Can be for a number $k,(2[k] m)+1$ always prime for all number m ?

Juan Elías Millas Vera. ${ }^{1}$
 Zaragoza (Spain) November 2023.

0- Abstract:

This paper is about hyperoperators. In this paper I ask myself and the mathematical community if there is possible that a k -ation of the number 2 will be always a number prime for any number m if we add the number one to the result.

1- Introduction:

We will use hyperoperators tools to enunciate this conjecture. Lets refresh some concepts. The addition is " n copies of 1 added to a combined by succession.". The multiplication is " n copies of a combined by addition.". The exponentiation is "n copies of a combined by multiplication.". The tetration is " n copies of a combined by exponentiation, right-to-left.".[1] The pentation is " n copies of a combined by tetration, right-to-left." and so on.

Going to the "easy" counterexamples we have that in:
a) Addition: $(2+3)+1=(2[1] 3)+1=6$ which is not prime
b) Multiplication: $(2 \times 4)+1=(2[2] 4)+1=9$ which is not prime.
c) Exponentiation: $\left(2^{3}\right)+1=(2[3] 3)+1=9$ which is not prime
d) Tetration: $(2 \uparrow 2 \uparrow 2 \uparrow 2 \uparrow 2)+1=(2[4] 5)+1$ which is not prime, is a number with 19729 digits [2].

Going with more hard examples we have pentation, the first cases are:
e) Pentation: $\quad(2[5] 1)+1=2+1=3$ which is prime.
$(2[5] 2)+1)=4+1=5$ which is prime.
$(2[5] 3)+1)=65536+1=65537$ which is prime.
But, the problem begins with (2[5]4)+1 which is huge number, one of that number that I can not calculate even understand at all.

1 Email: juanmillaszgz@gmail.com

2: Conjecture:

As the tittle said the conjecture is the following:
"Can be for a number $\mathrm{k},(2[\mathrm{k}] \mathrm{m})+1$ always a primer number for all number m ?"

I do not know if there exists a counterexample in pentation or not, if there is one we should look for 6-ation. Anyway the conjecture goes further and can allow any k-ation.

3: Conclusions:

Since old times mathematicians have been looking for a sequence of number or a determinate formulae that always give us prime numbers. That is a fair trying, Fermat or Mersenne will be in that way, even Eiseinstein. Sometimes is hard to proof it, and in the most of cases we have ended obtaining a disproof of the conjectures, if someone asks to me if I believe if this conjecture is true or false I would say that is false, but I do not have enough mathematical tools to disproof it.

4: References:

[1] https://en.wikipedia.org/wiki/Pentation \& https://en.wikipedia.org/wiki/Tetration
[2] (2^2^...^2) (n times) + 1. Serie. https://oeis.org/A007516

