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Abstract

We validly ignore even prime number 2. Based on all arbitrarily large number of even prime gaps 2,

4, 6, 8, 10...; the complete set and its derived subsets of Odd Primes fully comply with Prime number

theorem for Arithmetic Progressions. With this condition being satisfied by all Odd Primes, we argue that

Modified Polignac’s and Twin prime conjectures are proven to be true with these conjectures treated as

Incompletely Predictable Problems. In so doing [and with the famous Riemann hypothesis being a special

case], the generalized Riemann hypothesis formulated for Dirichlet L-function is also supported. By broadly

applying Hodge conjecture and Grothendieck period conjecture to Dirichlet eta function (as proxy function

for Riemann zeta function), Riemann hypothesis is separately proven to be true with this hypothesis treated

as Incompletely Predictable Problem.
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1. Introduction

Conceived in 1859, Riemann hypothesis proposed all infinitely many nontrivial zeros from Riemann zeta

function (via proxy Dirichlet eta function) are located on its critical line. Respectively conceived in 1849

and 1846, Polignac’s conjecture proposed there are infinitely many Odd Primes derived from each and

every even Prime gaps 2, 4, 6, 8, 10.... and Twin prime conjecture proposed there are infinitely many

(Odd) Twin Primes derived from even Prime gap 2. Thus Twin prime conjecture is simply a subset of

Polignac’s conjecture.

The correct and complete mathematical arguments required to prove famous open problems in Number

theory of Riemann hypothesis, Polignac’s and Twin prime conjectures are best depicted when these prob-

lems are regarded as Incompletely Predictable Problems. It is informative for the required mathematical

arguments that are ”centered” around Axiom 1 to be broadly based on Mathematics for Incompletely

Predictable Problems (MIPP) with Summary provided in subsection 1.2. Solving these problems is

assisted by formulating the Completely and Incompletely Predictable entities as ”Universal Principles”
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(Lemma 3.1) that are applicable to relevant (sub)sets and (sub)tuples. The novel classification of Count-

ably Infinite Set into three subtypes (Lemma 3.2), Hasse and Modified Hasse principles (subsection 2.1),

p-adic absolute values (subsection 3.1) and modular arithmetic are applied at various places in this paper.

As two different but related infinite-length equations through analytic continuation, Hasse principle is

satisfied by Riemann zeta function as a certain type of equation that generates all infinitely-many trivial

zeros [located outside the 0 < σ < 1-critical strip] but this principle is not satisfied by its proxy Dirichlet

eta function as a dissimilar type of equation that generates all infinitely-many nontrivial zeros [located

inside the 0 < σ < 1-critical strip on the σ = 1
2 -critical line]. As two seemingly different location that are

in fact identical, all nontrivial zeros are mathematically located on [one-dimensional] σ = 1
2 -critical line

or geometrically located on [zero-dimensional] σ = 1
2 -Origin point. Thus we prove location for complete

Set nontrivial zeros to be critical line confirming Riemann hypothesis to be true.

We ignore the solitary even Prime number 2. As a certain type of infinite-length algorithm, Sieve-of-

Eratosthenes is exactly constituted by an Arbitrarily Large Number of (self-)similar infinite-length sub-

algorithms that are specified by every even Prime gaps 2, 4, 6, 8, 10.... Again as a certain type of infinite-

length algorithm, Complement-Sieve-of-Eratosthenes is exactly constituted by the two inversely related

infinite-length sub-algorithms that are specified by odd Gap 1-Composites and even Gap 2-Composites.

Modified Hasse principle is satisfied by these two algorithms and their associated sub-algorithms that per-

petually generate all Odd Primes and Gap 2-Even Composites [that are both Arbitrarily Large in Numbers

and overall equal to each other], and Gap 1-Even Composites and Gap 1-Odd Composites [that are both

Infinitely Many in Numbers and equal to each other]. Thus we prove Set even Prime gaps with uniquely

associated Subsets Odd Primes all have cardinality Arbitrarily Large in Number confirming Modified

Polignac’s and Twin prime conjectures to be true [and with our proofs being fully consistent with Prime

number theorem].

The p1 commencing values are defined as being constituted from the entire set of prime numbers 2, 3, 5, 7,

11, 13.... Incorporating all the integers between 0 and p-1 inclusive, the p1 residue classes of 0 mod p1, 1

mod p1, 2 mod p1,..., p1-2 mod p1, p1-1 mod p1 from modular arithmetic are used to delineate Admissible

Prime k-tuplets from Inadmissible Prime (k + 1)-tuples [in Proposition 6.1, subsection 6.1] whereby all

these created tuplets and tuples are regarded as the ”overlapping and incomplete” (Sub)Tuples Classi-

fication of consecutive primes that cannot be used to either prove or disprove Modified Polignac’s and

Twin prime conjectures. On the contrary, the ”non-overlapping and complete” (Sub)Sets Classification

of grouped primes is used by us to prove Modified Polignac’s and Twin prime conjectures.

The p-adic number system for any prime number p extends the ordinary arithmetic of rational numbers in

a different way from the extension of rational number system to real and complex number systems. The

p-adic expansion of rational numbers also incorporate all the integers between 0 and p-1 inclusive. We

apply p-adic absolute values to Prevalences of Nontrivial zeros, Primes and Composites in subsection 3.1.

We insightfully deduce the computed (infinite-length) patterns of p-adic absolute values are specific for

Odd Primes [as generated by the (sub-)algorithms of Sieve-of-Eratosthenes from all even Prime gaps 2,
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4, 6, 8, 10... in total, and from each and every even Prime gap in sub-totals]; Composites [as generated

by the (sub-)algorithms of Complement-Sieve-of-Eratosthenes as Composites in total, and even Gap 2-

Composites and odd Gap 1-Composites in sub-totals]; and Nontrivial zeros [as generated by the equation

Dirichlet eta function only at (unique) σ = 1
2 critical line whereby this σ = 1

2 value is mutually exclusive

and independent of all other σ , 1
2 values associated with infinitely-many (non-unique) σ , 1

2 non-critical

lines in the 0 < σ < 1 critical strip].

Borrowing Prof. Frank Calegari’s research ideas, we broadly apply Hodge conjecture and Grothendieck

period conjecture in a mathematical-geometrical manner to Dirichlet eta function η(s) in Remark 1.2,

subsection 1.2, and conclude Riemann hypothesis must be true. We also obtain the unique Fingerprint

number for the primitive set that contain all prime numbers 2, 3, 5, 7, 11, 13... in subsection 1.2.

1.1. General notations, (Sub)Sets versus (Sub)Tuples Classification. Common abbreviations used in this

paper: CP = Completely Predictable, IP = Incompletely Predictable, FL = finite-length, IL = infinite-

length, CFS = countably finite set, CIS = countably infinite set, IM = infinitely many, ALN = Arbitrarily

Large Number. List of abbreviations incorporating relevant definitions [that also include s = σ ± it]:

·CP entities: Completely Predictable entities which will manifest CP independent properties.

·IP entities: Incompletely Predictable entities which will manifest IP dependent properties.

·ζ(s): f (n) Riemann zeta function containing variable n, and parameters t and σwill generate [via its proxy

Dirichlet eta function] Zeroes when σ = 1
2 and virtual Zeroes when σ , 1

2 .

·η(s): f (n) Dirichlet eta function, as the analytic continuation of ζ(s), containing variable n, and parame-

ters t and σ will generate Zeroes when σ = 1
2 and virtual Zeroes when σ , 1

2 .

·sim-η(s): f (n) simplified Dirichlet eta function, derived by applying Euler formula to η(s), containing

variable n, and parameters t and σ will generate Zeroes when σ = 1
2 and virtual Zeroes when σ , 1

2 .

·DSPL: F(n) Dirichlet Sigma-Power Law =
∫

sim-η(s)dn containing variable n, and parameters t and σ

will generate Pseudo-zeroes when σ = 1
2 and virtual Pseudo-zeroes when σ , 1

2 whereby the (virtual)

Zeros = (virtual) Pseudo-zeros – π
2 relationship allows (virtual) Pseudo-zeros to (virtual) Zeros conversion

and vice versa.

·NTZ: Nontrivial zeros located on one-dimensional (mathematical) σ = 1
2 -critical line are precisely

equivalent to G[x=0,y=0]P: Gram[x=0,y=0] points as Origin intercept points which are located at zero-

dimensional (geometrical) σ = 1
2 -Origin point [as per Figure 6]. These entities, mathematically defined

by
∑

ReIm{η(s)} = Re{η(s)} + Im{η(s)} = 0, are generated by equation G[x=0,y=0]P-η(s) containing ex-

ponent 1
2 when σ = 1

2 .

·GP or G[y=0]P: ’usual’ or ’traditional’ Gram points = Gram[y=0] points = x-axis intercept points that

are [multiple-positioned] located on one-dimensional x-axis line are generated by equation G[y=0]P-η(s)

when σ = 1
2 . These entities are mathematically defined by

∑
ReIm{η(s)} = Re{η(s)} + 0, or simply

Im{η(s)} = 0. Riemann hypothesis is usefully stated as none of the [additional] virtual G[x=0]P generated

by equation G[x=0]P-η(s) when σ , 1
2 – as demonstrated by Figure 11 for σ = 1

3 – can be constituted by

t transcendental number values that [incorrectly] coincide with t transcendental number values for NTZ
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when σ = 1
2 .

·G[x=0]P: Gram[x=0] points = y-axis intercept points that are [multiple-positioned] located on one-

dimentional y-axis line are generated by equation G[x=0]P-η(s) when σ = 1
2 . These entities are mathe-

matically defined by
∑

ReIm{η(s)} = 0 + Im{η(s)}, or simply Re{η(s)} = 0.

·virtual NTZ: virtual nontrivial zeros or virtual G[x=0,y=0]P: virtual Gram[x=0,y=0] points. These are

virtual Origin intercept points located at the multiple-positioned virtual Origin points which are generated

by equation virtual-G[x=0,y=0]P-η(s) containing exponent values , 1
2 when σ , 1

2 . We note that each

virtual NTZ when σ < 1
2 in Figure 7 equates to an [additional] negative virtual G[y=0]P located at IP

varying positions on horizontal axis, and each virtual NTZ when σ > 1
2 in Figure 8 equates to an [addi-

tional] positive virtual G[y=0]P located at IP varying positions on horizontal axis. We observe overall less

virtual G[x=0]P when σ > 1
2 , and overall more virtual G[x=0]P when σ < 1

2 .

·Sieve-of-Eratosthenes: As symbolically denoted by pn+1 = 2 +
n∑

i=1

gi with gn = pn+1 − pn, its derived

(sub-)algorithms will faithfully generate all prime numbers.

·Complement-Sieve-of-Eratosthenes: As symbolically denoted by cn+1 = 4 +
n∑

i=1

ci with gn = cn+1 − cn,

its derived (sub-)algorithms will faithfully generate all composite numbers.

Remark 1.1. Important deductions on (Sub)Sets Classification of grouped Primes (P), Composites (C)

and Integers (Z) versus (Sub)Tuples Classification of consecutive Primes:

Z {0, 1, 2, 3, 4, 5...} = Non-P Non-C {0, 1} + P {2, 3, 5, 7, 11, 13, 17, 19...} + C {4, 6, 8, 9, 10, 12, 14, 15...}.

Gaps between two consecutive numbers to non-overlappingly classify Z, P and C as mutually exclusive

sets or subsets: CIS-IM-linear odd Gap 1-Z (or simply Gap 1-Z); CFS odd Gap 1-P (or simply Gap 1-P);

CIS-ALN-decelerating even Gap 2i-P (or simply Gap 2i-P) with i = 1, 2, 3, 4, 5...; CIS-IM-accelerating

odd Gap 1-C (or simply Gap 1-C); CIS-ALN-decelerating even Gap 2-C (or simply Gap 2-C).

· We refer to the CIS-ALN-decelerating p1 commencing values obtained from all P 2, 3, 5, 7, 11, 13....

For each p1 commencing value [with some caveats in Proposition 6.1, subsection 6.1]; we can overlap-

pingly classify consecutive primes as the [non-mutually exclusive] Admissible Prime k-tuplets and

Inadmissible Prime (k + 1)-tuples of increasing lengths.

· (Finite-Length) Admissible Prime k-tuplets & tuples, and (Finite-Length) Inadmissible Prime k-tuples

represent finite ordered list of k consecutive primes. Only when k = 2, the two consecutive primes in all

Prime 2-tuplets [viz, representing all Gap 2-Odd P] and in all Prime 2-tuples [viz, representing all Gap

4-Odd P, Gap 6-Odd P, Gap 8-Odd P, Gap 10-Odd P,...] are always uniquely non-overlapping and ad-

missible. Otherwise when k > 2, some of the k consecutive primes as subtuples from Prime k-tuplets or

Prime k-tuples could overlappingly recur in different Prime k-tuplets [that are always admissible] or in

different Prime k-tuples [that can be either admissible or inadmissible].

(I) All P = 2, 3, 5, 7, 11,... as CIS-ALN-decelerating; Even P or Gap 1-Even P = 2 as CFS

· (i) Odd P or Gap 2i-Odd P = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, 97,... as CIS-ALN-decelerating
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· (ii) please refer to List of twin primes, cousin primes, sexy primes, etc in section 2 as derived from

individual even Prime gaps 2, 4, 6, 8, 10... in an ad infinitum manner.

· For i = 1, 2, 3, 4, 5...; All Odd P or Gap 2i-Odd P [as Set] = Gap 2-Odd P + Gap 4-Odd P + Gap

6-Odd P + Gap 8-Odd P + Gap 10-Odd P... [as Subsets]. This important Set =
∑

(ALN of Subsets) non-

overlapping mutually exclusive relationship with the (Sub)Sets of prime numbers all having cardinality

CIS-ALN-decelerating confirms Modified Polignac’s and Twin prime conjectures to be true.

(II) All C = 4, 6, 8, 9, 10, 12, 14, 15, 16... as CIS-IM-accelerating

· (i) Even C = 4, 6, 8, 10, 12, 14, 16... as CIS-IM-accelerating

· (ii) Odd C = 9, 15, 21, 25, 27, 33, 35... as CIS-IM-accelerating

· (iii) Gap 1-Even C = 8, 14, 20, 24, 26, 32, 34, 38, 44... as CIS-IM-accelerating

· (iv) Gap 1-Odd C = 9, 15, 21, 25, 27, 33, 35, 39, 45... as CIS-IM-accelerating

· (v) Gap 2-Even C = 4, 6, 10, 12, 16, 18, 22, 28, 30, 36... as CIS-IM-decelerating

· Important set and subsets non-overlapping mutually exclusive relationships for composite numbers: (1)

All C = Even C + Odd C = Gap 1-Even C + Gap 1-Odd C + Gap 2-Even C. (2) Even C = Gap 1-Even

C + Gap 2-Even C. (3) Odd C = Gap 1-Odd C. (4) Gap 1-Even C = Gap 1-Odd C. (5) Even C > Odd C,

Gap 1-Even C + Gap 1-Odd C or Gap 1-Even C or Gap 1-Odd C > Gap 2-Even C. (6) P-C dependent

connection: Gap 2-Even C = All Odd P.

1.2. Summary of Mathematics for Incompletely Predictable Problems including Primitive sets. Perfect

numbers statistically appear ∼0%, abundant numbers appear ∼24.76% and deficient numbers appear

∼75.24% of the time as randomly chosen numbers. Primitive sets have defining or associated proper-

ties that apply to the entire collection of numbers in each set. Examples of primitive sets include those

formed by integers in a dyadic interval (x,2x], all perfect numbers as rarely occurring numbers which are

usually even numbers [but it is not known whether they can also be odd numbers or whether there are

infinitely many of them], etc. In contrast, prime numbers have defining or associated properties that apply

to each individual prime number. Two integers a and b are coprime or relatively prime if the only positive

integer that is a divisor of both of them is 1. A set of integers greater than 1 is considered primitive if no

member in the set divides another; viz, primitive sets must always be setwise coprime but can additionally

also be pairwise coprime when no two integers in the set share a common factor other than 1. Pairwise

coprimality is a stronger condition than setwise coprimality. Every pairwise coprime finite set is also

setwise coprime but the reverse is not true. It is possible for an infinite set of numbers to be [completely]

pairwise coprime (and thus also setwise coprime and is a primitive set) with notable examples being set

of all prime numbers, set of elements in Sylvester’s sequence, and set of all Fermat numbers. Then it is

possible for an infinite set of numbers to NOT be [completely] pairwise coprime with simplest examples

being sets of all composite numbers, all integers, all even numbers and all odd numbers (which are NOT

setwise coprime and are thus NOT primitive sets).
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Diverging sums such as
∞∑

n>1

1
n log n

=
1

2 log 2
+

1
3 log 3

+
1

4 log 4
+

1
5 log 5

+
1

6 log 6
+... = ∞ [over

integers 2, 3, 4, 5, 6...] are undefined. Based on current knowledge, we consider any primitive set S having

unique Fingerprint numbers with values given as converging sums. For any k ≥ 1 in the set of numbers

which is a primitive set, the converging sum of 1/(n log n) over numbers n with exactly k prime factors

(with repetition) is bound as k varies. For primitive set S over all (even + odd) integer n or odd integer

n or even integer n or squarefree n, etc; we define corresponding (Even + Odd) Fingerprint number as

fk =
∑

n with k prime factors

1
n log n

or (Odd) Fingerprint number as gk =
∑

odd n with k prime factors

1
n log n

or (Even)

Fingerprint number as hk =
∑

even n with k prime factors

1
n log n

, etc. Erdos primitive set conjecture, now proven

as a theorem in 2023[13], states that for any primitive set S with exactly k prime factors (with repetition),∑
n∈S

1
n log n

≤
∑

p

1
p log p

=
1

2 log 2
+

1
3 log 3

+
1

5 log 5
+

1
7 log 7

+
1

11 log 11
+... = 1.6366... [as

a converging sum when k = 1] =⇒ fk is maximized by the prime sum f1 =
∑

p

1
p log p

= 1.6366...

[representing the unique ”largest” primitive set that ONLY contains all (infinitely-many) prime numbers

2, 3, 5, 7, 11, 13...]. As supporting Modified Polignac’s and Twin prime conjectures, one could calculate

f1 =
∑

p

1
p log p

for individual subsets of Odd Primes derived from even Prime gaps 2, 4, 6, 8, 10... and

note these calculations must all be, in principle, over infinitely-many Odd Primes from each subset.

When k ≥ 2 [as f2, f3, f4, f5... representing maximal primitive sets that ONLY contain composite numbers

with ≥ 2 prime factors], the k = 2 case with two prime factors p, q as f2 = f (P(2)) =
∑
p≤q

1
pq log pq

=
1

4 log 4

+
1

6 log 6
+

1
9 log 9

+... = 1.1448... [as a converging sum when k = 2] is the next largest converging sum.

The converging sums as denoted by
∑

n with k prime factors

1
n log n

rapidly decrease until a global minimum

occurs at k = 6; then these sums rapidly increase as f6 < f7 < f8 < f9... until at sufficiently large k, these

sums monotonically increase as fk < fk+1 < fk+2 < fk+3... [and tends to 1 as k tends to ∞]. We analyze

gk for comparison: these sums rapidly decrease as g1 > g2 > g3 > g4... until at sufficiently large k, these

sums monotonically decrease as gk > gk+1 > gk+2 > gk+3... [and tends to 1
2 as k tends to∞].

On the overall objective to rigorously derive Algorithm-type proofs for Modified Polignac’s and Twin

prime conjectures [see Definition 7.1 in subsection 7.1] and Equation-type proof for Riemann hypothesis,

we apply infinitesimal numbers at two places using the following colloquially-stated propositions with

their formal proofs[28] provided in section 7:

Proposition 7.1: In the limit of never reaching a [nonexisting] zero conceptually seen as Prevalences

of both even Prime gaps and the associated [positive and negative] Odd Primes never becoming zero

whereby arbitrarily large number of different even Prime gaps that uniquely accompany all Odd Primes

in totality will never stop recurring. Foundation Figure 1 allows Geometrical-Mathematical interpretation

for positive Odd Primes.
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Proposition 7.2: In the limit of reaching an [existing] zero conceptually seen as [entire −∞ < t < +∞] tra-

jectory of Dirichlet eta function, proxy for Riemann zeta function, touching (symbolic) zero-dimensional

σ = 1
2 -Origin point only when parameter σ = 1

2 whereby all nontrivial zeros [mathematically] located on

(symbolic) one-dimensional σ = 1
2 -critical line will [geometrically] declare themselves in totality as cor-

responding Origin intercept points. Foundation Figure 12 allows Geometrical-Mathematical interpretation

for 0 < t < +∞ range.

