metric operator.
The resultant framework allows for a relativistic quantum theory that
mirrors the standard model’s gauge invariances, culminating in a complete
measurement that yields the standard model state alongside the spacetime
metric.

4 Conclusion

In the quest to synthesize the discrete nature of quantum events with the contin-
uous fabric of spacetime, this paper has ventured a significant step forward. Our
proposed quantum theory of spacetime events, centered around the Prescribed
Measurement Problem, delineates a framework where the entropy maximization
problem extends into the realms of quantum mechanics and geometry. Within
this framework, the principles of general relativity and the Standard Model
are not merely accommodated but naturally arise as outcomes inherent to the
four-dimensional spacetime construct.

The Prescribed Measurement Problem serves as a bridge between concrete
measurement outcomes and a quantum-geometric theory of spacetime, provid-
ing a description of gravity and particle physics that is intrinsically linked to
the probabilistic fabric of quantum mechanics. This theory affirms the four-
dimensionality of our universe not as a mere backdrop but as a dynamic partic-
ipant shaped by the quantum events it hosts.
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