Remark 1.2. Important relationships & deductions from Gram Points, Primes, Composites, Prime-

Composite identifier grouping and Prime-Composite quotient:

· At σ = 1
2 -critical line; Gram Points = Solitary CP 1st G[y=0]P as Rational number {0} + All IP CIS-IM-

linear G[y=0]P, G[x=0]P and G[x=0,y=0]P as Irrational (Transcendental) numbers. Overall, IP CIS-IM-

linear G[y=0]P = IP CIS-IM-linear G[x=0]P = IP CIS-IM-linear G[x=0,y=0]P. In 0 < σ < 1-critical strip

(with logical reasoning given in Remark 5.2), (i) unique solitary (Co-linear) Equation G[x=0,y=0]P-η(s) at

σ = 1
2 -critical line [with optimal ”formula symmetry”] is independent of (ii) non-unique infinitely many

(Co-linear) Equations virtual-G[x=0,y=0]P-η(s) at σ , 1
2 -noncritical lines [without optimal ”formula

symmetry”]. Both (i) and (ii) generate mutually exclusive and parallel co-linear lines (co-lines) that never

cross over one another. The complete absence of G[x=0,y=0]P at all CIS-IM-linear σ , 1
2 -noncritical

lines equates to Riemann hypothesis being true. As other phenomena happening on σ = 1
2 -critical line

(but not on σ , 1
2 -noncritical lines), the perpetually applicable Gram’s Law and Rosser’s Rule on the

Nontrivial zeros-Gram points relationships, and their [expected] intermittently occurring violations on an

eternal basis, do not contradict our derived proof for Riemann hypothesis to be true.

· Consider the integration pairing between de Rham and Betti cohomologies of a g-dimensional abelian

variety A defined over Q-basis and giving rise to a matrix ΩA whose entries are called the periods of A.

Grothendieck period conjecture asserts that any polynomial relation with rational coefficients between

the periods of A should have a geometrical origin. More precisely, any algebraic cycle on A and on the

products of A with itself, will give rise to a polynomial relation with rational coefficients among the periods

of A. In simple terms, Hodge conjecture asserts that the basic topological information like the number of

holes in certain geometric spaces, complex algebraic varieties, etc can be understood by studying the

possible nice shapes (called algebraic cycles) sitting inside those spaces, which look like zero sets of

polynomial equations. We ”generically” apply Hodge conjecture and Grothendieck period conjecture in

a mathematical-geometrical manner to the ”Zeros” (and ”Pseudo-zeros”) [all as t-valued transcendental

numbers] on x-axis, y-axis and Origin in Dirichlet eta function η(s) or simplified η(s) (and Dirichlet

Sigma-Power Law) inside the 0 < σ < 1-critical strip: The solitary Equation η(s) at σ = 1
2 -critical line

with optimal ”formula symmetry” is (mathematically) different to the infinitely-many Equations η(s) at

σ , 1
2 -noncritical lines without optimal ”formula symmetry”. Their respective three types of Gram points

occurring when σ = 1
2 versus two types of [virtual] Gram points occurring when σ , 1

2 must then also

all be, crucially, mutually exclusive and (geometrically) different. Consequently since nontrivial zeros or
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G[x=0,y=0]P or Origin intercept points that represent one type of Gram points from η(s) only occurs when

σ = 1
2 , we conclude Riemann hypothesis must be true.

· The ”simple” equations such as for circle can be parameterized. All circles are similar in that they can

be transformed into each other and the ratio of circumference to diameter is invariant [denoted by π ∼

3.14159...]. However, not all ”complex” equations such as for ellipse can be parameterized. Proposition:

Any integral involving [mathematical] π secretly involves a [geometrical] circle. Corollary: Any integral

NOT involving a [geometrical] circle is independent of [mathematical] π. As analogical comparison, we

”generically” apply Hodge conjecture and Grothendieck period conjecture in a mathematical-geometrical

manner to Riemann zeta function ζ(s) outside the 0 < σ < 1-critical strip. For small positive integer values

of s: ζ(1) = ∞, ζ(2) =
π2

6
, ζ(3) = 1.2020569032..., ζ(4) =

π4

90
, ζ(5) = 1.0369277551..., ζ(6) =

π6

945
,

ζ(7) = 1.0083492774..., ζ(8) =
π8

9450
, ζ(9) = 1.0020083928..., ζ(10) =

π10

93555
, etc. The irrational

numbers are usefully differentiated here as algebraic irrational numbers e.g.
√

2,
√

3 and transcendental

irrational numbers e.g. π, e. When s = 2, 4, 6, 8, 10...; computed ζ(s) values all contain transcendental

irrational number π. When s = 3, 5, 7, 9, 11...; computed ζ(s) values are ”likely” all algebraic irrational

numbers. In fact, only ζ(3) or Apery’s constant is proven to be an irrational number but it is unknown

whether it is ”possibly” also a transcendental number that is derived from (e.g.) π3 or derived from another

unrelated transcendental number. Despite these unknowns, we validly state the computed ζ(s) values from

s = even numbers 2, 4, 6, 8, 10... versus s = odd numbers 3, 5, 7, 9, 11... which are (mathematically and

geometrically) different, all belong to irrational numbers that are, crucially, mutually exclusive.

·We arbitrarily classify CIS-ALN-decelerating even Prime gaps 2, 4, 6, 8, 10... as small Prime gaps 2 &

4, and large Prime gaps ≥ 6. (i) Small or smaller Prime gaps tend to appear amongst the smaller range

of integers. (ii) Large or larger Prime gaps tend to appear amongst the larger range of integers. Both

the former (i) and the later (ii) should overall appear in a perpetual manner amongst the entire range of

integers. First appearance of an even Prime gap do not always occur in an orderly manner e.g. 31st P

127 [with even Prime gap 14] first appear before 35th P 149 [with even Prime gap 10] and 43rd P 191

[with even Prime gap 12]. However once a particular even Prime gap does first appear, it must always

perpetually reappear albeit with decreasing frequency amongst the ever increasing range of integers.

· (i) IP CIS-IM-accelerating Gap 1-Even C = IP CIS-IM-accelerating Gap 1-Odd C. (ii) IP CIS-ALN-

decelerating Gap 2-Even C = IP CIS-ALN-decelerating Gap 2i-Odd P. From the inversely related (i)

[with its two unique subsets of Gap 1-Even C and Gap 1-Odd C that fully comply with Composite

number theorem] and (ii) [with its one unique subset of Gap 2-Even C and ALN unique subsets from

Gap 2i-Odd P that fully comply with Prime number theorem], the Prime-Composite quotient is stated

below in two equivalent formats:

(1) lim
x→∞

CIS-ALN-decelerating Gap 2i-Odd P + CIS-ALN-decelerating Gap 2-Even C
CIS-IM-accelerating Gap 1-Even C + CIS-IM-accelerating Gap 1-Odd C

= 0

(2) CIS-ALN-decelerating Gap 2i-Odd P + CIS-ALN-decelerating Gap 2-Even C
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∼
1

CIS-IM-accelerating Gap 1-Even C + CIS-IM-accelerating Gap 1-Odd C

· In between any two given Odd P, even Prime gap [= 2 + Σ(Number of all Gap 1-Even C + Number of all

Gap 1-Odd C)]. Hence Gap 1-Even C and Gap 1-Odd C do not exist for Gap 2-Odd P (twin primes). For

Gap 2i-Odd P with CIS-ALN-decelerating i = 1, 2, 3, 4, 5...; the initial five computed Prime-Composite

identifier groupings [see section 5] are listed:–

When i = 1, CIS-ALN-decelerating Gap 2-Odd P is given by Gap 2-Even C, Gap 2-Odd P.

When i = 2, CIS-ALN-decelerating Gap 4-Odd P is given by Gap 2-Even C, Gap 4-Odd P, Gap 1-Even

C, Gap 1-Odd C.

When i = 3, CIS-ALN-decelerating Gap 6-Odd P is given by Gap 2-Even C, Gap 6-Odd P, Gap 1-Even

C, Gap 1-Odd C, Gap 1-Even C, Gap 1-Odd C.

When i = 4, CIS-ALN-decelerating Gap 8-Odd P is given by Gap 2-Even C, Gap 8-Odd P, Gap 1-Even

C, Gap 1-Odd C, Gap 1-Even C, Gap 1-Odd C, Gap 1-Even C, Gap 1-Odd C.

When i = 5, CIS-ALN-decelerating Gap 10-Odd P is given by Gap 2-Even C, Gap 10-Odd P, Gap 1-Even

C, Gap 1-Odd C, Gap 1-Even C, Gap 1-Odd C, Gap 1-Even C, Gap 1-Odd C, Gap 1-Even C, Gap 1-Odd

C. · · · for all other remaining i.

· If we also include Gap 2-Even C between two consecutive Odd P, then even Prime gap [= 1 + Σ(Number

of all Gap 1-Even C + Number of all Gap 1-Odd C + solitary Gap 2-Even C)]. The generalized sequence

{n! + 2, n1 + 3, n1 + 4, ..., n! + n} using factorial function give rise to precisely n − 1 consecutive C since

1st term n! + 2 is divisible by 2, 2nd term n! + 3 is divisible by 3,..., (n − 1)th term n! + n is divisible by

n. For any n = 2, 4, 6, 8, 10, 12..., there is (even Prime gap – 1) = n − 1 = 1, 3, 5, 7, 11, 13... ”with

length of at least n − 1” thus reflecting the permitted total number of n − 1 consecutive C in between two

consecutive Odd P. This implies arbitrarily large even Prime gaps are possible whereby any particular

even Prime gap chosen from 2, 4, 6, 8, 10... can be derived from the same grouping with or without

including Gap 2-Even C as respectively denoted by (even Prime gap – 1) or (even Prime gap – 2). Two

important P-C constraints: (i) Prime gaps of n − 1 numbers can occur at numbers much smaller than

n! e.g. first prime gap of size larger than 14 occurs between Odd P 523 and Odd P 541, while 15! is

the vastly larger number 1307674368000. (ii) Although computed n consecutive C = 2, 4, 6, 8, 10... [≡

(forbidden) odd Prime gaps 1, 3, 5, 7, 9...] based on our generalized sequence using factorial function

are mathematically possible; all these specific n consecutive C will simply not correctly represent the

(permitted) total number of n − 1 consecutive C in between any two consecutive Odd P. All even Prime

gaps 2, 4, 6, 8, 10... with associated unique Odd P that perpetually reappear [albeit with decreasing

frequency] along the number line implies Modified Polignac’s and Twin prime conjectures are true.

· Probability (Gap 2i-Odd P from any i = 1, 2, 3, 4, 5... value that abruptly terminates) = 0 equates

to Modified Polignac’s and Twin prime conjectures being true. In particular, this statistical statement is

fully validated by application of Prime number theorem for Arithmetic progressions in Axiom 1, section
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6 that confirms the Set and derived Subsets of Gap 2i-Odd P are CIS-ALN-decelerating [and support the

generalized and ordinary Riemann hypothesis].

2. Infinite-length or Finite-length equations, sub-equations, algorithms and sub-algorithms

We adopt the abbreviations from subsection 1.1. Conceptually, IL (sub-)algorithms or IL (sub-)equations

and FL (sub-)algorithms or FL (sub-)equations will respectively generate infinitely-many and finitely-

many entities. All the FL (sub-)algorithms or FL (sub-)equations are CP but the IL (sub-)algorithms or IL

(sub-)equations can be either CP or IP. Here, we can validly regard equation Dirichlet eta function (proxy

for Riemann zeta function), and algorithms Sieve-of-Eratosthenes [for prime numbers] and Complement-

Sieve-of-Eratosthenes [for composite numbers] as ”IP IL number generators”.

Not least to maintain the Dimensional analysis homogeneity and to conserve the Total number of elements

(cardinality) [as supported by the outlined Proof by Contradiction in Remark 5.1], it is a sine qua non

Pre-requisite Mathematical Condition that a parent IP IL algorithm which is precisely constituted by its

IP IL sub-algorithms or a parent IP IL equation which is precisely constituted by its IP IL sub-equations

must generally all be wholly IP IL [and not be mixed IP IL and CP FL].

Prime counting function Prime-π(x) = number of prime numbers ≤ x. As literally an infinite-scale stepped-

mathematical function contributing to tuples and subtuples from Admissible Prime k-tuplets / tuples and

Inadmissible Prime k-tuples, there are three possible trajectories from Prime-π(x) whereby we also use

even Prime gaps 6n as common randomly chosen examples – viz. for n = 1, 2, 3..., even Prime gaps = 6,

12, 18... [multiples of 6].

(a) Accelerating primes: Prime gapi+2 – Prime gapi+1 > Prime gapi+1 – Prime gapi occurring an arbitrar-

ily large number of times e.g. Admissible Prime 3-tuplet (p, p+2, p+6) with smallest possible diameter =

6, Admissible Prime 3-tuple (p+6, p+10, p+16) ≡ (p, p+4, p+10) with [not the smallest possible] diam-

eter = 10 that is derived from Admissible Prime 18-tuplet (p, p+4, p+6, p+10, p+16, p+18, p+24, p+28,

p+30, p+34, p+40, p+46, p+48, p+54, p+58, p+60, p+66, p+70) with smallest possible diameter = 70,

and Admissible Prime 3-tuple (p, p+6, p+18) from ([p-24], [p-22], [p-10], p, p+6, p+18, [p+42], [p+50])

with [not the smallest possible] diameter = 18 occurring at consecutive primes (22391, 22397, 22409)

with position of first p = 2506.

(b) Decelerating primes: Prime gapi+2 – Prime gapi+1 < Prime gapi+1 – Prime gapi occurring an arbitrar-

ily large number of times e.g. Admissible Prime 3-tuplet (p, p+4, p+6) with smallest possible diameter

= 6, Admissible Prime 3-tuple (p+20, p+26, p+30) ≡ (p, p+6, p+10) with [not the smallest possible] di-

ameter = 10 that is derived from Admissible Prime 9-tuplet (p, p+2, p+6, p+8, p+12, p+18, p+20, p+26,

p+30) with smallest possible diameter = 30, and Admissible Prime 3-tuple (p, p+18, p+30) from ([p-26],

[p-22], [p-12], p, p+18, p+30, [p+50], [p+54]) with [not the smallest possible] diameter = 30 occurring

at consecutive primes (10193, 10211, 10223) with position of first p = 1252.
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(c) Steady primes: Prime gapi+2 – Prime gapi+1 = Prime gapi+1 – Prime gapi that should occur an

arbitrarily large number of times [albeit on extremely rare occasions] and can only involve prime gaps 6n.

For instance, the Admissible Prime 3-tuple (p, p+6, p+12) from ([p-2], p, p+6, p+12, [p+18], [p+28],

[p+36]) with [not the smallest possible] diameter = 12 occurring at consecutive primes (63691, 63697,

63703) with position of first p = 6386; and Admissible Prime 3-tuple (p, p+18, p+36) from ([p-2], p, p+18,

p+36, [p+54], [p+60]) with [not the smallest possible] diameter = 36 occurring at consecutive primes

(76543, 76561, 76579) with position of first p = 7531. An exception is the solitary Inadmissible Prime

3-tuple (p, p+2, p+4) with smallest diameter = 4 occurring at consecutive primes (3, 5, 7) ≡ cummulative

prime gaps (0, 2, 4). We can explain using either (3, 5, 7) tuple or (0, 2, 4) tuple why this particular Prime

3-tuple is inadmissible, and we choose the former tuple. k = 3, prime q ≤ k =⇒ prime q = 2 and 3 which

are required for modular q. For modular 2: 3 ≡ 1 (mod 2), 5 ≡ 1 (mod 2), 7 ≡ 1 (mod 2) =⇒ these three

primes did not take on all two residue values 0 and 1 [considered as success]. However, for modular 3: 3

≡ 0 (mod 3), 5 ≡ 2 (mod 3), 7 ≡ 1 (mod 3) =⇒ these three primes did take on all three residue values 0, 1

and 2 [considered as failure]. By definition, this failure occurrence =⇒ the three primes are inadmissible

since they would always include a multiple of 3 and therefore could not all be prime unless one of the

numbers is 3 itself with finite one prime placement.

For i = 1, 2, 3, 4, 5,..., n; relevant algorithm and sub-algorithms from Sieve of Eratosthenes computed for

the following mutually exclusive but dependent prime numbers all as rational numbers endowed with the

solitary odd Prime gap 1 for even prime number 2, and the initial even Prime gaps 2, 4 and 6 for odd Twin

primes, odd Cousin primes and odd Sexy primes:

(a) For IP IL algorithm [Gap 2, 4, 6, 8, 10...]-Sieve of Eratosthenes pn+1 = 3 +
n∑

i=1

gi [where n = ALN]

that faithfully generates all Odd P {3, 5, 7, 11, 13, 17, 19...} with cardinality ℵ0-decelerating, the nth

even Prime gap between two successive Odd P is denoted by gn = (n + 1)st Odd P – (n)th Odd P, i.e.

gn = pn+1 − pn = 2, 2, 4, 2, 4, 2....

(b) For CP FL sub-algorithm [Gap 1]-Sieve of Eratosthenes pn+1 = 2 +
n∑

i=1

gi [where n = 1 and not

ALN] that faithfully generates the first and only Even P {2} with cardinality CFS of 1, the solitary nth

odd prime gap between two successive primes is denoted by gn = (n + 1)st Odd P – (n)th Even P, i.e.

gn = pn+1 − pn = 3 − 2 = 1.

(c) For IP IL sub-algorithm [Gap 2]-Sieve of Eratosthenes pn+1 = 3 +
n∑

i=1

gi [where n = ALN] that faith-

fully generates all Odd twin P {3, 5, 11, 17, 29, 41, 59...} with cardinality ℵ0-decelerating, the nth even

Prime gap between two successive Odd twin P is denoted by gn = (n+ 1)st Odd twin P – (n)th Odd twin P,

i.e. gn = pn+1 − pn = 2, 6, 6, 12, 12, 18....

(d) For IP IL sub-algorithm [Gap 4]-Sieve of Eratosthenes pn+1 = 7 +
n∑

i=1

gi [where n = ALN] that faith-

fully generates all Odd cousin P {7, 13, 19, 37, 43, 67...} with cardinality ℵ0-decelerating, the nth even
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Prime gap between two successive Odd cousin P is denoted by gn = (n + 1)st Odd cousin P – (n)th Odd

cousin P, i.e. gn = pn+1 − pn = 6, 6, 8, 6, 24....

(e) For IP IL sub-algorithm [Gap 6]-Sieve of Eratosthenes pn+1 = 23 +
n∑

i=1

gi [where n = ALN] that faith-

fully generates all Odd sexy P {23, 31, 47, 53, 61, 73, 83...} with cardinality ℵ0-decelerating, the nth even

Prime gap between two successive Odd sexy P is denoted by gn = (n + 1)st Odd sexy P – (n)th Odd sexy

P, i.e. gn = pn+1 − pn = 8, 16, 6, 8, 12, 10....

With n = ALN or, traditionally,∞; rigorous algorithm-type proof for Modified Polignac’s and Twin prime

conjectures can be stated here as two statements. Statement 1: All known prime numbers = IP IL algorithm

(a) + CP FL sub-algorithm (b). Statement 2: IP IL algorithm (a) = IP IL sub-algorithm (c) + IP IL sub-

algorithm (d) + IP IL sub-algorithm (e) +... [that involves all even Prime gaps 2, 4, 6, 8, 10...] whereby

all the (sub-)algorithms in Statement 2 can be mathematically used to create self-similar fractal objects

based on their corresponding Prevalences. These objects are geometrically never identical [section 3].

There are three types of Gram points when σ = 1
2 and two types of virtual Gram points when σ , 1

2 .

With nontrivial zeros being a type of Gram points, there is zero probability that any of the countably infin-

itely many nontrivial zeros (Gram[x=0,y=0] Points or Origin intercept Points) can be located away from

[geometrical] Origin point, which correspond to [mathematical] critical line. This statement is precisely

equivalent to Riemann hypothesis.

As proxy function for Riemann zeta function in 0 < σ < 1 critical strip, Dirichlet eta function at the

(unique) σ = 1
2 -critical line generates all x-axis intercept points as usual Gram points or Gram[y=0]

points, all y-axis intercept points as Gram[x=0] points, and all Origin intercept points as Gram[x=0,y=0]

points or nontrivial zeros. When treated as equation and sub-equation, Dirichlet eta function is conceptu-

ally used to calculate all these mutually exclusive but dependent entities endowed with t-valued irrational

(transcendental) numbers except for initial Gram[y=0] point endowed with a t-valued rational number:

(a) Considered for t = 0 to +∞, Dirichlet eta function as IP IL equation will faithfully generate all above-

mentioned three types of Gram points that are endowed with t-valued irrational (transcendental) numbers

except for first Gram[y=0] point.

(b) Considered only for t = 0, Dirichlet eta function as CP FL sub-equation will faithfully generate the

first and only Gram[y=0] point that is endowed with t-valued rational number 0.

2.1. The extended and generalized Riemann hypothesis, Hasse principle for equations and Modified

Hasse principle for algorithms. Being an integral part of L-functions and modular forms database (LMFDB),

an L-function is a Dirichlet series with an Euler product and a functional equation e.g. Riemann zeta func-

tion, Dirichlet L-functions, L-functions of elliptic curves. Convolution involves manipulations of the

Satake parametes of L-function at good places e.g. symmetric powers, exterior powers, Rankin-Selberg

convolution. The top half of the diagram in ’The LMFDB universe’[14] is based on reciprocity conjecture

in Langlands program, which predicts that any motivic object corresponds to an automorphic object via
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their L-functions. Note: The functoriality conjecture states that a suitable homomorphism of L-groups is

expected to give a correspondence between automorphic forms (in the global case) or representations (in

the local case). Roughly speaking, Langlands reciprocity conjecture is the special case of functoriality

conjecture when one of the reductive groups is trivial.

Usually convergent on a half-plane, an L-series is a Dirichlet series that may give rise to an L-function via

analytic continuation. Riemann zeta function ζ(s) is a meromorphic function on complex plane associated

with one of several categories of mathematical objects. Via analytic continuation, it gives rise to Dirichlet

eta function η(s) [a special case of polylogarithm function]. We compare and contrast [as our personal

views using current knowledge] the extended and generalized Riemann hypothesis [which are generally

considered to be true] with the original Riemann hypothesis.

Suppose K is a number field (a finite-dimensional field extension of the rationals Q) with ring of integers

Oκ (this ring is the integral closure of the integers Z in K). If a is an ideal of Oκ, other than the zero ideal,

we denote its norm by Na. The Dedekind zeta-function of κ is then defined by ζK(s) =
∑

a

1
(Na)s for

every complex number s with real part > 1. The sum extends over all non-zero ideals a of Oκ. Dedekind

zeta-function satisfies a functional equation and can be extended by analytic continuation to the whole

complex plane. The resulting function encodes important information about the number field κ. The

extended Riemann hypothesis asserts that for every number field K and every complex number s with

ζK(s) = 0: if the real part of s is between 0 and 1, then it is in fact 1
2 . The ordinary Riemann hypothesis

follows from the extended one if we take the number field to be Q, with ring of integers Z.

Hurwitz zeta function is one of the many zeta functions formally defined for complex variables s with

Re(s) > 1 and a , 0,−1,−2,−3, ... by ζ(s, a) =
∞∑

n=0

1
(n + a)s . This series is absolutely convergent for

given values of s and a, and can be extended to a meromorphic function defined for all s , 1. With

a = 1, Riemann zeta function is then ζ(s, 1). With using rational arguments, Hurwitz zeta function may

be expressed as a linear combination of Dirichlet L-functions and vice versa. For Dirichlet L-functions

which is defined as L(χ, s) =
∞∑

n=1

χ(n)
ns ; the generalized Riemann hypothesis asserts that, for every Dirichlet

character χ and every complex number s with L(χ, s) = 0, if s is not a negative real number, then the real

part of s is 1
2 . The case χ(n) = 1 for all n yields the ordinary Riemann hypothesis.

Where p is a prime number, analytic or arithmetic p-adic zeta function [or the more general p-adic L-

function] is a function analogous to Riemann zeta function [or the more general L-functions], but whose

domain (e.g. the p-adic integers Zp, a profinite p-group, or a p-adic family of Galois representations) and

target (e.g. the p-adic numbers Qp or its algebraic closure) are p-adic. Via p-adic interpolation of special

values of L-functions, a [analytic] p-adic L-function, also known as p-adic Riemann zeta function ζp(s),

is constructed by Kubota-Leopoldt using Kummer’s congruences for Bernoulli numbers whereby values

at negative odd integers are those of Riemann zeta function at negative odd integers (up to an explicit cor-

rection factor). The main conjecture of Iwasawa theory (now a theorem due to Barry Mazur and Andrew

Wiles) is the statement that the [analytic] Kubota-Leopoldt p-adic L-function Lp(s, χ) and an [arithmetic]
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p-adic L-function [as analogue constructed by Iwasawa theory which can be potentially sourced from the

arithmetic of cyclotomic fields, or more generally, certain Galois modules over towers of cyclotomic fields

or even more general towers] are essentially the same. This type of conjecture represent formal statements

concerning the philosophy that special values of L-functions contain arithmetic information.

The [analytic] Kubota-Leopoldt p-adic L-function Lp(s, χ) interpolates the Dirichlet L-function with Euler

factor at p removed. More precisely, Lp(s, χ) is the unique continuous function of p-adic number s such

that Lp(1− n, χ) = (1− χ(p)pn−1)L(1− n, χ) for positive integers n divisible by p− 1. The right hand side

is just the usual Dirichlet L-function, except that Euler factor at p is removed, otherwise it would not be

p-adically continuous. The continuity of right hand side is closely related to Kummer congruences. When

n is not divisible by p−1, this does not usually hold; instead Lp(1−n, χ) = (1−χω−n(p)pn−1)L(1−n, χω−n)

for positive integers n. Here χ is twisted by a power of the Teichmuller character ω.

The p-adic L-functions can also be perceived as the p-adic measures (or the p-adic distributions) on p-

profinite Galois groups. The translation between this point of view and the original point of view of

Kubota-Leopoldt (as Qp-valued functions on Zp) is via the Mazur-Mellin transform (and class field the-

ory). One can also construct analytic p-adic L-functions for totally real fields. Via analytic continuation,

Dirichlet L-function is given by L(s, χ) =
∑

n

χ(n)
ns =

∏
p prime

1
1 − χ(p)p−s . At negative integers, it is given

by L(1 − n, χ) = −
Bn,χ

n
where Bn,χ is a generalized Bernoulli number defined by

∞∑
n=0

Bn,χ
tn

n!
=

f∑
a=1

χ(a)teat

e f t − 1
for χ a Dirichlet character with conductor f .

A polynomial can be expressed more concisely by using summation notation
n∑

k=0

akxk; viz, it can either

be zero or can be written as the sum of a finite number of non-zero terms. Each term consists of the

product of a number, called the coefficient of the term; and a finite number of indeterminates raised to

non-negative integer powers. Some subtypes of polynomials are Laurent polynomials [involving nega-

tive integer powers], trigonometric polynomials, matrix polynomials and exponential polynomials. As

opposed to an infinite series, a polynomial can also be regarded as a finite series with operation of adding

finitely many quantities.

An infinite series is the operation of adding infinitely many quantities whereby it can be constituted by

the two broad groups of power series and harmonic series. A power series is viewed as generalization

of polynomials since it is essentially an infinite polynomial that allows infinitely many non-zero terms to

occur with finite number of indeterminates raised to non-negative integer powers [as well as fractional

or negative integer powers]. A harmonic series is the infinite series formed by summing all positive unit

fractions whereby Riemann zeta function [manifesting non-converging or diverging behavior in 0 < σ < 1

critical strip] is a (non-alternating) harmonic series. Then Dirichlet eta function [manifesting converging

behavior in 0 < σ < 1 critical strip] is a (alternating) harmonic series; viz, the infinite series formed by

summing all positive and negative unit fractions.
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Some special cases of power series: A geometric series is the sum of an infinite number of terms that have

a constant ratio between successive terms. Puiseux series are a generalization of power series that allow

for negative and fractional exponents of the indeterminate. Laurent series of a complex function f (z) is

a representation of that function as a power series which includes terms of negative degree. A function

can be represented as a power series if it is complex differentiable in an open set. This is applicable to

functions such as sin x, cos x, ex, sinh x and cosh x for domain of applicability or convergence interval

(−∞,∞); and ln(1 + x), arcsin x and arctan x for domain of applicability or convergence interval (−1, 1).

Hasse principle is the original idea that one can find an integer solution to a polynomial equation with ra-

tional coefficients by using Chinese remainder theorem to piece together solutions modulo powers of each

different prime number. This is handled by examining the equation in completions of rational numbers:

real numbers and p-adic numbers.

Real numbers R = Rational numbers Q + Irrational numbers R/Q. When Hasse principle or Modified

Hasse principle is satisfied, local solutions derived from equations or algorithms are given asR and p-adics

numbers QP with their global solutions given as Q [since Q embed in R and QP; a global solution yields

local solutions at each prime, and vice versa]. For equations or algorithms having global solutions given

as Q/P, their local solutions can only be given as R but not p-adics numbers QP, and thus Hasse principle

or Modified Hasse principle is not satisfied. When these principles are satisfied, we can conceptually

consider eligible polynomials, power series or harmonic series be generally regarded as representing

certain types of p-adic (sub-)equations and eligible algorithms and sub-algorithms be generally regarded

as representing certain types of p-adic (sub-)algorithms.

Our formal generic version of Hasse or local-global principle states that certain types of equations and its

sub-equations have [global] rational solutions if and only if they have [local] solutions in the real numbers

and in the p-adic numbers for each prime p. We reveal two examples: For −∞ < x < +∞, y = 2x equation

[that generates all positive and negative even numbers] and y = 2x− 1 equation [that generates all positive

and negative odd numbers] have finite (solitary) rational solution at, respectively, x = 0 and x = 1
2 .

When considering s = σ + it, the CP IL equation Riemann zeta function [through its functional equation

given by Eq. (3)] as a (non-alternating) harmonic series, has a simple zero at each even negative integer

s = −2n = −2,−4,−6,−8,−10... that exactly correspond to all trivial zeros [with cardinality of ℵ0] given

as the (infinitely many) rational solutions. Based on Hasse principle being satisfied, the p-adic Riemann

zeta function [w.r.t. mathematically obtaining infinitely many Completely Predictable trivial zeros outside

the 0 < σ < 1 critical strip] can be conceptually created.

When considering s = σ ± it, the IP IL equation Dirichlet eta function [proxy function for Riemann zeta

function via analytic continuation] as a (alternating) harmonic series, has nontrivial zeros [with cardinality

of ℵ0] given as the infinitely many t-valued irrational (transcendental) solutions [which are not rational

solutions] only at σ = 1
2 critical line – this is Riemann hypothesis. Then as not satisfying Hasse principle,
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the p-adic Dirichlet eta function [w.r.t. mathematically obtaining infinitely many Incompletely Predictable

nontrivial zeros inside the 0 < σ < 1 critical strip] cannot be conceptually created.

Our formal generic version of Modified Hasse or local-global principle states that certain types of algo-

rithm and its sub-algorithms have [global] rational solutions if and only if they have [local] solutions in

the real numbers and in the p-adic numbers for each prime p.

We ignore even prime number 2. The algorithms Sieve-of-Eratosthenes generates all Primes as Odd

Primes, and Complement-Sieve-of-Eratosthenes generates all Composites as Even and Odd Composites.

For i = 1, 2, 3, 4, 5..., there are an arbitrarily large number of sub-algorithms derived from Gap 2i-Sieve-

of-Eratosthenes [c.f. List in section 2] that generates all Gap 2-Odd Twin Primes (3, 5), (5, 7), (11, 13),

(17, 19), (29, 31), (41, 43)... depicted as paired Odd Twin Prime and its next Odd Prime + all Gap

4-Odd Cousin Primes (7, 11), (13, 17), (19, 23), (37, 41), (43, 47), (67, 71)... depicted as paired Odd

Cousin Prime and its next Odd Prime + all Gap 6-Odd Sexy Primes (23, 29), (31, 37), (47, 53), (53, 59),

(61, 67), (73, 79), (83, 89)... depicted as paired Odd Sexy Prime and its next Odd Prime +...], etc. For

Modified Polignac’s and Twin prime conjectures to be true [w.r.t. primes (and composites) being rational

numbers]; then all these (sub-)algorithms must generate relevant (sub-)sets of Incompletely Predictable

primes (and composites) [with cardinality of ℵ0] as (infinitely many) rational solutions. We say all these

(sub-)algorithms which can be conceptually perceived as certain types of p-adic (sub-)algorithms must

satisfy Modified Hasse principle in that one can always find all the (infinitely many) rational solutions to

these IP IL (sub-)algorithms.

3. Prevalences of Nontrivial zeros, Primes and Composites as Incompletely Predictable entities

We adopt the abbreviations from subsection 1.1. The sets of numbers generated using power (exponent)

such as 2 or 1
2 , even numbers, odd numbers, etc are morphologically constituted by Completely Predictable

numbers in the sense that these sets of numbers are actually not random and do not behave like one.

The sets of nontrivial zeros, primes, composites, etc are morphologically constituted by Incompletely

Predictable numbers [or pseudo-random numbers] in the sense that these sets of numbers are actually not

random but behave like one. The word number [singular noun] or numbers [plural noun] in reference to

CP even and odd numbers, IP prime and composite numbers, IP Gram points and virtual Gram points can

be interchanged with the word entity [singular noun] or entities [plural noun].

Lemma 3.1. We can formally define the elements from (sub)sets and (sub)tuples as Completely Predictable

or Incompletely Predictable entities.

Proof. A set is a collection of zero (viz, the empty set) or more elements (viz, a finite set with a finite

number of elements or an infinite set with an infinite number of elements). A singleton refers to a finite

set with a single element. A set can be any kind of mathematical objects: numbers, symbols, points in

space, lines, other geometrical shapes, variables, or even other sets whereby these [mutable] non-repeating

elements are not arranged in an unique order. A subset can be a [smaller] finite set derived from its [larger]
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parent finite set or its [larger] parent infinite set. A subset can also be a [smaller] infinite set derived from

its [larger] parent infinite set. A tuple, which can potentially be subdivided into subtuples, is a finite

ordered list (sequence) of elements whereby these [immutable] non-repeating elements are arranged in an

unique order. Thus a tuple or a subtuple is regarded as a special type of finite set with the extra imposed

restriction. As shown below using worked examples:

CP simple equation or algorithm generates CP numbers e.g. even numbers 0, 2, 4, 6, 8, 10... or odd

numbers 1, 3, 5, 7, 9, 11.... A generated CP number is locationally defined as a number whose ith

position is independently determined by simple calculations without needing to know related positions of

all preceding numbers – this is a Universal Property.

IP complex equation or algorithm generates IP numbers e.g. prime numbers 2, 3, 5, 7, 11, 13... or

composite numbers 4, 6, 8, 9, 10, 12.... A generated IP number is locationally defined as a number whose

ith position is dependently determined by complex calculations with needing to know related positions of

all preceding numbers – this is a Universal Property.

We note the elements in (sub)sets and (sub)tuples when generated by equations or algorithms will precisely

constitute relevant entities or numbers of interest. The proof is now complete for Lemma 3.12.

Lemma 3.2. We can validly classify countably infinite sets as accelerating, linear or decelerating subtypes.

Proof. We provide the following required mathematical arguments.

Cardinality: With increasing size, arbitrary Set [or Subset] X can be countably finite set (CFS), count-

ably infinite set (CIS) or uncountably infinite set (UIS). Denoted as ∥X∥ in this paper, the cardinality of

Set X measures number of elements in Set X. E.g., Set negative Gram[y=0] point as constituted by a

[solitary] rational (Q) t-value of 0 instead of a usual transcendental (R − A) t-value has CFS of negative

Gram[y=0] point with this particular ∥negative Gram[y=0] point∥ = 1, Set even Prime number (P) has

CFS of solitary even P 2 with ∥even P∥ = 1, Set Natural numbers (N) has CIS of N with ∥N∥ = ℵ0, and

Set Real numbers (R) has UIS of R with ∥R∥ = c (cardinality of the continuum). Then with ∥CIS∥ = ℵ0

= [countably] infinitely many elements; we provide a novel classification for CIS based on its number of

elements (cardinality) manifesting linear, accelerating or decelerating property thus constituting the three

subtypes of CIS.

CIS-IM-accelerating: CIS with its cardinality given by ∥CIS-IM-accelerating∥ = ℵ0-accelerating =

[countably] infinitely many elements that will (overall) acceleratingly reach an infinity value. Examples:

CP integers 0, 1, 4, 9, 16... generated by simple equation y = x2 for x = 0, 1, 2, 3, 4... and CP values

obtained from natural exponential function y = e(x); and IP composite numbers 4, 6, 8, 9, 10... faithfully

generated by complex Complement-Sieve-of-Eratosthenes algorithm [which is equivalent to simply dis-

carding 0, 1, and all generated prime numbers via Sieve-of-Eratosthenes algorithm from the set of integers

0, 1, 2, 3, 4, 5...].

CIS-IM-linear: CIS with its cardinality given by ∥CIS-IM-linear∥ = ℵ0-linear = [countably] infinitely

many elements that will (overall) linearly reach an infinity value. Examples: CP entities 0, 1, 2, 3, 4, 5...

[representing all positive integer numbers] generated by simple equation y = x for x = 0, 1, 2, 3, 4...; CP
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entities 0, 2, 4, 6, 8, 10... [representing all positive even numbers] generated by simple equation y = 2x

for x = 0, 1, 2, 3, 4...; CP entities 1, 3, 5, 7, 9, 11... [representing all positive odd numbers] generated

by simple equation y = 2x − 1 for x = 1, 2, 3, 4, 5...; and IP nontrivial zeros, Gram[y=0] points and

Gram[x=0] points (all given as R − A t-values) generated from complex equation Riemann zeta function

via its proxy Dirichlet eta function. These IP entities will inevitably manifest IP perpetual repeating vio-

lations (failures) in Gram’s Law and Rosser’s Rule occuring infinitely many times. E.g., the former will

give rise to Set negative Gram[y=0] points whereby CIS negative Gram[y=0] points is constituted by

R − A t-values and is classified as having ∥negative Gram[y=0] points∥ = ∥CIS-IM-linear∥ = ℵ0-linear.

CIS-IM-decelerating or CIS-ALN-decelerating: CIS with its cardinality given by ∥CIS-ALN-decelerating∥

= ℵ0-decelerating = [countably] arbitrarily large number of elements that will (overall) deceleratingly

reach an Arbitrarily Large Number value. Examples: CP entities 0, 1,
√

2,
√

3, 2,
√

5... generated by

simple equation y =
√

x for x = 0, 1, 2, 3, 4, 5... and CP values obtained from natural logarithm function

y = ln(x); and IP prime numbers 2, 3, 5, 7, 11... faithfully generated by complex Sieve-of-Eratosthenes

algorithm. The proof is now complete for Lemma 3.22.

Endowed with t-valued transcendental (irrational) numbers, we define Gram points and virtual Gram

points which are generated by Riemann zeta function (via proxy Dirichlet eta function) as follows: Three

types of Gram points refer to Origin intercept points as Gram[x=0,y=0] points or nontrivial zeros, x-axis

intercept points as Gram[y=0] points and y-axis intercept points as Gram[x=0] points when σ = 1
2 (i.e.

the solitary critical line). Two types of virtual Gram points refer to virtual x-axis intercept points as virtual

Gram[y=0] points and virtual y-axis intercept points as virtual Gram[x=0] points when σ , 1
2 (i.e. the

infinitely many non-critical lines) whereby virtual Origin intercept points do not exist.

Let n denotes number. Congruence n ≡ 0 (mod 2) holds for even n {0, 2, 4, 6, 8, 10...} and congruence n

≡ 1 (mod 2) holds for odd n {1, 3, 5, 7, 9, 11...}. For i = all integers ≥ 0 [to allow inclusion of zeroeth or

0th even number = 0] or for i = all integers ≥ 1; both the ith position of nominated CP numbers or entities

and the ith position of nominated IP numbers or entities are simply given by i. Apart from the very first

Gram[y=0] point and the very first virtual Gram[y=0] point both occurring at t = 0, we note all infinitely

many Gram points and infinitely many virtual Gram points will consist of t-valued transcendental numbers

whose ith positions are IP with infinitely many digits after the decimal point in each transcendental number

again being IP. Important caveat: The choice of index n for Gram[y=0] points [or usual / traditional Gram

point] is crude and confusing as it is historically chosen in such a way that this index is 0 at the first

value which is larger than the smallest positive [equating to 1st] nontrivial zero (occurring at imaginary

part t = 14.134725...) located on σ = 1
2 critical line of Riemann zeta function. Thus when using the

notation ith Gram[y=0] point; our utilized position index i = 1, 2, 3, 4, 5, 6, 7... will now correspond to

traditional position index n = –3, –2, –1, 0, 1, 2, 3.... The initial few Gram[y=0] points are 0, 3.436218...,

9.666908..., 17.845599..., 23.170282..., 27.670182..., etc. The initial few nontrivial zeros are 14.134725...,

21.022040..., 25.010858..., 30.424876..., 32.935062..., 37.586178..., etc.
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CP simple equation or algorithm generates CP numbers. Reiterating from Lemma 3.1: A generated CP

number is locationally defined as a number whose ith position is independently determined by simple

calculations without needing to know related positions of all preceding numbers. We supply the example

using even and odd numbers.

E-O Pairing: For i = 1, 2, 3,..., ∞; let ith Even numbers = Ei and ith Odd numbers = Oi, and ith even

number gaps = eGapi and ith odd number gaps = oGapi. We ignore E0 = 0. The positions of Ei and Oi are

CP, and are independent from each other.

Ei 2 4 6 8 10 12 .....

eGapi 2 2 2 2 2 2
We can precisely, easily and independently calculate E5 = (2X5) = 10 and O5 = (2X5)–1 = 9.

Oi 1 3 5 7 9 11 .....

oGapi 2 2 2 2 2 2

IP complex equation or algorithm generates IP numbers. Reiterating from Lemma 3.1: A generated IP

number is locationally defined as a number whose ith position is dependently determined by complex

calculations with needing to know related positions of all preceding numbers. We supply the example

using prime and composite numbers (and note analogous examples can be readily created using nontrivial

zeros, Gram[y=0] points and Gram[x=0] points when σ = 1
2 ).

P-C Pairing: For i = 1, 2, 3,..., ∞; let ith Prime numbers = Pi and ith Composite numbers = Ci, and ith

prime number gaps = pGapi and ith composite number gaps = cGapi. The positions of Pi and Ci are IP,

and are dependent on each other.

Pi 2 3 5 7 11 13 .....

pGapi 1 2 2 4 2 4
We can precisely, tediously and dependently compute C6 = 12 and P6 = 13: 2 is 1st prime, 3 is 2nd prime,

4 is 1st composite, 5 is 3rd prime, 6 is 2nd composite, 7 is 4th prime, 8 is 3rd composite, 9 is 4th composite,

10 is 5th composite, 11 is 5th prime, 12 is 6th composite, 13 is 6th prime, etc. Our desired integer 12 is the

6th composite and integer 13 is the 6th prime.

Ci 4 6 8 9 10 12 .....

cGapi 2 2 1 1 2 2

We concisely define (rolling and cumulative) Prevalence of nontrivial zeros [including logical deduc-

tion that support Riemann hypothesis to be true], and (rolling and cumulative) Prevalences of prime and

composite numbers [including logical deductions that support Modified Polignac’s and Twin prime con-

jectures to be true]. We provide in subsection 3.1 the p-adic absolute values for these eternal entities when

calculated as rolling Prevalences.

We analyze the data of all CIS-IM-linear computed nontrivial zeros (NTZ) when extrapolated out over a

wide range of t ≥ 0 real number values. We can symbolically define nontrivial zeros counting function

NTZ-π(t) = number of NTZ ≤ t with t assigned to having real number values which are conveniently

designated by 10n whereby n = 1, 2, 3, 4, 5.... The cumulative Prevalence of nontrivial zeros = NTZ-π(t)
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/ t = NTZ-π(t) / (10n) when t = 0 to 10n, whereby denominator t is [artificially] regarded as having integer

number values. We conceptually define all consecutive NTZ gaps as ith t-valued NTZ – (i-1)th t-valued

NTZ. Thus there are CIS-IM-linear computed NTZ gaps. The numbers of NTZ between 100 – 101 [interval

= 9], 101 – 102 [interval = 90], 102 – 103 [interval = 900], 103 – 104 [interval = 9000], 104 – 105 [interval =

90000], 105 – 106 [interval = 900000], 106 – 107 [interval = 9000000], 107 – 108 [interval = 90000000]...

are 0, 29, 620, 9493, 127927, 1609077, 19388979, 226871900... with corresponding rolling Prevalence

of nontrivial zeros = 0, 0.322, 0.689, 1.055, 1.421, 1.788, 2.154, 2.521... =⇒ rolling Prevalence of

nontrivial zeros seems to overall fluctuatingly increase by around 0.366 in a ”linear” manner. This limited

observation alone suggests Cardinality of nontrivial zeros = ∥CIS-IM-linear∥ = ℵ0-linear.

In comparison, we further notice here the numbers of NTZ between 100 – 101 [interval = 9], 100 – 102

[interval = 99], 100 – 103 [interval = 999], 100 – 104 [interval = 9999], 100 – 105 [interval = 99999],

100 – 106 [interval = 999999], 100 – 107 [interval = 9999999], 100 – 108 [interval = 99999999]... are 0,

29, 649, 10142, 138069, 1747146, 21136125, 248008025... with corresponding cumulative Prevalence

of nontrivial zeros = 0, 0.293, 0.650, 1.014, 1.381, 1.747, 2.114, 2.480...

Using different σ-valued Riemann zeta function, we define co-linear lines or co-lines as any two generated

independent and mutually exclusive parallel (curved) lines that will never cross over one another. For

−∞ < t < +∞ that give rise to 0 < t < +∞ positive part or image having positive [t-valued] nontrivial

zeros and −∞ < t < 0 negative counterpart or mirror image having negative [t-valued] nontrivial zeros, the

synthesized Proposition is: Each and every t-valued nontrivial zeros that can be depicted geometrically as

t-valued Gram[x=0,y=0] points or t-valued Origin intercept points will only materialize when parameter

σ in Riemann zeta function [precisely] reaches the [exact] value of 1
2 .

The synthesized Corollary is: Nontrivial zeros will never materialize when parameter σ in Riemann zeta

function [imprecisely] reach an [inexact] infinitesimal small number 1
∞

value less than or more than (but

not equal to) 1
2 . Therefore Riemann hypothesis is true since this σ = 1

2 -associated Proposition and its

σ , 1
2 -associated Corollary constitute a set of mutually exclusive correct and complete mathematical

arguments on nontrivial zeros location being the unique σ = 1
2 critical line (but not the non-unique σ , 1

2

non-critical lines), and this is moreover valid for the entire range of −∞ < t < +∞.

Riemann zeta function’s co-linear lines, three types of Gram points, two types of virtual Gram points, and

perpetually recurring violations (failures) of Gram’s Law and Rosser’s Rule must [smoothly] manifest

Mirror symmetry and Law of continuity (subsection 4.1) when considered for entire range of −∞ < t <

+∞ as positive and negative real number line having its end boundaries delineated by interval (−∞,+∞).

We analyze the data of all CIS-IM-accelerating computed composite numbers when extrapolated out over

a wide range of x ≥ 4 integer values. We define composite counting function Composite-π(x) = number of

composites ≤ x with x conveniently assigned to having odd number values of the form 10n−1 whereby n =

1, 2, 3, 4, 5.... The cumulative Prevalence of all composite numbers = Composite-π(x) / x = Composite-

π(x) / (10n − 4) when x = 4 to 10n − 1. CIS-IM-accelerating composite numbers in totality all have either



22 JOHN TING

odd composite gap 1 or even composite gap 2. All the odd integers which are not prime numbers are odd

composite numbers, consecutively given as 9, 15, 21, 25, 27, 31.... Except for 0 and 2, all the remaining

even integers are even composite numbers, consecutively given as 4, 6, 8, 10, 12, 14, 16.... We can also

create cumulative Prevalences separately for the two subsets of even and odd composite numbers with

the former subset always being larger than the later subset because, with exception of even prime number

2, all prime numbers are odd numbers.

We analyze the data of all CIS-ALN-decelerating computed prime numbers when extrapolated out over a

wide range of x ≥ 2 integer values. We define prime counting function Prime-π(x) = number of primes ≤

x with x conveniently assigned to having odd number values of the form 10n − 1 whereby n = 1, 2, 3, 4,

5.... The cumulative Prevalence of all prime numbers = Prime-π(x) / x = Prime-π(x) / (10n − 2) when

x = 2 to 10n − 1. Prime gaps for all odd prime numbers are constituted by CIS-ALN-decelerating even

Prime gaps 2, 4, 6, 8, 10.... We can also create cumulative Prevalence of twin primes with prime gap 2,

Prevalence of cousin primes with prime gap 4, Prevalence of sexy primes with prime gap 6, etc.

n 1 2 3 4 5 6 7

PrevallP 0.4 0.25 0.168 0.1229 0.09592 0.078498 0.0664579

PrevPgap2 0.2 0.08 0.035 0.0205 0.01224 0.008169 0.0058980

PrevPgap4 0.1 0.08 0.040 0.0202 ... ... ...

PrevPgap6 0.0 0.07 0.044 0.0299 ... ... ...

n 8 9 10 11 ...

PrevallP 0.05761455 0.050847534 0.0455052511 0.04118054813 ...

PrevPgap2 0.00440312 ... ... ... ...

The terms Prevalence and Proportion are interchangeable. For n = 1, 2, 3, 4, 5... in the expression x = 2

to 10n − 1, we obtain above tabulated calculations with captured manifestation of decelerating properties

on the relationship: Prevalence of all primes (PrevallP) = Prevalence of twin primes with prime gap 2

(PrevPgap2) + Prevalence of cousin primes with prime gap 4 (PrevPgap4) + Prevalence of sexy primes with

prime gap 6 (PrevPgap6) +.... We can compare and contrast with computed rolling Prevalence of Prime

numbers: between 0 to 9 = 4 1-digit Primes per 10 1-digit integers = 0.4, between 10 to 99 = 21 2-digit

Primes per 90 2-digit integers = 0.233, between 100 to 999 = 143 3-digit Primes per 900 3-digit integers

= 0.159, between 1000 to 9999 = 1061 4-digit Primes per 9000 4-digit integers = 0.118, between 10000

to 99999 = 8363 5-digit Primes per 90000 5-digit integers = 0.093, between 100000 to 999999 = 68906

6-digit Primes per 900000 6-digit integers = 0.076, etc.

n 1 2 3 4 5 6 7 8
PrevPgap2

PrevallP
0.5 0.32 0.2083 0.1668 0.1276 0.1041 0.08875 0.07642

PrevPgap4

PrevallP
0.25 0.32 0.2381 0.1644 ... ... ... ...

PrevPgap6

PrevallP
0.0 0.28 0.2619 0.2433 ... ... ... ...
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Figure 1. Proportion (Prevalence) of Twin primes, Cousin primes [as partial calculations]

and Sexy Primes [as partial calculations] with Proportion (Prevalence) of all Primes in-

cluded. The n = 1, 2, 3, 4, 5, 6, 7, 8... in 10n that is denoted with horizontal x-axis implies

the scale of this axis is non-linearly depicted using increasing powers of 10.

We next calculate in above table [which are then graphically depicted in Figure 1] the Proportion of Twin

primes with prime gap 2, Cousin primes with prime gap 4, and Sexy primes with prime gap 6. These are

respectively derived using relevant ratios
PrevPgap2

PrevallP
,

PrevPgap4

PrevallP
and

PrevPgap6

PrevallP
with the Proportion of all

Primes also depicted for comparison. The Proportion of Twin primes, Cousin primes [as partial calcula-

tions] and Sexy Primes [as partial calculations] with the Proportion (Prevalence) of all Primes included in

Figure 1 clearly depict these Proportions to deceleratingly reach an infinitesimal small number value 1
∞

just above 0 [but never reaches 0] as n→ ∞. When utilizing the same 10n number system as specified by

variable n in Figure 1; the PrevallC = 0.5, 0.75, 0.832, 0.8771, 0.9041, 0.9215, 0.9335, 0.9424... will fully

reflect the statement Integers = {0, 1} + all Primes {2, 3, 5, 7, 11, 13...} + all Composites {4, 6, 8, 9, 10,

12...}. Then the Proportion (Prevalence) of all Composites will reciprocally depict acceleratingly reaching

an infinitesimal small number value 1
∞

just below 1 [but never reaches 1] as n→ ∞.

We can validly ignore the solitary even Prime number 2 [at x = 2] and simply regard all Primes here as

odd primes. Then there is an arbitrarily large number of all Primes for x = 3 to 10n − 1. We deduce the

average prime gaps in relation to arbitrarily large number of all even Prime gaps 2, 4, 6, 8, 10, 12, 14...

must overall and individually manifest the asymptotically zero behavior of natural logarithm. Proportion

of all Primes is known to deceleratingly reach an infinitesimal small number value 1
∞

[but never 0] as

n → ∞. Then for cases of even Pime gaps 2, 4, 6, 8, 10... we infer the following deduction based on

the all-important condition Proportions of Twin primes, Cousin primes, Sexy primes, etc are all coupled

to Proportion of all Primes [conceptually] as self-similar fractal objects displayed in Figure 1: Whereas

the Proportions of Twin primes, Cousin primes, Sexy primes, etc and Proportion of all Primes are coupled

together [conceptually] as self-similar fractal objects [that are never identical], so must both the well-

defined Proportions of Twin primes, Cousin primes, Sexy primes, etc and Proportion of all Primes always

manifest deceleratingly reaching an infinitesimal small number value 1
∞

[but never 0] as n→ ∞.
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The above synopsis involves positive odd prime numbers as an overall set and individual subsets of odd

prime numbers derived from even Prime gaps 2, 4, 6, 8, 10... [treated overall and individually as part

or image] in regards to mathematical arguments on even Prime gaps that prove Modified Polignac’s and

Twin prime conjectures to be true. The mathematical arguments on even Prime gaps can equivalently be

applied to negative odd prime numbers [with corresponding overall set and individual subsets treated as

counterpart or mirror image], thus also proving these same conjectures to be true.

All above-mentioned overall set and individual subsets of positive and negative odd primes must [jaggedly]

manifest Mirror symmetry and Law of continuity (subsection 4.1) when considered for entire range of

positive and negative integer number line with its end boundaries delineated by interval (−∞,+∞).

3.1. p-adic absolute values applied to Prevalences of Nontrivial zeros, Primes and Composites. A p-adic

number is an extension of the field of rationals such that congruences modulo powers of a fixed prime p are

related to proximity in p-adic metric. Any nonzero rational number x can be represented by x = (par)/s

where p is a prime number, r and s are integers not divisible by p, and a is a unique integer. We firstly

define the p-adic norm of x by |x|p = p−a, and secondly define the p-adic norm |0|p = 0.

Since zero terms can always be added at the beginning, every rational x has an [essentially] unique p-adic

expansion x =
∞∑

j=m

a j p j, with m an integer, a j the integers between 0 and p-1 inclusive, and where the

sum is convergent with respect to p-adic valuation. If x! , 0 and am! , 0, then the expansion is unique.

Then for p a prime and n a positive integer, |n!|p = p(−(n−Ap(n))/(p−1)), where the p-adic expansion of n is

n = a0 + a1 p+ a2 p2 + ...+ aL pL, and Ap(n) = a0 + a1 + ...+ aL. For sufficiently large n, |n!|p ≤ p−n/(2p−2).

The p-adic valuation on Q gives rise to the p-adic metric d(x, y) = |x − y|p, which in turn gives rise to

the p-adic topology. It can be shown that the rationals, together with the p-adic metric, do not form a

complete metric space. The completion of this space can therefore be constructed, and the set of p-adic

numbers Qp is defined to be this completed space.

Consider the rolling Prevalence of Nontrivial zeros between 1 to 10, 10 to 100, 100 to 1000,... obtained

from section 3:
0
9
= 0 ·3−2,

29
90
= 291 ·2−1 ·3−2 ·5−1,

620
900
= 311 ·3−2 ·5−1,

9493
9000

= 111 ·8631 ·2−3 ·3−2 ·5−3,
127927
90000

= 191 ·67331 ·2−4 ·3−2 ·5−4,
1609077
900000

= 2571 ·20871 ·2−5 ·3−1 ·5−5,
19388979
9000000

= 21543311 ·2−6 ·5−6,
226871900
90000000

= 22687191 · 2−5 · 3−2 · 5−5,.... They have corresponding p-adic absolute values as follows:

|
0
9
|2 = 0,

|
29
90
|29 =

1
29
/ |

29
90
|2 = 2 / |

29
90
|3 = 9 / |

29
90
|5 = 5,

|
620
900
|31 =

1
31
/ |

620
900
|3 = 9 / |

620
900
|5 = 5,

|
9493
9000

|11 =
1
11
/ |

9493
9000

|863 =
1

863
/ |

9493
9000

|2 = 8 / |
9493
9000

|3 = 9 / |
9493
9000

|5 = 125,

|
127927
90000

|19 =
1
19
/ |

127927
90000

|6733 =
1

6733
/ |

127927
90000

|2 = 16 / |
127927
90000

|3 = 9 / |
127927
90000

|5 = 625,

|
1609077
900000

|257 =
1

257
/ |

1609077
900000

|2087 =
1

2087
/ |

1609077
900000

|2 = 32 / |
1609077
900000

|3 = 3 / |
1609077
900000

|5 = 3125,
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|
19388979
9000000

|2154331 =
1

2154331
/ |

19388979
9000000

|2087 =
1

2087
/ |

19388979
9000000

|2 = 64 / |
19388979
9000000

|5 = 15625,

|
226871900
90000000

|2268719 =
1

2268719
/ |

226871900
90000000

|2 = 64 / |
226871900
90000000

|3 = 9 / |
226871900
90000000

|5 = 15625,...

Consider the rolling Prevalence of Prime numbers between 1 to 9 as 1-digit Primes, 10 to 99 as 2-digit

Primes, 100 to 999 as 3-digit Primes, 1000 to 9999 as 4-digit Primes, 10000 to 99999 as 5-digit Primes,

100000 to 999999 as 6-digit Primes,... obtained from Appendix C:
4
9
= 22 ·3−2,

21
90
= 31 ·71 ·2−1 ·3−2 ·5−1,

143
900
= 111 · 131 · 2−2 · 3−2 · 5−2,

1061
9000

= 10611 · 2−3 · 3−2 · 5−3,
8363
90000

= 83631 · 2−4 · 3−2 · 5−4,
68906

900000
=

21 · 1311 · 2631 · 2−5 · 3−2 · 5−5,... They have corresponding p-adic absolute values as follows:

|
4
9
|2 =

1
4
/ |

4
9
|3 = 9,

|
21
90
|7 =

1
7
/ |

21
90
|2 = 2 / |

21
90
|3 = 3 / |

21
90
|5 = 5,

|
143
900
|11 =

1
11
/ |

143
900
|13 =

1
13
/ |

143
900
|2 = 4 / |

143
900
|3 = 9 / |

143
900
|5 = 25,

|
1061
9000

|1061 =
1

1061
/ |

1061
9000

|2 = 8 / |
1061
9000

|3 = 9 / |
1061
9000

|5 = 125,

|
8363
90000

|8363 =
1

8363
/ |

8363
90000

|2 = 16 / |
8363
90000

|3 = 9 / |
8363

90000
|5 = 625,

|
68906
900000

|131 =
1

131
/ |

68906
900000

|263 =
1

263
/ |

68906
900000

|2 = 16 / |
68906

900000
|3 = 9 / |

68906
900000

|5 = 3125,...

Consider the rolling Prevalence of Composite numbers between 1 to 9 as 1-digit Composites, 10 to 99

as 2-digit Composites, 100 to 999 as 3-digit Composites, 1000 to 9999 as 4-digit Composites, 10000 to

99999 as 5-digit Composites, 100000 to 999999 as 6-digit Composites,... obtained from Appendix C:
4
9

= 22 · 3−2,
69
90
= 31 · 231 · 2−1 · 3−2 · 5−1,

757
900
= 7571 · 2−2 · 3−2 · 5−2,

7939
9000

= 171 · 4671 · 2−3 · 3−2 · 5−3,
81637
90000

= 816371 ·2−4 ·3−2 ·5−4,
831094
900000

= 21 ·111 ·371 ·10211 ·2−5 ·3−2 ·5−5,... They have corresponding

p-adic absolute values as follows:

|
4
9
|2 =

1
4
/ |

4
9
|3 = 9,

|
69
90
|23 =

1
23
/ |

69
90
|2 = 2 / |

69
90
|3 = 3 / |

69
90
|5 = 5,

|
757
900
|757 =

1
757
/ |

757
900
|2 = 4 / |

757
900
|3 = 9 / |

757
900
|5 = 25,

|
7939
9000

|17 =
1
17
/ |

7939
9000

|467 =
1

467
|
7939
9000

|2 = 8 / |
7939
9000

|3 = 9 / |
7939
9000

|5 = 125,

|
81637
90000

|81637 =
1

81637
/ |

81637
90000

|2 = 16 / |
81637
90000

|3 = 9 / |
81637
90000

|5 = 625,

|
831094
900000

|11 =
1

11
/ |

831094
900000

|37 =
1

37
/ |

831094
900000

|1021 =
1

1021
/ |

831094
900000

|2 = 16 / |
831094
900000

|3 = 9 / |
831094
900000

|5

= 3125,...

Progressively computed rolling Prevalences on infinitely-many Primes, Composites and nontrivial zeros

must all be eternal entities. Primes and Composites are complementary numbers as manifested by the

reciprocal patterns of [unique] p-adic absolute values (of Infinite-Length) obtained for their respective

rolling Prevalences. As eternal entities, then the patterns of [unique] p-adic absolute values (of Infinite-

Length) obtained for Odd Primes generated by each of their corresponding even Prime gaps 2, 4, 6, 8,

10... as rolling Prevalences are also possible.
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We deduce as Proposition there can only be one [unique] pattern of p-adic absolute values (of Infinite-

Length) obtained for rolling Prevalence of Nontrivial zeros when the only one [unique] σ = 1
2 condition

is met. Then as Corollary, the pattern of p-adic absolute value for rolling Prevalence of Nontrivial zeros

must perpetually be zero when the [non-unique] σ , 1
2 conditions are met.

4. Intersection of Riemann zeta function, Dirichlet eta function and Sieve of Eratosthenes

Riemann zeta function ζ(s) is a function of complex variable s (=σ±ıt) that continues sum of infinite series

ζ(s) =
∞∑

n=1

1
ns =

1
1s +

1
2s +

1
3s + · · · for Re(s) > 1, and its analytic continuation elsewhere. Containing no

nontrivial zeros, ζ(s) is defined only in 1 < σ < ∞ region where it is absolutely convergent. The common

convention is to write s as σ + ıt with ı =
√
−1, and with σ and t real. Valid for σ > 0, we write ζ(s) as

Re{ζ(s)}+ıIm{ζ(s)} and note that ζ(σ + ıt) when 0 < t < +∞ is the complex conjugate of ζ(σ − ıt) when

−∞ < t < 0.

ζ(s) =
∞∑

n=1

1
ns(1)

=
1
1s +

1
2s +

1
3s + · · ·

= Πp prime
1

(1 − p−s)

=
1

(1 − 2−s)
.

1
(1 − 3−s)

.
1

(1 − 5−s)
.

1
(1 − 7−s)

.
1

(1 − 11−s)
· · ·

1
(1 − p−s)

· · ·

η(s) =
∞∑

n=1

(−1)n+1

ns =
1
1s −

1
2s +

1
3s − · · ·(2)

Eq. (2) alternating harmonic series Dirichlet eta function η(s) that faithfully generates all three types of

Gram points as three dependent CIS-IM-linear Incompletely Predictable entities when σ = 1
2 must act

as proxy function for Eq. (1) non-alternating harmonic series Riemann zeta function ζ(s) in critical strip

(0 < σ < 1) containing critical line (σ = 1
2 ) because ζ(s) only converges when σ > 1. This implies

ζ(s) is undefined to left of σ > 1 region in the critical strip which then requires η(s) representation. They

are related to each other as ζ(s) = γ · η(s) or equivalently as η(s) =
1
γ
· ζ(s) with proportionality factor

γ =
1

(1 − 21−s)
.

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1 − s) ζ(1 − s)(3)

ζ(s) satisfies Eq. (3) as functional equation, whereby Γ(s) is the gamma function. As an equality of

meromorphic functions valid on whole complex plane, Eq. (3) relates values of ζ(s) at points s and

1 − s; in particular, it relates even positive integers with odd negative integers. Owing to the zeros of

sine function, the functional equation implies that ζ(s) has a simple zero at each even negative integer
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Figure 2. Narrow range of positive & negative prime and composite numbers plotted

together on integer number line generated using Sieve-of-Eratosthenes and complement-

Sieve-of-Eratossthenes. The combined [positive] image and [negative] mirror image will

conceptually represent a one-dimensional line (state) having perfect Mirror symmetry

with integer number 0 acting as the Point of symmetry.

Figure 3. OUTPUT for σ = 1
2 as Gram points. Polar graph of ζ( 1

2 + ıt) depicted as a

two-dimensional figure plotted along critical line for real values of t running between –

30 and +30 [viz, for s = σ ± t range], horizontal axis: Re{ζ( 1
2 + ıt)}, and vertical axis:

Im{ζ( 1
2 + ıt)}. Origin intercept points are present. There is manifestation of perfect Mirror

symmetry about the horizontal x-axis acting as the line of symmetry in this figure (state).

s = −2n = −2,−4,−6,−8,−10..., known as trivial zeros of ζ(s). When s is an even positive integer, the

product sin(
πs
2

)Γ(1 − s) on the right is non-zero because Γ(1 − s) has a simple pole, which cancels the

simple zero of the sine factor.

4.1. Mirror symmetry and Law of continuity. Mirror symmetry is a state’s geometrical property that a

point of symmetry, an axis (line) of symmetry or a plane of symmetry will split the state (a line, figure
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or object) in half; whereby these halves as image and mirror image are identical to, or indistinguishable

from, each other. We define Law of continuity as a heuristic principle that ”whatever succeeds for the

finite [local state], also succeeds for the infinite [general state]”, whereby locally and generally there

must not be a break in the state (a line or figure or object), and nothing passes from one state to another

without passing through all the intermediate states.

Remark 4.1. Figure 2 [regarding positive & negative primes and composites] and Figure 3 [regarding

Co-linear Riemann zeta function for positive & negative range] manifest perfect Mirror symmetry and

fully comply with Law of Continuity. The following are valid comments: Whereas the continuous-like

equation Riemann zeta function ζ(s) Eq. (1) [via proxy Dirichlet eta function η(s) Eq. (2)] for s = σ ± t

range that generate mutually exclusive CIS-IM-linear σ-valued co-lines are mathematically regarded as

smoothly continuous everywhere thus obeying Law of continuity; so must the discrete-like algorithms

Sieve-of-Eratosthenes and Complement-Sieve-of-Eratosthenes that generate mutually exclusive Primes

and Composites be conceptually regarded as jaggedly continuous everywhere thus also obeying Law of

continuity. CIS-ALN-decelerating Primes and CIS-IM-accelerating Composites are dependent and com-

plementary entities. In ζ(s) Eq. (1), equivalent Euler product formula with product over prime numbers

[instead of summation over natural numbers] also represents ζ(s) =⇒ all primes and, by default, com-

posites are intrinsically encoded in ζ(s). Since via analytic continuation, η(s) =
1
γ
· ζ(s) [proxy function

for ζ(s) in 0 < σ < 1- critical strip]; then all primes and, by default, composites are also intrinsically

encoded in η(s) Eq. (2).

The involved states that manifest Mirror symmetry and obey Law of continuity are: (i) For i = 1, 2, 3, 4,

5...; positive (+ve) and negative (–ve) primes derived from Pi+1 = Pi ± PGapi with P1 = ±2 [symbolizing

Sieve-of-Eratosthenes] and +ve and –ve composites derived from Ci+1 = Ci ± CGapi with C1 = ±4

[symbolizing Complement-Sieve-of-Eratosthenes], and (ii) never-ending supply of co-linear lines (with

range −∞ < t < +∞ giving rise to s = σ ± t) from mutually exclusive and independent equations of

Riemann zeta function [via proxy Dirichlet eta function] having solitary σ = 1
2 value and infinitely-many

σ , 1
2 values.

CIS-IM-linear Integers {0, ±1, ±2, ±3, ±4, ±5...} = CFS {0, ±1} + CIS-ALN-decelerating Prime num-

bers {±2, ±3, ±5, ±7, ±11...} + CIS-IM-accelerating Composite numbers {±4, ±6, ±8, ±9, ±10...}. We

validly ignore even Prime number ±2. The two discrete-like algorithms that generate unique Set (all +ve

and –ve odd primes) and Set (all +ve and –ve composites) can be further subdivided into various sub-

algorithms that generate unique Subsets (+ve and –ve odd primes) and Subsets (+ve and –ve composites).

These (sub)sets listed under Remark 1.1 in subsection 1.1 [depicted as +ve entities] must belong to either

CIS-ALN-decelerating or CIS-IM-accelerating. They contain primes and composites [as mutually exclu-

sive and dependent discrete zero-dimensional (0-D) entities] characterized in a perpetual manner under

+ve integer part or image and –ve integer counterpart or mirror image.
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Via proxy Dirichlet eta function as its analytic continuation, Riemann zeta function is a continuous-like

equation forming an infinite number of continuous 1-D co-linear lines as specified by their corresponding

endowed σ values. For −∞ < t < +∞ (constituting 0 < t < +∞ part or image and −∞ < t < 0 counterpart

or mirror image), the generated solitary σ = 1
2 -specified co-linear line contains three mutually exclusive

and dependent discrete 0-D entities of nontrivial zeros, Gram[y=0] points and Gram[x=0] points which are

all given by variable t having ± transcendental number values. Similarly for −∞ < t < +∞ (constituting

0 < t < +∞ part or image and −∞ < t < 0 counterpart or mirror image), the generated infinitely many

σ , 1
2 -specified co-linear lines will each contains two mutually exclusive and dependent discrete 0-D

entities of virtual Gram[y=0] points and virtual Gram[x=0] points which are all given by variable t having

± transcendental number values.

Major differentiating property: Our two algorithms that generate discrete zero-dimensional (0-D) primes

and composites when plotted as connected [jagged] lines are only defined at two end-points a,b but not

for interval [a,b] whereas our functions with different σ values that generate infinitely-many continuous

[smooth] one-dimensional (1-D) co-linear lines are defined at two end-points a,b as well as for interval

[a,b]. The algorithms and functions on interval (−∞,+∞) as integer number line and real number num-

ber line are individually classified as well-defined jagged continuous algorithm and well-defined smooth

continuous function whose definition assigns it a unique interpretation or value. Respectively, they are

conceptually and mathematically continuous everywhere.

Primes or composites never have discontinuity is colloquially interpreted as there must [theoretically]

never be any existing ”hidden” primes or composites yet-to-be-discovered in between any two (consec-

utive) primes or composites when [faithfully] generated by their jagged continuous algorithms. One just

have to consider either +ve or –ve primes, composites and t-valued nontrivial zeros when proving their

associated open problems with Mathematical-Geometrical interpretations on Law of continuity given:–

A continuous-like equation such as Riemann zeta function (via its proxy Dirichlet eta function) with

designated σ value obtained from anywhere in the 0 < σ < 1 critical strip [that is bisected by the σ = 1
2

critical line] is smoothly defined by the following properties:

1. Function f (x) is defined at point x = a and is smoothly continuous at that point.

2. The limit of function f (x) should be smoothly defined at point x = a.

3. The value of function f (x) at that point, i.e. f (a) is smoothly = the value of the limit of f (x) at x = a.

The co-linear line in Figure 3 with all Gram points [and intermittent occurrences of less frequent violations

(failures) of Gram’s Law and much less frequent violations (failures) of Rosser’s Rule] is (smoothly)

continuous everywhere [viz, continuous locally and generally].

Analogically, a discrete-like algorithm such as Sieve-of-Eratosthenes or Complement-Sieve-of-Eratosthenes

is jaggedly defined by the following properties:

1. Algorithm A(x) is defined at point x = a and is jaggedly continuous at that point.

2. The limit of algorithm A(x) should be jaggedly defined at point x = a.

3. The value of algorithm A(x) at that point, i.e. A(a) is jaggedly = the value of the limit of A(x) at x = a.
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The two algorithms that generate all +ve and –ve primes or composites are (jaggedly) continuous every-

where [viz, continuous locally and generally] as observed in Figure 2.

5. Prime-Composite identifier grouping and Co-linear Riemann zeta function

Let E = even numbers, O = odd numbers, P = prime numbers, even Prime gapi = O-Pi+1 – O-Pi = 2, 4, 6,

8, 10, 12..., Composite gapi = Ci+1 – Ci = 1, 2. For even Prime gaps 4, 6, 8, 10, 12..., we can generate the

orderly consecutive numbers as sequence {Gap 2-E-C1, O-Pi, Gap 1-E-C2, Gap 1-O-C3, Gap 1-E-C4, Gap

1-O-C5,..., Gap 1-E-Cn−2, Gap 1-O-Cn−1, Gap 2-E-Cn, O-Pi+1}. The cardinality of sub-sequence {Gap

1-E-C2, Gap 1-O-C3, Gap 1-E-C4, Gap 1-O-C5,..., Gap 1-E-Cn−2, Gap 1-O-Cn−1} = even Prime gapi –

2 = n – 2. However for twin primes; this sub-sequence [as an empty set or null set] do not exist with

its cardinality = 0 since even Prime gap 2 – 2 = 0. With cardinality of this sub-sequence given by the

involved even Prime gap minus 2; we conveniently define P-C identifier grouping as Gap 2-E-C1, O-Pi,

Gap 1-E-C2, Gap 1-O-C3, Gap 1-E-C4, Gap 1-O-C5,..., Gap 1-E-Cn−2, Gap 1-O-Cn−1 for Arbitrarily Large

Number of even Prime gaps 4, 6, 8, 10, 12... with caveat P-C identifier grouping for even Prime gap 2

is an exception given by Gap 2-E-C1, O-Pi. For (”different”) n = 1, 2, 3, 4, 5...; [decelerating] size of

equally distributed Gap 2n-O-P and Gap 2-E-C is inversely proportional to [accelerating] size of equally

distributed Gap 1-E-C and Gap 1-O-C. Gap 2-E-Cn is now acting as the new Gap 2-E-C1 for O-Pi+1 in

the following perpetually repeating cycles of O-Pi to O-Pi+1 with a [usually] different even Prime gapi

[except for rare recurring cases of two or more consecutive O-P having two or more identical consecutive

even Prime gaps involving 6 and multiples of 6].

We simply have no choice but to accept There is zero probability that appearances of P-C identifier

grouping when computed as Cardinality 0 for Gap 2-Twin primes, Cardinality 2 for Gap 4-Cousin primes,

Cardinality 4 for Gap 6-Sexy primes, etc should ever stop or terminate in a discriminatory manner over

the large range of integer numbers, thus confirming Modified Polignac’s and Twin prime conjectures.

For Riemann zeta function via proxy Dirichlet eta function, we simply have no choice but to accept the

solitary σ = 1
2 -critical line connection with all nontrivial zeros thus confirming Riemann hypothesis.

Useful deductions regarding prime numbers: For n = 1, 2, 3, 4, 5...; CIS-ALN-decelerating Gap 2n-

O-P + CIS-ALN-decelerating Gap 2-E-C is inversely proportional to CIS-IM-accelerating Gap 1-E-C +

CIS-IM-accelerating Gap 1-O-C. The Arbitrarily Large Number of CIS-ALN-decelerating Gap 2-O-P,

CIS-ALN-decelerating Gap 4-O-P, CIS-ALN-decelerating Gap 6-O-P... must all constitute valid subsets

of odd prime numbers. Law of continuity aesthetically implies each and every Arbitrarily Large Number

of even Prime gaps 2, 4, 6, 8, 10, 12... must repeatedly exist without discontinuities [albeit not always

appearing as first occurrences of the relevant associated odd prime numbers and thus not always complying

with the prescribed naturally occurring ascending order for even numbers].

Remark 5.1. To confirm algorithm and sub-algorithms from Sieve-of-Eratosthenes must all be Incom-

pletely Predictable and of Infinite Length, we refer to the equally distributed Gap 1-E-C and Gap 1-O-C
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existing as (i) recurring sets with varying different cardinality of 2, 4, 6, 8, 10... that correspond to even

Prime gaps 4, 6, 8, 10, 12... and (ii) recurring null sets with non-varying same cardinality of 0 that

correspond to even Prime gap 2. There is zero probability that any of these sets will [discriminatorily]

become countably finite set for some particular even Prime gap(s). We rephrase the relevant parts from

section 2: Incompletely Predictable complex Sieve-of-Eratosthenes (sub)algorithms [as Σ(Gap 2n-Sieve-

of-Eratosthenes algorithm) = Gap 2-Sieve-of-Eratosthenes sub-algorithm + Gap 4-Sieve-of-Eratosthenes

sub-algorithm + Gap 6-Sieve-of-Eratosthenes sub-algorithm +... for n = 1, 2, 3, 4, 5...] will faithfully

generate all ALN of Odd Primes. Applying Proof by Contradiction to theoretical situation of, for in-

stance, Modified Twin prime conjecture being false; one would [falsely] contends the Gap 2-Sieve-of-

Eratosthenes sub-algorithm [= Σ(Gap 2n-Sieve-of-Eratosthenes algorithm) – Gap 4-Sieve-of-Eratosthenes

sub-algorithm – Gap 6-Sieve-of-Eratosthenes sub-algorithm –... for n = 1, 2, 3, 4, 5...] can only generate a

CFS of twin primes. By logical deduction, this Gap 2-Sieve-of-Eratosthenes sub-algorithm is then strictly

regarded [incorrectly] as a simple Completely Predictable sub-algorithm having Finite-Length instead of

[correctly] as a complex Incompletely Predictable sub-algorithm having Infinite-Length. By logical con-

tradiction, Modified Twin prime conjecture is then consequently true in that there must be an Arbitrarily

Large Number of twin primes. Ditto for other remaining Gap 2n-Sieve-of-Eratosthenes sub-algorithms

derived from n = 2, 3, 4, 5, 6... by employing above similar line of arguments to reach same conclusion.

Useful deductions regarding nontrivial zeros: For a given function (equation) y = f (x), there may be

no geometrical symmetry in the given equation whereby this equation may or may not intercept the Origin

point; or there may be one or more geometrical symmetry in the given equation about the X-axis, Y-axis,

Diagonal, or Origin point whereby this equation may or may not intercept the Origin point. For a given

equation, these types of symmetry can be correspondingly tested by replacing y with −y, x with −x, both

y with x and x with y, or both x with −x and y with −y.

With Dirichlet eta function acting as proxy function for Riemann zeta function, we deduce using first

principle that the infinitely many t-valued Origin intercept points [which faithfully represents all t-valued

nontrivial zeros] of Riemann zeta function will only be generated when its parameter σ = 1
2 [which

represents the solitary critical line] but not when its parameter σ , 1
2 [which represents the infinitely

many non-critical lines]. This is notwithstanding another simple deduction that Riemann zeta functions

when endowed with any σ values between 0 and 1 [viz, in 0 < σ < 1 critical strip which is bisected

by σ = 1
2 critical line into two regions 0 < σ < 1

2 and 1
2 < σ < 1] will always behave mathematically

as different independent co-linear equations [all without geometrical symmetry if we only consider the

range of either 0 < t < +∞ or −∞ < t < 0] whereby they generate mutually exclusive co-linear lines that

geometrically never cross over one another.

(4)
∞∑

n=1

(2n)−
1
2 2

1
2 cos(t ln(2n) +

1
4
π) −

∞∑
n=1

(2n − 1)−
1
2 2

1
2 cos(t ln(2n − 1) +

1
4
π) = 0



32 JOHN TING

(5)
∞∑

n=1

(2n)−
2
5 2

1
2 cos(t ln(2n) +

1
4
π) −

∞∑
n=1

(2n − 1)−
2
5 2

1
2 cos(t ln(2n − 1) +

1
4
π) = 0

Euler formula can be stated as eın = cos n + ı · sin n. Applying this formula to f(n) η(s) will result f(n)

simplified η(s). Eq. (4) is f(n) simplified η(s) at σ = 1
2 that will incorporate all nontrivial zeros [as Zeroes].

There is total absence of (non-existent) virtual nontrivial zeros [as virtual Zeroes]. Eq. (5) is f(n) simplified

η(s) at σ = 2
5 that will incorporate all (non-existent) virtual nontrivial zeros [as virtual Zeroes]. There is

total absence of nontrivial zeros [as Zeroes]. Upon inspecting Eq. (4) that manifest exact Dimensional

analysis homogeneity when σ = 1
2 whereby Σ(all fractional exponents) = 2(−σ) = exact negative whole

number of –1 [as opposed to Eq. (5) that manifest inexact Dimensional analysis homogeneity when σ = 2
5

whereby Σ(all fractional exponents) = 2(–σ) = inexact negative fractional number of – 4
5 ]; we deduce

only Dirichlet eta function containing parameter σ = 1
2 will mathematically depict the [optimal] ”formula

symmetry” on Σ(all fractional exponents) as an exact negative whole number. This formula symmetry is

not equivalent to geometrical symmetry about the X-axis, Y-axis, Diagonal, or Origin point that do not

exist for any Dirichlet eta function when only considered for either −∞ < t < 0 or 0 < t < +∞. With full

range of t variable being −∞ < t < +∞ whereby we conventionally adopt positive range 0 < t < +∞,

this simple observation confirms only σ = 1
2 -Dirichlet eta function will perpetually and geometrically

intercept Origin point as Origin intercept points (i.e. will perpetually and mathematically lie on critical

line as nontrivial zeros) an infinite number of times.

Remark 5.2. Logical reasoning to analogically confirm statements on ”formula symmetry”: The co-linear

mathematical equations having geometrical symmetry y = a cos(x)b – c cos(x)d = zero [≡ solitary Origin

intercept point at the Origin point] occur only when the unique solitary a = c condition is met. This

represents the Proposition: Optimal ”formula symmetry” at solitary uniqueσ = 1
2 -critical line will always

produce nontrivial zeros as Origin intercept points. Then, y = a cos(x)b – c cos(x)d , zero [≡ nil Origin

intercept point at the Origin point] occur when the non-unique multiple a , c conditions are met. These

represent the Corollary: Nil optimal ”formula symmetry” at infinitely many non-uniqueσ , 1
2 -noncritical

lines will never produce nontrivial zeros as Origin intercept points. We notice that it is immaterial whether

the b = d or b , d conditions are met for both situations.

We also deduce that occurrences of infinitely many violations (failures) of Gram’s Law and Rosser’s Rule

resulting in altered appearances of Gram points [w.r.t. nontrivial zeros] in σ = 1
2 -Dirichlet eta function

do not contradict the above findings in Remark 5.2 since any possible solutions for σ , 1
2 -Dirichlet eta

functions as true x-axis intercept points [w.r.t. true Origin intercept points] or as true Gram points [w.r.t.

true nontrivial zeros] is a geometrical or mathematical impossibility. Here, the term Gram points denote

Gram[y=0] points (or x-axis intercept points). From Appendix A, we note Gram’s Law is the tendency

for nontrivial zeros of Riemann-Siegel function Z(t) to alternate with Gram[y=0] points when σ = 1
2 .

The first violation (failure) of Gram’s Law occurs at n = 126. Rosser’s Rule states that every Gram block
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contains the expected number of roots as Gram[y=0] points when σ = 1
2 . The first violation (failure) of

Rosser’s Rule occurs at the much larger n = 13999525.

Remark 5.3. Incorporating classification of countably infinite sets into three subtypes, we outline simple

and complex properties manifested by Completely Predictable and Incompletely Predictable entities. As

an example of simple property, x-axis intercept points for simple function sin n are Completely Predictable

to ”linearly” occur infinitely many times when n = all positive and negative multiples of π. Examples of

complex properties: As stated by Gram’s Law, x-axis intercept points for complex function Riemann-

Siegel function Z(t) or Riemann zeta function [via its proxy Dirichlet eta function] ”linearly” occur in-

finitely many times as Incompletely Predictable t-values that represent usual positive Gram[y=0] points

which tend to alternate with nontrivial zeros. As unique Incompletely Predictable events ”linearly” occur-

ring infinitely many times, there are intermittent observable various geometric variants of two consecutive

(positive first and then negative) Gram[y=0] points that is alternatingly followed by two consecutive non-

trivial zeros. These events denote violations (failures) of Gram’s Law. Violations (failures) of Rosser’s

Rule refer to the much less frequent intermittently occurring Incompletely Predictable observable vari-

ous geometric variants of reduction in expected number of t-values for certain x-axis intercept points.

”Linearly” occurring infinitely many times, each of these events gives rise to two missing Gram[y=0]

points or, equivalently, to two extra nontrivial zeros. Plus Gap 2 Composite Number Continuous Law and

Plus-Minus Gap 2 Composite Number Alternating Law[27] outlined in section 8 are two overall Incom-

pletely Predictable properties seen when we dependently combine [deceleratingly-occurring] primes and

[acceleratingly-occurring] composites with associated prime gaps and composite gaps for critical analysis.

Occurring over 2000 years ago (c. 300 BC), ancient Euclid’s theorem on infinitude of prime numbers us-

ing reductio ad absurdum (proof by contradiction) is earliest known but not the only proof for this simple

problem. Since then dozens of proofs have been devised such as three chronologically listed: Goldbach’s

Proof using Fermat numbers (written in a letter to Swiss mathematician Leonhard Euler, July 1730),

Furstenberg’s Topological Proof[6], and Filip Saidak’s Proof[21]. The strangest candidate is Fursten-

berg’s Topological Proof. In 2013, Yitang Zhang proved a landmark result showing some unknown even

number N < 70 million that represents an even Prime gap with its associated CIS-ALN-decelerating Odd

Primes[33]. By optimizing Zhang’s bound, subsequent Polymath Project collaborative efforts using a new

refinement of GPY sieve in 2014 lowered N to 246; and assuming Elliott-Halberstam conjecture and its

generalized form further lower N to 12 and 6, respectively. Intuitively, N has more than one valid values

such that the same condition holds for each N value. With different methods, we can at most lower N to 2

and 4 in regards to Odd Primes having small prime gaps 2 & 4 with each uniquely generating CIS-ALN-

decelerating Odd Primes. We anticipate there are all remaining prime gaps in regards to Odd Primes with

large prime gaps ≥ 6 that are denoted by corresponding N ≥ 6 values whereby each large prime gap will

generate its own unique CIS-ALN-decelerating Odd Primes.
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5.1. Inverse functions of ln(x) with e(x) and li(x) with Ei(x). We start with the conditional statement ”If P,

then Q” which is notated as P→ Q. The converse of the conditional statement is ”If Q, then P” which is

notated as Q→ P. The contrapositive of the conditional statement is ”If not Q, then not P” which is notated

as ∼Q→ ∼P. The inverse of the conditional statement is ”If not P then not Q” which is notated as ∼P→

∼Q. An inverse function (or anti-function) is a function that ”reverses” another function: if the function f

applied to an input x gives a result of y, then applying its inverse function g to y gives the result x, i.e., g(y)

= x if and only if f (x) = y. Not all functions have an inverse. The inverse function of f is also denoted as

f −1 and it exists if and only if f is bijective. Since a function is a special type of binary relation, many of

the properties of an inverse function correspond to following three properties of converse relations:

(i) Uniqueness. If an inverse function exists for a given function f , then it is unique. This follows since

the inverse function must be the converse relation, which is completely determined by f .

(ii) Symmetry. There is a symmetry between a function and its inverse. Specifically, if f is an invertible

function with domain X and codomain Y, then its inverse f −1 has domain Y and image X, and the inverse

of f −1 is the original function f . In symbols, for functions f : X → Y and f −1: Y → X, f −1 ◦ f = idX

and f ◦ f −1 = idY . This statement is a consequence of the implication that for f to be invertible it must be

bijective.

(iii) Self-inverses. If X is a set, then the identity function on X is its own inverse: idX
−1 = idX . More

generally, a function f : X→ X is equal to its own inverse, if and only if the composition f◦ f is equal to

idX . Such a function is called an involution. The involutory nature of inverse can be concisely expressed

by
(

f −1)−1
= f . The inverse of g◦ f is

(
f −1) ◦ (g−1) . The inverse of a composition of functions is given

by (g ◦ f )−1 = f −1 ◦ g−1. Notice that the order of g and f have been reversed; to undo f followed by g, we

must first undo g, and then undo f . For a function f : X → Y , its inverse f −1 : Y → X admits an explicit

description: it sends each element y ∈ Y to the unique element x ∈ X such that f (x) = y.

As the base of natural logarithm, irrational (transcendental) number e is a mathematical constant approxi-

mately equal to 2.71828. It is the limit of (1 +
1
n

)n as n approaches∞ and can also be calculated as sum of

infinite series e =
∞∑

n=0

1
n!
= 1 +

1
1
+

1
1 · 2

+
1

1 · 2 · 3
+ · · ·. We outline the important properties of natural

logarithm function and natural exponential function with their connections to logarithmic integral function

and exponential integral function as inverse or pseudo-inverse functions. The natural logarithm function,

if considered as a real-valued function of a positive real variable, is the inverse of exponential function,

leading to the following identities:
eln x = x if x is strictly positive,

ln ex = x if x is any real number.

As shown in Figure 4, the natural logarithm ln(x) has a vertical asymptote of x = 0 [y-axis] as x approaches

0 [with ln(x) becoming −∞]. Its inverse function e(x) has a horizontal asymptote of y = 0 [x-axis] as x

approaches −∞ [with e(x) becoming 0]. With the slope of horizontal line being 0, and the slope of

vertical line being an undefined value; we recognize the slope of ln(x) becomes an infinitesimal small

number (+ 1
∞

) that approaches 0 as x grows towards ∞ but the slope of its inverse function e(x) becomes
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Figure 4. The natural logarithm function logex or ln(x) and natural exponential function

exp(x) or ex. The graphs of logex and its inverse ex are symmetric with respect to line y

= x thus geometrically denoting diagonal symmetry of these two functions.

an infintely large number (+∞) that approaches an undefined value as x grows towards∞. Extrapolations:

(1) Slope for Prevalence of all Primes as fraction of all integers. We recognize the slope of ln(x)

can symbolically denote, for instance, the (decelerating) slope for Prevalence of all Primes will approach

0 as an infinitesimal small number value [but never becomes 0] as x grows towards ∞. (2) Slope for

Prevalence of all Composites as fraction of all integers. Similarly, the slope of e(x) can symbolically

denote, for instance, the (accelerating) slope for Prevalence of all Composites will approach an undefined

value as an infinite large number value [but never becomes an undefined value] as x grows towards∞.

Like all logarithms, the natural logarithm maps multiplication of positive numbers into addition: ln(x · y) =

ln x + ln y. Logarithms can be defined for any positive base other than 1, not only e. However, logarithms

in other bases differ only by a constant multiplier from the natural logarithm, and can be defined in terms

of the latter, logb x = ln x/ ln b = ln x · logb e. Their properties are ln 1 = 0; ln e = 1; ln(xy) = ln x + ln y

for x > 0 and y > 0; ln(x/y) = ln x − ln y; ln(xy) = y ln x for x > 0; ln x < ln y for 0 < x < y; lim
x→0

ln(1 + x)
x

= 1; lim
α→0

xα − 1
α
= ln x for x > 0;

x − 1
x
≤ ln x ≤ x − 1 for x > 0; ln (1 + xα) ≤ αx for x ≥ 0 and α ≥ 1.

The real natural exponential function exp: R→ R can be characterized in a variety of equivalent ways.

It is commonly defined by Taylor series exp x :=
∞∑

k=0

xk

k!
= 1 + x +

x2

2
+

x3

6
+

x4

24
+ · · · +

xn

n!
+ · · ·. By way

of binomial theorem and power series definition, the exponential function can also be defined as the limit:

exp x = lim
n→∞

(
1 +

x
n

)n
. It can be shown that every continuous, nonzero solution of the functional equation

f (x + y) = f (x) f (y) is an exponential function, f : R→ R, x 7→ ekx, with k ∈ R. The exponential func-

tion satisfies exponentiation identity ex+y = exey for all x, y ∈ R, which, along with definition e = exp(1),

shows that factors en = e × · · · × e︸        ︷︷        ︸
n factors

for positive integers n, and relates exponential function to the elemen-

tary notion of exponentiation. The base of natural exponential function, its value at 1, e = exp(1) is a
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ubiquitous mathematical constant called Euler’s number approximately equal to 2.71828 – this number

also acts as base of natural logarithm function.

The [analogical] logarithmic integral function li(x) is defined as li(x) =
∫ x

0

dt
ln t

. The function 1/(ln t)

has a singularity at t = 1, and the integral for x > 1 is interpreted as a Cauchy principal value, li(x) =

lim
ε→0+

Ç∫ 1−ε

0

dt
ln t
+

∫ x

1+ε

dt
ln t

å
. The li(x) function is related to its inverse exponential integral function

Ei(x) via equation li(x) = Ei(ln x), and is valid for x > 0. This identity provides a series representa-

tion of li(x) as li(eu) = Ei(u) = γ + ln |u| +
∞∑

n=1

un

n · n!
for u , 0, where γ ≈ 0.57721 56649 01532... is

the Euler-Mascheroni constant. A more rapidly convergent series by Ramanujan is li(x) = γ + ln ln x

+
√

x
∞∑

n=1

(−1)n−1(ln x)n

n! 2n−1

⌊(n−1)/2⌋∑
k=0

1
2k + 1

. The asymptotic behavior for x→∞ is li(x) = O
( x

ln x

)
where O

is big O notation. The full asymptotic expansion is li(x) ∼
x

ln x

∞∑
k=0

k!
(ln x)k or

li(x)
x/ ln x

∼ 1+
1

ln x
+

2
(ln x)2

+
6

(ln x)3 + · · ·. This gives more accurate asymptotic behaviour: li(x) −
x

ln x
= O
Å

x
(ln x)2

ã
.

In perspective, the [100% accurate] perfect Prime-π(x) stepped-mathematical function being wrapped

around by [less-than-100% accurate] approximate li(x) smooth-mathematical function infinitely many

times via this sign of difference changes implies li(x) is the most efficient approximate mathematical

function. Contrast this with the crude [less-than-100% accurate] approximate
x

ln x
smooth-mathematical

function whereby studied values diverge away from Prime-π(x) at increasingly greater rate for larger range

of prime numbers.

6. Prime number theorem and Composite number theorem with Prime-Composite quotient

A number base, consisting of any whole number greater than 0, is the number of digits or combination

of digits that a number system uses to represent numbers e.g. decimal number system or base 10, binary

number system or base 2, octal number system or base 8, hexa-decimal number system or base 16. As

x → ∞, various derived properties of Prime counting function, Prime-π(x) [= number of primes up to x]

occur in, for instance, Prime number theorem for Arithmetic Progressions, Prime-π(x; b, a) [= number of

primes up to x with last digit of primes given by a in base b]. For any choice of digit a in base b with

gcd(a,b) = 1: Prime-π(x; b, a) ∼
Prime-π(x)

ϕ(b)
. Here, Euler’s totient function ϕ(n) is defined as the number

of positive integers ≤ n that are relatively prime to (i.e., do not contain any factor in common with) n,

where 1 is counted as being relatively prime to all numbers. Then each of the last digit of primes given by

digit a in base b as x→ ∞ is equally distributed between the permitted choices for digit a with this result

being valid for, and is independent of, any chosen base b.

Numbers with their last digit ending in (i) 1, 3, 7 or 9 [which can be either primes or composites] constitute

∼40% of all integers; and (ii) 0, 2, 4, 5, 6 or 8 [which must be composites] constitute ∼60% of all integers.

We validly ignore the only single-digit even prime number 2 and odd prime number 5. We note ≥ 2-digit

Odd Primes can only have their last digit ending in 1, 3, 7 or 9 but not in 0, 2, 4, 5, 6 or 8. These are given
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as the complete List:

The last digit of Odd Primes having their Prime gaps with last digit ending in 2 [viz, Gap 2, Gap 12, Gap

22, Gap 32...] can only be 1, 3 or 9 [but not (5) or 7] as three choices.

The last digit of Odd Primes having their Prime gaps with last digit ending in 4 [viz, Gap 4, Gap 14, Gap

24, Gap 34...] can only be 1, 3 or 7 [but not (5) or 9] as three choices.

The last digit of Odd Primes having their Prime gaps with last digit ending in 6 [viz, Gap 6, Gap 16, Gap

26, Gap 36...] can only be 3, 7 or 9 [but not (5) or 1] as three choices.

The last digit of Odd Primes having their Prime gaps with last digit ending in 8 [viz, Gap 8, Gap 18, Gap

28, Gap 38...] can only be 1, 7 or 9 [but not (5) or 3] as three choices.

The last digit of Odd Primes having their Prime gaps with last digit ending in 0 [viz, Gap 10, Gap 20, Gap

30, Gap 40...] can only be 1, 3, 7 or 9 [but not (5)] as four choices.

Axiom 1. Applications of Prime number theorem for Arithmetic Progressions confirm Modified Polignac’s

and Twin prime conjectures, and support the generalized and ordinary Riemann hypothesis. Note: Odd

Primes derived from various even Prime gaps are listed in section 2.

Proof. We use decimal number system (base b = 10), and ignore the only single-digit even prime number

2 and odd prime number 5. For i = 1, 2, 3, 4, 5...; the last digit of all Gap 2i-Odd Primes can only end in 1,

3, 7 or 9 that are each proportionally and equally distributed as ∼25% when x→ ∞, whereby this result is

consistent with Prime number theorem for Arithmetic Progressions. The 100%-Set of, and its derived four

unique 25%-Subsets of, Gap 2i-Odd Primes based on their last digit being 1, 3, 7 or 9 must all be CIS-

ALN-decelerating. ”Different Prime numbers literally equates to different Prime gaps” is a well-known

intrinsic property. Since the ALN of Gap 2i as fully represented by all Prime gaps with last digit ending

in 0, 2, 4, 6 or 8 are associated with various permitted combinations of last digit in Gap 2i-Odd Primes

being 1, 3, 7 and/or 9 as three or four choices [outlined above in List from preceding paragraph]; then

these ALN unique subsets of Prime gaps based on their last digit being 0, 2, 4, 6 or 8 together with their

correspondingly derived ALN unique subsets constituted by Gap 2i-Odd Primes having last digit 1, 3, 7 or

9 must also all be CIS-ALN-decelerating. The Probability (any Gap 2i abruptly terminating as x→ ∞) =

Probability (any Gap 2i-Odd Primes abruptly terminating as x → ∞) = 0. Thus Modified Polignac’s and

Twin prime conjectures is confirmed to be true. With the ordinary Riemann hypothesis being a special

case, the generalized Riemann hypothesis formulated for Dirichlet L-function [subsection 2.1] holds once

x > b2, or base b < x
1
2 as x→ ∞. The proof is now complete for Axiom 12.

All primes generated by Sieve-of-Eratosthenes algorithm and all composites generated by Complement-

Sieve-of-Eratosthenes algorithm are mutually exclusive and complementary numbers. These two algo-

rithms will act as pseudo-inverse algorithms for each other. Prime gaps P–gn = Pn+1 − Pn and Composite

gaps C–gn = Cn+1 − Cn. Prime gaps are constituted by CFS of P–gn = 1 representing solitary even prime
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number {2}; and CIS-ALN-decelerating of P–gn {2, 4, 6, 8, 10...} representing all CIS-ALN-decelerating

odd prime numbers {3, 5, 7, 11, 13, 17, 19...}. Composite gaps are constituted by CFS of C–gn = 1

representing all CIS-IM-accelerating odd composite numbers {9, 15, 21, 25, 27, 33, 35, 39...} and all CIS-

IM-accelerating even composite numbers {8, 14, 20, 24, 26, 32, 34, 38, 44...} [that both occur together in

between any two odd prime numbers specified by P–gn ≥ 4]; and C–gn = 2 representing all CIS-ALN-

decelerating even composite numbers [that precede all odd prime numbers] {4, 6, 10, 12, 16, 18, 22, 28,

30, 36, 40, 42...}.

One notice three useful facts: (i) the [only] solitary even prime number 2 do not have a preceding com-

posite number since 1 is neither prime nor composite, (ii) the [recurring] CIS-ALN-decelerating even

composite numbers following all twin primes {4, 6, 12, 18, 30, 42, 60, 72...} having C–gn = 2 always

represent the next even composite number that will precede the following odd prime number [with thus

complete absence of both even composite numbers having C–gn = 1 and odd composite numbers having

C–gn = 1 in between the two odd primes that specify the involved twin primes], and (iii) the [only] consec-

utive twin primes [with both having P–gn = 2] that occur involves three consecutive odd prime numbers

3, 5 and 7; and are associated with the [only] two existing consecutive even composite numbers 4 and 6

[with both having C–gn = 2]. Note: (i) Even number 2 is prime [and not a Gap 2-Even composite]. (ii)

Each twin prime Pn is always associated with two consecutive Gap 2-Even composites that precede and

follow this twin prime.

Combined Completely Predictable Even-Odd formula:

CIS-IM-linear Gap 1-integers {0, 1, 2, 3, 4, 5, 6...} = CIS-IM-linear Gap 2-even numbers {0, 2, 4, 6, 8, 10,

12...} + CIS-IM-linear Gap 2-odd numbers {1, 3, 5, 7, 11, 13...}

We deduce the independent functions (equations) y = f (x) = 2x with its inverse function y−1 = f −1(x)

=
x
2

that generate all Gap 2-even numbers and y = f (x) = 2x − 1 with its inverse function y−1 = f −1(x)

=
x + 1

2
=

x
2
+

1
2

that generate all Gap 2-odd numbers must act as two complementary and balanced

functions [whereby these are pseudo-inverse functions of each other since the two inverse functions

only differ by the constant
1
2

]. We compare this to the two dependent functions y = e(x) and y = ln(x)

which are complementary and balanced inverse functions of each other.

Combined Incompletely Predictable Prime-Composite formulae:

CIS-IM-linear Gap 1-integers {0, 1, 2, 3, 4, 5, 6...} = CFS integers {0, 1} + CFS even prime number {2}

+ CIS-ALN-decelerating odd prime numbers {3, 5, 7, 11, 13, 17, 19...} + CIS-IM-accelerating composite

numbers {4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20...}.

We deduce the dependent algorithms that generate all Odd Primes and all Composites must act as two

complementary and balanced pseudo-inverse algorithms. We further deduce from previous analysis

that the dependent paired algorithms that generate (i) {Odd Primes [but which does not include even

Prime 2] + Gap 2-Even Composites [but which does not precede solitary Odd Prime 3]} and (ii) {Gap

1-Even Composite + Gap 1-Odd Composites} must also act as two complementary and balanced paired

pseudo-inverse algorithms.
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Prime-Composite quotient: Let P = Primes, C = Composites, Z = Integers. Based on Prime-π(x) and

Composite-π(x) as x → ∞, the P-C quotient is derived from Conservation of Set Z = {0, 1} + Set P +

Set C, and Set Gap 2i-Odd P = Subset Gap 2-Odd P + Subset Gap 4-Odd P + Subset Gap 6-Odd P +....

Whereas the overall algorithm that generate all Odd P from even Prime gaps 2, 4, 6, 8, 10... is classified

as CIS-ALN-decelerating; so must each and every sub-algorithms that generate Gap 2-Odd P from even

Prime gap 2, Gap 4-Odd P from even Prime gap 4, Gap 6-Odd P from even Prime gap 6, etc be also clas-

sified as CIS-ALN-decelerating [and not be classified as CIS-IM-accelerating or CFS]. As defined below,

the limit of P-C quotient as x increases without bound is 0:

lim
x→∞

CIS-ALN-decelerating (Gap 2i-Odd P) + CIS-ALN-decelerating (Gap 2-Even C)
CIS-IM-accelerating (Gap 1-Even C) + CIS-IM-accelerating (Gap 1-Odd C)

= 0

Using asymptotic notation, this [inversely proportional] quotient result can be restated as:

CIS-ALN-decelerating (Gap 2i-Odd P) + CIS-ALN-decelerating (Gap 2-Even C)

∼
1

CIS-IM-accelerating (Gap 1-Even C) + CIS-IM-accelerating (Gap 1-Odd C)
We reiterate Gap 1-Even C and Gap 1-Odd C are missing between all twin primes. Strictly, CIS-ALN-

decelerating (Gap 2i-Odd P) = CIS-ALN-decelerating (Gap 2-Even C) + 1 whereby the even number 2

that precede first odd prime number 3 is prime and thus not a Gap 2-Even C. Since CIS-ALN-decelerating

(Gap 2i-Odd P) = CIS-ALN-decelerating (Gap 2-Even C) and CIS-IM-accelerating (Gap 1-Even C) =

CIS-IM-accelerating (Gap 1-Odd C) is sufficiently accurate, then the following are also valid statements:

CIS-ALN-decelerating (Gap 2i-Odd P) or CIS-ALN-decelerating (Gap 2-Even C)

∼
1

2 · CIS-IM-accelerating (Gap 1-Even C) + 2 · CIS-IM-accelerating (Gap 1-Odd C)

∼
1

4 · CIS-IM-accelerating (Gap 1-Even C)

∼
1

4 · CIS-IM-accelerating (Gap 1-Odd C)

Finally, two randomly selected consecutive Odd P can be systematically classified [non-overlappingly]

according to P–gn = 2, 4, 6, 8, 10... as previously shown in section 2.

Prime-π(x) is prime-counting function = number of primes ≤ x, for any real number x. Composite-π(x) is

composite-counting function = number of composites ≤ x, for any real number x. Prime number theorem

and our derived Composite number theorem describe the asymptotic distribution of primes and compos-

ites among positive integers. Respectively, they formalize the intuitive idea that primes (and composites)

become deceleratingly less (and acceleratingly more) common as they become larger by precisely quan-

tifying the rate at which this occurs. Prime number theorem is concluded to be heuristically true and was

proved independently by Jacques Hadamard[8] and Charles Jean de la Vallee Poussin[32] in 1896 using

ideas introduced by Bernhard Riemann (in particular, Riemann zeta function). This theorem has also been

rigorously proven as the elementary proofs of Atle Selberg[23] and Paul Erdos[2] in 1949, and as the non-

elementary proof in 1980 by Donald J. Newman[15] in the sense that he used Cauchy’s integral theorem

from complex analysis in his proof.
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The asymptotic law of distribution for prime numbers [that involves natural logarithm function and con-

firms the CIS-ALN-decelerating property] is given as lim
x→∞

Prime-π(x)î
x

ln(x)

ó = 1. Using asymptotic nota-

tion, this result from Prime number theorem can be restated as Prime-π(x) ∼
x

ln(x)
. This theorem is also

equivalent to the statement that the nth prime number Pn satisfies Pn ∼ n ln(n).

The [pseudo-inverse] asymptotic law of distribution for composite numbers [that involves natural expo-

nential function and confirms the CIS-IM-accelerating property] is given as lim
x→∞

Composite-π(x)î
x

e(x)

ó = 1.

Using asymptotic notation, this result can be heuristically restated as Composite-π(x) ∼
x

e(x)
to represent

our Composite number theorem. This theorem is also equivalent to the statement that the nth composite

number Cn satisfies Cn ∼ ne(n).

The following asymptotic relations are logically equivalent:

lim
x→∞

Prime-π(x) ln(x)
x

= 1, and lim
x→∞

Prime-π(x) ln(Prime-π(x))
x

= 1.

lim
x→∞

Composite-π(x)e(x)
x

= 1, and lim
x→∞

Composite-π(x)e(Composite-π(x))
x

= 1.

Prime number theorem is also equivalent to lim
x→∞

ϑ(x)
x
= lim

x→∞

ψ(x)
x
= 1, where ϑ and ψ are the first and the

second Chebyshev functions respectively, and to lim
x→∞

M(x)
x
= 0, where M(x) =

∑
n≤x

µ(n) is the Mertens

function. Here, the most common generalized counting function is Chebyshev function ψ(x) defined by

ψ(x) =
∑
pk≤x,

p is prime

ln p . This is sometimes written as ψ(x) =
∑
n≤x

Λ(n), where Λ(n) is the von Mangoldt function,

namely Λ(n) =

ln p if n = pk for some prime p and integer k ≥ 1,

0 otherwise.
.

The logarithmic integral function li(x) is defined by li(x) =
∫ x

0

dt
ln t

. An even better approximation to

Prime-π(x) is given by the offset logarithmic integral function Li(x) which is defined by Li(x) =
∫ x

2

dt
ln t
=

li(x) − li(2); or equivalently, li(x) =
∫ x

0

dt
ln t
= Li(x) + li(2). Also, Li(x) = Ei(ln(x))−Ei(ln(2)) since loga-

rithmic integral function li(x) is related to inverse exponential function Ei(x) via equation li(x) = Ei(ln(x)),

valid for x > 0. Both li(x) and Li(x) strongly support the notion that density of prime numbers around t

should be
1

ln(t)
; and is related to natural logarithm by the asymptotic expansion Li(x) ∼

x
ln x

∞∑
k=0

k!
(ln x)k =

x
ln x
+

x
(ln x)2 +

2x
(ln x)3 + · · ·. With the inverse Ei(x) = Li (e(x)) – Li (e(2)), we conclude Ei(x) − Ei(2) or

Ei(x) will both strongly support the notion that density of composite numbers around t should be
1

e(t)
.

The asymptotic law of distribution for prime numbers [and composite numbers] can also be given as

lim
x→∞

Prime-π(x)
Li(x)

= 1 or lim
x→∞

Prime-π(x)
li(x)

= 1 [and lim
x→∞

Composite-π(x)
Ei(x) − Ei(2)

= 1 or lim
x→∞

Composite-π(x)
Ei(x)

=

1]. Using asymptotic notation, this result is correspondingly restated as Prime-π(x) ∼ Li(x) or Prime-π(x)

∼ li(x) [and Composite-π(x) ∼ Ei(x) − Ei(2) or Composite-π(x) ∼ Ei(x)], thus equivalently representing
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Prime number theorem [and Composite number theorem]. In 1899, de la Vallee Poussin proved the esti-

mate Prime-π(x) = Li(x) + O
(

xe−a
√

ln x
)

as x→ ∞ is valid for some positive constant a, where O(...) is

the big O notation. The statements Prime-π(x) = Li(x) + O
(√

x ln x
)

and | li(x) – Prime-π(x)| = O(x1/2+a)

for any a > 0 are equivalent to Riemann hypothesis.

Riemann’s prime-power counting function, usually denoted as Π0(x) or J0(x), has jumps of
1
n

at

prime powers pn and takes a value halfway between the two sides at the discontinuities of π(x). That

added detail is used because the function may then be defined by an inverse Mellin transform. We for-

mally define Π0(x) by Π0(x) =
1
2

(∑
pn<x

1
n
+
∑
pn≤x

1
n

)
where the variable p in each sum ranges over

all primes within the specified limits. We may also write Π0(x) =
x∑

n=2

Λ(n)
ln n
−
Λ(x)
2 ln x

=

∞∑
n=1

1
n
π0
(

x1/n)
where Λ(n) is the von Mangoldt function and π0(x) = lim

ε→0

π(x − ε) + π(x + ε)
2

. The Mobius inversion

formula then gives π0(x) =
∞∑

n=1

µ(n)
n
Π0
(

x1/n), where µ(n) is the Mobius function. Using Perron for-

mula and the relationship between logarithm of Riemann zeta function and von Mangoldt function Λ; we

have ln ζ(s) = s
∫ ∞

0
Π0(x)x−s−1 dx. The exact form of Prime-π(x) was provided by Bernhard Riemann

(1826 – 1866). For x > 1, let π0(x) = π(x) −
1
2

when x is a prime number, and π0(x) = π(x) otherwise.

It is proved that π0(x) = R(x) –
∑
ρ

R(xρ), where R(x) =
∞∑

n=1

µ(n)
n

li(x1/n), µ(n) is the Mobius function,

li(x) is the logarithmic integral function, ρ indexes every zero of Riemann zeta function, and li(xρ/n) is not

evaluated with a branch cut but instead considered as Ei(
ρ

n
ln x) where Ei(x) is the exponential integral.

Remark 6.1. Asymptotic Law of Distribution for Prevalences of Primes and Composites:

As two continuous functions valid for x → ∞ range that share a common mathematical constant e ≈

2.71828, the natural logarithm function logex or ln(x) is used in Asymptotic Law of Distribution for

prime numbers and the natural exponential function exp(x) or ex is used in Asymptotic Law of Distri-

bution for composite numbers. Since we can validly ”project” logex onto Prevalence of Primes and ex

onto Prevalence of Composites; then these functions are consequently acting as unique two allowable

complementary-reciprocal functions that can also be individually ”projected” onto (i) Prevalence of Odd

Primes derived separately from even Prime gaps 2, 4, 6, 8, 10... and Prevalence of Gap 2-Even Compos-

ites [w.r.t. logex], and (ii) Prevalence of Gap 1-Even Composites and Gap 1-Odd Composites [w.r.t. ex].

Thus the full x→ ∞ range applicability of logex to each and every even Prime gaps will support Modified

Polignac’s and Twin prime conjectures to be true.

6.1. Admissible Prime k-tuplets, Inadmissible Prime (k+1)-tuples, Dirichlet Sigma-Power Law and Prin-

ciple of Equidistant for Multiplicative Inverse. For k ≥ 2, a Prime k-tuple [that can be subdivided into

available subtuples for sufficiently large k values] is a repeatable pattern of finite k consecutive primes {p1,

p2,..., pk} [viz, a finite collection with p1 < p2 <...< pk] having diameter d defined as difference between
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k pk k#

1 2 2

2 3 6

3 5 30

4 7 210

5 11 2310

6 13 30,030

7 17 510,510

8 19 9,699,690

9 23 223,092,870

10 29 6,469,693,230
Table 1. Tabulated data of k primorial for k = 1 to 10. Let pk be the kth prime with k = 1,

2, 3, 4, 5.... Then k primorial (k#) is product of first k primes whereby [even] numbers in

third column are product of primes in second column. It is a well-defined Incompletely

Predictable function acceleratingly reaching an infinity value.

its largest and smallest elements [viz, diameter d = pk – p1]. There are two main types of Prime k-tuples:

[repeating] Admissible Prime k-tuples and [non-repeating] Inadmissible Prime k-tuples. These are further

classified into various subtypes and varieties[28] with this aspect not discussed in this paper. An Admis-

sible Prime k-tuplet is a sequence of finite k consecutive primes such that the distance between first prime

and last prime is in some well-defined sense as small as possible. Then an Admissible Prime k-tuple is a

sequence of finite k consecutive primes such that this same distance is in some well-defined sense not as

small as possible.

The principles behind primorial are outlined in the caption of Table 1. As part of group theory with

notation that read as (Z/nZ)*, concepts behind multiplicative group of integers modulo n are important for

theory of prime k-tuples or constellations. It contains a subset of integers from 1 to n-1. The elements

of (Z/nZ)* are integers from 1 to n-1 that are relatively prime to n. If n is a prime number, then (Z/nZ)*

contains all integers from 1 to n-1. If n has many divisors, then (Z/nZ)* will contain fewer elements. To

find Admissible Prime k-tuplets, we need to consider the multiplicative group of integers mod k primorial.

This group contains set of integers less than k primorial that are relatively prime to k primorial.

The multiplicative group mod 6 [2#] has two elements; viz, (Z/6Z)* = {1, 5}. Then all primes greater than

3 have the form 6*n ± 1. To search for the smaller of twin prime pairs [Admissible Prime 2-tuplets], one

should look at [odd] numbers of the form 6*n + 5. The multiplicative group mod 30 [3#] has 8 elements;

viz, (Z/30Z)* = {1, 7, 11, 13, 17, 19, 23, 29}. By looking at the differences between adjacent elements

in this set, we see Admissible Prime 3-tuplets as pattern (p, p+2, p+6) is found only in the expressions

30*n + 11 and 30*n + 17. The ordered set (Z/30Z)* = {1, 7, 11, 13, 17, 19, 23, 29} can be manipulated

by taking the differences between adjacent elements; viz, d30 = [6, 4, 2, 4, 2, 4, 6] =⇒ the particular
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pattern (p, p+2, p+6, p+8) which has differences [2, 4, 2] is found inside ordered set d30. Thus we see

Admissible Prime 4-tuplets having pattern (p, p+2, p+6, p+8) must have the form 30*n + 11.

Proposition 6.1. Let finite k consecutive primes {p1, p2,..., pk} represent Admissible Prime k-tuplets that

are computed using p1 commencing values 2, 3, 5, 7, 11, 13.... Then except for p1 commencing value

2 [having the empty set of Admissible Prime k-tuple], we can uniquely generate a finite number of Ad-

missible Prime k-tuplets / k-tuples that are specified by the k values and an associated arbitrarily large

number of Inadmissible Prime (k+1)-tuples that are specified by the larger k+1 values whereby both types

of tuplets / tuples will comply with corresponding admissibility and inadmissibility criteria.

Proof. Suppose one is given a k0-tupleH = (h1,. . . , hk0) of k0 distinct integers for some k0 ≥ 1, arranged

in increasing order. We often anticipate finding an arbitrarily large number of translates n +H =(n+h1,. . . ,

n+hk0) ofH which consist entirely of consecutive primes will prove (Modified) Polignac’s and Twin prime

conjectures to be true. The case k0 = 1 is just Euclid’s theorem on the infinitude of primes. The case k0 =

2 [as subset of k0 ≥ 2] withH = (0, 2) correspond to twin prime conjecture that non-overlappingly deals

with prime gap = 2. The arbitrarily large number of cases k0 ≥ 2 [as full set] in their entirety correspond

to Polignac’s conjecture that [additionally] involve all other remaining cases such as k0 = 3 withH = (0,

2, 6) as pattern-1 or (0, 4, 6) as pattern-2, k0 = 4 with H = (0, 2, 6, 8) as solitary pattern, etc. Thus we

have [overlappingly] dealt with all even Prime gaps = 2, 4, 6, 8, 10....

More generally, if there is a prime p1 such thatH meets each of the p1 residue classes 0 mod p1, 1 mod

p1, 2 mod p1, . . . , p1-1 mod p1, then every translate ofH contains at least one multiple of p1. Since p1

is the only multiple of p1 that is prime, this shows that there are only finitely many translates of H that

consist entirely of consecutive primes.

A k0-tupleH is admissible if it avoids at least one residue class mod p for each prime p. It is easy to check

for admissibility in practice, since a k0-tuple is automatically admissible in every prime p larger than k0,

so one only needs to check a finite number of primes in order to decide on admissibility of a given tuple.

Being a likely unprovable conjecture according to Godel’s incompleteness theorem, we can succinctly

state first Hardy-Littlewood conjecture or Prime k-tuple conjecture in its qualitative form: IfH is an

admissible k0-tuple, then there exists an arbitrarily large number of translates ofH that consist entirely of

consecutive primes. We then deduce neither proving nor disproving the first Hardy-Littlewood conjecture

will definitively prove or disprove (Modified) Polignac’s and Twin prime conjectures.

The statement ”Probability (Odd Primes that are [discriminatorily] derived from any of the Arbitrarily

Large Number of even Prime gaps 2, 4, 6, 8, 10... will abruptly terminate) = 0” =⇒ (Modified) Polignac’s

and Twin prime conjectures must be true. Apart from the only countably finite even prime number 2, all

the countably arbitrarily large number of odd prime numbers 3, 5, 7, 11, 13... can be fully represented

by solitary Admissible Prime 2-tuplet that represent even Prime gap 2 and arbitrarily large number of

Admissible Prime 2-tuples that represent even Prime gaps 4, 6, 8, 10, 12....
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Constituted from entire CIS-ALN-decelerating prime numbers 2, 3, 5, 7, 11, 13..., our p1 commencing

values act as reference points to orderly include all possible Admissible Prime k-tuplets / k-tuples and

Inadmissible Prime k-tuples whereby these k-tuplets and k-tuples are constituted by k consecutive prime

numbers starting from p1. We invoke multiplicative group of integers modulo p1 that, via brute force

algorithm, must result in a subset of consecutive integers as residues from 0 to p1-2 and p1-1 whereby

some of these integers that represent corresponding residues will inevitably repeat more than once. For

instance at p1 commencing value = 11, the sequence of integers that mechanically represent corresponding

residues from mod prime 11 as iteratively computed using all available prime gaps are 0, 2, 6, 8, 1, 7, 9,

4, 8, 10, 3, 9, 4, 6, 1 [Admissible] and 5 [Inadmissible] whereby five [non-comprehensive] integers 1, 4,

6, 8 and 9 are overlappingly depicted more than once and two [uniquely nominated] integers 0 and 5 must

always be non-overlappingly depicted just once but with the [solitary] integer 5 being (firstly) absent when

the involved k-tuple is admissible and (secondly) present when the involved (k+1)-tuple is inadmissible.

The p1 commencing value = 11 has thus provided us with (i) Admissible Prime 15-tuplet as consecutive

primes (11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67) that is mechanically ≡ progressive prime

gaps (0, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6) ≡ cummulative prime gaps (0, 2, 6, 8, 12, 18, 20, 26, 30, 32,

36, 42, 48, 50, 56) and (ii) Inadmissible Prime 16-tuple as consecutive primes (11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 47, 53, 59, 61, 67, 71) that is mechanically ≡ progressive prime gaps (0, 2, 4, 2, 4, 6, 2, 6, 4,

2, 4, 6, 6, 2, 6, 4) ≡ cummulative prime gaps (0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50, 56, 60).

We note all the involved [consecutive] prime gaps of 2, 4 and 6 are each overlappingly depicted more than

once for both the involved Admissible Prime 15-tuplet and Inadmissible Prime 16-tuple.

We deduce there must be at least p1-1 consecutive integers representing residues 0, 1, 2, 3,..., p1-2 that

cater for longest possible Admissible Prime k-tuplet [and at least p1 consecutive integers representing

residues 0, 1, 2, 3,..., p1-1 that cater for shortest possible Inadmissible Prime (k+1)-tuple]. Apart from

first four cardinality that are smaller than or equal to p1-1, all subsequent cardinality must not be smaller

than their corresponding p1-1 with the all-important implication that we can always derive arbitrarily long

Admissible Prime k-tuples with maximal k values that must be at least equal to [but are usually always

larger than] p1-1. In general, we recognize that ever larger p1 commencing values are [overall] associated

with ever larger k-valued Admissible Prime k-tuplets / k-tuples that characteristically have ever larger

zenith diameter d and zenith average gaps. Reproduced with permission below, these properties were

confirmed using computations on initial 15 p1 commencing values (out of an arbitrarily large number

of other commencing values)[28] whereby it is insightful to regard absolutely Inadmissible Prime k-

tuples as those Prime k-tuples that begin with p1 commencing value = 2 for all k ≥ 2 values and p1

commencing value = 3 for all k ≥ 3 values, and relatively Inadmissible Prime k-tuples as those Prime

k-tuples with p1 commencing value = 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47... for corresponding

k ≥ 6, 7, 16, 22, 21, 36, 40, 60, 96, 74, 95, 78, 79... cyclical values. We notice the p1 commencing value = 3

with k = 2 value will simply represent an Admissible Prime 2-tuplet.
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Admissible Prime k-tuplets / k-tuples & Inadmissible Prime k-tuples for initial 15 p1 commencing values:

p1 commencing value = 2. Set Admissible Prime k-tuples as k-value = 0 [empty set] with its cardinality

= ∥CFS∥ = 0. Set Inadmissible Prime k-tuples as k-value = 2 [having nadir diameter d = 1 and nadir

average gap = 1/2 = 0.5], 3, 4, 5, 6... with its cardinality = ∥CIS-ALN-decelerating∥ = ℵ0-decelerating.

At p1 = 2, failure at mod 2 (term 3) first occur at k = 2 with minimum diameter d = 1.

p1 commencing value = 3. Set Admissible Prime k-tuplets as k-value = 2 [having zenith diameter d =

2 and zenith average gap = 2/1 = 2] with its cardinality = ∥CFS∥ = 1. Set Inadmissible Prime k-tuples

as k-value = 3 [having nadir diameter d = 4 and nadir average gap = 4/3 = 1.33], 4, 5, 6, 7... with its

cardinality = ∥CIS-ALN-decelerating∥ = symbolically ℵ0. At p1 = 3, failure at mod 3 (term 7) first occur

at k = 3 with minimum diameter d = 4.

p1 commencing value = 5. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4, 5 [having zenith

diameter d = 12 and zenith average gap = 12/5 = 2.4] with its cardinality = ∥CFS∥ = 4. Set Inadmissible

Prime k-tuples as k-value = 6 [having nadir diameter d = 14 and nadir average gap = 14/6 = 2.33], 7, 8, 9,

10... with its cardinality = ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 = 5, failure at mod 5 (term

19) first occur at k = 6 with minimum diameter d = 14.

p1 commencing value = 7. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4, 5, 6 [having

zenith diameter d = 16 and zenith average gap = 16/6 = 2.67] with its cardinality = ∥CFS∥ = 5. Set

Inadmissible Prime k-tuples as k-value = 7 [having nadir diameter d = 22 and nadir average gap = 22/7 =

3.14], 8, 9, 10, 11... with its cardinality = ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 = 7, failure

at mod 7 (term 29) first occur at k = 7 with minimum diameter d = 22.

p1 commencing value = 11. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4, 5,..., 15 [having

zenith diameter d = 56 and zenith average gap = 56/15 = 3.73] with its cardinality = ∥CFS∥ = 14. Set

Inadmissible Prime k-tuples as k-value = 16 [having nadir diameter d = 60 and nadir average gap = 60/16

= 3.75], 17, 18, 19, 20... with its cardinality = ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 = 11,

failure at mod 11 (term 71) first occur at k = 16 with minimum diameter d = 60.

p1 commencing value = 13. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4, 5,..., 21 [having

zenith diameter d = 88 and zenith average gap = 88/21 = 4.19] with its cardinality = ∥CFS∥ = 20. Set

Inadmissible Prime k-tuples as k-value = 22 [having nadir diameter d = 90 and nadir average gap = 90/22

= 4.09], 23, 24, 25, 26... with its cardinality = ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 = 13,

failure at mod 13 (term 103) first occur at k = 22 with minimum diameter d = 90.

p1 commencing value = 17. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4, 5,..., 20 [having

zenith diameter d = 84 and zenith average gap = 84/20 = 4.2] with its cardinality = ∥CFS∥ = 19. Set

Inadmissible Prime k-tuples as k-value = 21 [having nadir diameter d = 86 and nadir average gap = 86/21

= 4.10], 22, 23, 24, 25... with its cardinality = ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 = 17,

failure at mod 17 (term 103) first occur at k = 21 with minimum diameter d = 86.

p1 commencing value = 19. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4, 5,..., 35 [having

zenith diameter d = 162 and zenith average gap = 162/35 = 4.63] with its cardinality = ∥CFS∥ = 34. Set

Inadmissible Prime k-tuples as k-value = 36 [having nadir diameter d = 172 and nadir average gap =
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172/36 = 4.78], 37, 38, 39, 40... with its cardinality = ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1

= 19, failure at mod 19 (term 191) first occur at k = 36 with minimum diameter d = 172.

p1 commencing value = 23. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4, 5,..., 39 [having

zenith diameter d = 188 and zenith average gap = 188/39 = 4.82] with its cardinality = ∥CFS∥ = 38. Set

Inadmissible Prime k-tuples as k-value = 40 [having nadir diameter d = 200 and nadir average gap =

200/40 = 5], 41, 42, 43, 44... with its cardinality = ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 =

23, failure at mod 23 (term 223) first occur at k = 40 with minimum diameter d = 200.

p1 commencing value = 29. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4, 5,..., 59 [having

zenith diameter d = 308 and zenith average gap = 308/59 = 5.22] with its cardinality = ∥CFS∥ = 58. Set

Inadmissible Prime k-tuples as k-value = 60 [having nadir diameter d = 318 and nadir average gap =

318/60 = 5.3], 61, 62, 63, 64... with its cardinality = ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 =

29, failure at mod 29 (term 347) first occur at k = 60 with minimum diameter d = 318.

p1 commencing value = 31. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4, 5,..., 95 [having

zenith diameter d = 540 and zenith average gap = 540/95 = 5.68] with its cardinality = ∥CFS∥ = 94. Set

Inadmissible Prime k-tuples as k-value = 96 [having nadir diameter d = 546 and nadir average gap =

546/96 = 5.69], 97, 98, 99, 100... with its cardinality = ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1

= 31, failure at mod 31 (term 577) first occur at k = 96 with minimum diameter d = 546.

p1 commencing value = 37. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4, 5,..., 73 [having

zenith diameter d = 396 and zenith average gap = 396/73 = 5.42] with its cardinality = ∥CFS∥ = 72. Set

Inadmissible Prime k-tuples as k-value = 74 [having nadir diameter d = 402 and nadir average gap =

402/74 = 5.43], 75, 76, 77, 78... with its cardinality = ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1

= 37, failure at mod 37 (term 439) first occur at k = 74 with minimum diameter d = 402.

p1 commencing value = 41. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4, 5,..., 94 [having

zenith diameter d = 536 and zenith average gap = 536/94 = 5.70] with its cardinality = ∥CFS∥ = 93. Set

Inadmissible Prime k-tuples as k-value = 95 [having nadir diameter d = 546 and nadir average gap =

546/95 = 5.75], 96, 97, 98, 99... with its cardinality = ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1

= 41, failure at mod 41 (term 587) first occur at k = 95 with minimum diameter d = 546.

p1 commencing value = 43. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4, 5,..., 77 [having

zenith diameter d = 420 and zenith average gap = 420/77 = 5.45] with its cardinality = ∥CFS∥ = 76. Set

Inadmissible Prime k-tuples as k-value = 78 [having nadir diameter d = 424 and nadir average gap =

424/78 = 5.44], 79, 80, 81, 82... with its cardinality = ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1

= 43, failure at mod 43 (term 467) first occur at k = 78 with minimum diameter d = 424.

p1 commencing value = 47. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4, 5,..., 78 [having

zenith diameter d = 432 and zenith average gap = 432/78 = 5.54] with its cardinality = ∥CFS∥ = 77. Set

Inadmissible Prime k-tuples as k-value = 79 [having nadir diameter d = 440 and nadir average gap =

440/79 = 5.57], 80, 81, 82, 83... with its cardinality = ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1

= 47, failure at mod 47 (term 487) first occur at k = 79 with minimum diameter d = 440.

The proof is now complete for Proposition 6.12.
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All Admissible Prime k-tuplets will usually have their unique allowable patterns. A083409 Number of

prime k-tuplet constellations, i.e., patterns with minimal diameter A008407[1] is relevant. Computed for

k = 2, 3, 4, 5, 6...; the number of possible patterns are 1, 2, 1, 2, 1, 2, 3, 4, 2, 2, 2, 6, 2, 4, 2, 4, 2, 4, 2, 2, 4,

2, 4, 18, 2, 8, 10, 2, 2, 2, 4, 14, 20, 2, 2, 2, 6, 26, 26, 8, 2, 6, 18, 4, 4, 4, 2, 2, 22, 22, 2, 2, 26, 6, 6, 2, 2, 4,

2, 2, 6, 2, 2, 2, 2, 18, 2, 20, 2, 2, 2, 10, 2, 14, 14, 40, 8, 2, 14, 14, 16, 4, 2, 2, 60, 50, 2, 2, 2, 16, 2, 18, 12....

The 18 patterns of Admissible Prime 25-tuplets, as a random example, are given in Appendix B whereby

we also depict useful calculations behind frequency of the involved patterns.

For every appropriately paired Admissible Prime k-tuplet patterns endowed with same modulo number,

there exists a counterpart. For instance, Admissible Prime 7-tuplet pattern-1 (0, 2, 6, 8, 12, 18, 20) has its

p1 congruent to 11 (modulo 210) and Admissible Prime 7-tuplet pattern-2 (0, 2, 8, 12, 14, 18, 20) has its

p1 congruent to 179 (modulo 210). We see that 11 + 179 (viz, the counterpart) + 20 (viz, the diameter d)

= 210 (viz, the modulo number). The offset and multiplier containing variable n is related to p1 congruent

to p (modular q) for Admissible Prime k-tuplets as explained using below examples.

Example 1: For Admissible Prime 7-tuplet with pattern-1 given as cummulative prime gaps (0, 2, 6, 8,

12, 18, 20) ≡ consecutive prime numbers (11, 13, 17, 19, 23, 29, 31) [as based on first-occurring p1 =

11]; the p1 congruent to 11 (modulo 210) is equivalent to offset and multiplier 11 + 210*n. This is given

by A022009 Initial members of prime septuplets (p, p+2, p+6, p+8, p+12, p+18, p+20).[18] having val-

ues 11, 165701, 1068701, 11900501, 15760091, 18504371, 21036131, 25658441, 39431921, 45002591,

67816361, 86818211, 93625991, 124716071, 136261241, 140117051, 154635191, 162189101, 182403491,

186484211, 187029371, 190514321, 198453371... which is cross linked to A182387 Numbers n such that

210*n+11, 13, 17, 19, 23, 29, 31 are 7 consecutive primes.[22] having values 0, 789, 5089, 56669, 75048,

88116, 100172, 122183, 187771, 214298, 322935, 413420, 445838, 593886, 648863, 667224, 736358,

772329, 868588, 888020, 890616, 907211, 945016, 1052954, 1078331, 1106177, 1146724, 1223888,

1432230, 1452437, 1458355, 1509878, 1535216....

Example 2: For Admissible Prime 7-tuplet with pattern-2 given as cummulative prime gaps (0, 2, 8, 12,

14, 18, 20) ≡ consecutive prime numbers (5639, 5641, 5647, 5651, 5653, 5657, 5659) [as based on first-

occurring p1 = 5639]; the p1 congruent to 179 (modulo 210) is equivalent to offset and multiplier 179 +

210*n. This is given by A022010 Initial members of prime septuplets (p, p+2, p+8, p+12, p+14, p+18,

p+20).[19] having values 5639, 88799, 284729, 626609, 855719, 1146779, 6560999, 7540439, 8573429,

17843459, 19089599, 24001709, 42981929, 43534019, 69156539, 74266259, 79208399, 80427029,

84104549, 87988709, 124066079, 128469149, 144214319, 157131419, 208729049, 218033729... which

is cross linked to A357889 a(n) = (A022010(n) – 179)/210.[17] having values 26, 422, 1355, 2983, 4074,

5460, 31242, 35906, 40825, 84968, 90902, 114293, 204675, 207304, 329316, 353648, 377182, 382985,

400497, 418993, 590790, 611757, 686734, 748244, 993947, 1038255, 1181931, 1246060, 1310026,

1347976, 1354707, 1440679, 1477788, 1559980, 1720425, 1915719, 1989590....

Example 3: For Admissible Prime 38-tuplet there are six possible patterns with pattern-4 given as cum-

mulative prime gaps (0, 6, 8, 14, 18, 20, 24, 30, 36, 38, 44, 48, 50, 56, 60, 66, 74, 78, 80, 84, 86, 90, 104,

108, 114, 116, 126, 128, 134, 140, 144, 150, 156, 158, 168, 170, 174, 176) ≡ consecutive prime numbers
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(23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131,

137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199) [as based on first-occurring p1 =

23]; the p1 congruent to 2541318803 (modulo 6469693230) which is equivalent to offset and multiplier

2541318803 + 6469693230*n is also applicable in a similar manner to previous two examples.

A prime k-tuple is admissible in its sequence of consecutive primes {p1, p2,..., pk} such that for every prime

q ≤ k, not all the residues modulo q are represented by p1, p2,..., pk. Simpliest Admissible Prime k-tuplets

and k-tuples using k = 2 value include all twin primes as 2-tuplet with smallest possible diameter d (prime

gap) = 2; all cousin primes as 2-tuple with larger diameter d (prime gap) = 4; all sexy primes as 2-tuple

with larger diameter d (prime gap) = 6; etc. An example of Admissible Prime 3-tuple pattern-1 (p+0, p+2,

p+8) is given by consecutive prime numbers (5639, 5641, 5647). We note this particular Prime 3-tuple is

also a subtuple forming part of Admissible Prime 7-tuplet pattern-2 (p+0, p+2, p+8, p+12, p+14, p+18,

p+20) given by first occurrence consecutive prime numbers (5639, 5641, 5647, 5651, 5653, 5657, 5659).

Both the Admissible Prime 2-tuplets as two consecutive primes (p1, pk) with diameter d or prime gap = pk

– p1 = 2 and Admissible Prime 2-tuples as two consecutive primes (p1, pk) with diameter d or prime gap =

pk – p1 ≥ 4 can match an arbitrarily large number of positions in the sequence of prime numbers. For n =

1, 2, 3, 4, 5...; there are the rarely occurring but nevertheless arbitrarily large number of Admissible Prime

2-tuples conforming to criterion pk – p1 = p1 – pk−2 and manifesting as two identical consecutive prime

gaps (6n, 6n) = (6, 6), (12, 12), (18, 18), etc [and also manifesting as three or more much rarer identical

consecutive prime gaps (6n, 6n, 6n...) = (6, 6, 6...), (12, 12, 12...), (18, 18, 18...), etc]. They could in

principle also form [bridging] smaller subtuples of steady primes in Admissible Prime k-tuplets / k-tuples

or Inadmissible Prime k-tuples when k ≥ 3. The criterion pk – p1 < p1 – pk−2 will be conformed to by an

arbitrarily large number of Admissible Prime 2-tuples whereby they could in principle also form [bridging]

smaller subtuples of decelerating primes in Admissible Prime k-tuplets / k-tuples or Inadmissible Prime

k-tuples when k ≥ 3. The three subtuples [that also includes smaller subtuples of accelerating primes]

were further elaborated upon in section 2 whereby they essentially form eternal repeated groupings of

small and/or large prime numbers and gaps.

Remark 6.2. At ever larger x ≥ 4 integer range manifesting progressively less Odd Primes [with associated

prime gaps], we intuitively expect an overall slowly increasing prevalence of Admissible Prime k-tuples

that cater for large(r) Odd Primes which is reciprocally and simultaneously associated with an overall

slowly decreasing prevalence of Admissible Prime k-tuples that cater for small(er) Odd Primes. When

Admissible Prime 2-tuplets as two consecutive primes (p1, pk) with diameter d or prime gap = pk – p1 = 2

are combined with Admissible Prime 2-tuples as two consecutive primes (p1, pk) with diameter d or prime

gap = pk – p1 ≥ 4, they will [uniquely] represent every known Odd Primes in an non-overlapping manner.

A Prime k-tuple is inadmissible in its sequence of consecutive primes {p1, p2,..., pk} such that for some of

the prime q ≤ k [example, for one of the prime q ≤ k when k ≥ 3 or for two of the prime q ≤ k if p1 =

2 forms part of a Prime k-tuple when k ≥ 4]; all the residues modulo q are represented by p1, p2,..., pk.
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All [non-repeating] Inadmissible Prime k-tuples only match one finite position in the sequence of prime

numbers and are defined by their diameter d being the shortest. An arbitrarily large number of examples

with one all-prime solution for this subtype include Prime 2-tuple (p+0, p+1) as primes (2, 3) with d = 1;

Prime 3-tuple (p+0, p+1, p+3) as primes (2, 3, 5) with d = 3; Prime 3-tuple (p+0, p+2, p+4) as primes

(3, 5, 7) with d = 4; Prime 4-tuple (p+0, p+1, p+3, p+5) as primes (2, 3, 5, 7) with d = 5; Prime 4-tuple

(p+0, p+2, p+4, p+8) as primes (3, 5, 7, 11) with d = 8; etc.

Modular arithmetic: a (mod n) is a/n ≡ r whereby a = dividend, n = divisor and r = remainder [round up

to the next integer]. Therefore, a (mod n) ≡ a – (r ∗ n). With abbreviation n denoting numbers, we analyze

the Completely Predictable even n and odd n. For i = 0, 1, 2, 3, 4, 5...; congruence n ≡ 0 (mod 2) holds for

even n = Ei = 2*i = 0, 2, 4, 6, 8, 10... and for i = 1, 2, 3, 4, 5, 6...; congruence n ≡ 1 (mod 2) holds for odd

n = Oi = (2*i)–1 = 1, 3, 5, 7, 9, 11... We note 0 is then the zeroth even n when we only consider all (non-

negative) positive even n and odd n. We analyze the Incompletely Predictable prime numbers collectively

grouped as k-tuples. For the worked example of modular arithmetic applied to test for admissibility on

Inadmissible Prime 4-tuple (p+0, p+1, p+3, p+5) ≡ cummulative prime gaps (0, 1, 3, 5) with earliest and

only candidate as consecutive prime numbers (2, 3, 5, 7) having progressive prime gaps (0, 1, 2, 2); we can

use either [I] cummulative prime gaps: congruence 0, 1, 3, 5 ≡ 0, 1, 1, 1 (mod prime 2) and congruence 0,

1, 3, 5 ≡ 0, 1, 0, 2 (mod prime 3) or [II] consecutive prime numbers: congruence 2, 3, 5, 7 ≡ 0, 1, 1, 1 (mod

prime 2) and congruence 2, 3, 5, 7 ≡ 2, 0, 2, 1 (mod prime 3). There are two failures at [firstly] mod prime

2 on second term = 1 (as prime gap) or 3 (as prime number) and [secondly] mod prime 3 on last term

= 5 (as prime gap) or 7 (as prime number) =⇒ this Inadmissible Prime 4-tuple is now truly confirmed

to be inadmissible. Since twin prime (3, 5) is a Admissible Prime 2-tuplet when first element p = 3, we

can redundantly generate a complete all-inclusive countably arbitrarily large number of [non-repeating]

Inadmissible Prime k-tuples using progressively longer k ≥ 3 values that should have the shortest diameter

when first element p = 3. We can also redundantly generate a complete all-inclusive countably arbitrarily

large number of [non-repeating] Inadmissible Prime k-tuples using progressively longer k ≥ 2 values that

should have the shortest diameter when first element p = 2.

We hereby explain an example of [non-existing] Inadmissible Prime k-tuple which is linked to Admissible

Prime 3-tuplet (p+0, p+2, p+6) pattern-1 having diameter d = 6 that first appear as consecutive primes (5,

7, 11). This Admissible Prime 3-tuplet is associated with Inadmissible Prime 3-tuples with failure at mod

prime 3 (last term = 10, 16, 22, 28...) and must fully conform with the forbidden condition as stated here:

Just as two consecutive twin primes given by Prime 3-tuple (p+0, p+2, p+4+6n) cannot exist at all apart

from the solitary Inadmissible Prime 3-tuple occurring as consecutive primes (3, 5, 7) when n = 0, then

so must all two consecutive twin-related primes given by Prime 3-tuple (p+0, p+2, p+4+6n) cannot exist

at all when n = 1, 2, 3, 4... [since at least one of the three primes is divisible by 3]. Two other forbidden

conditions that must be conformed to by all Prime k-tuplets and Prime k-tuples including Inadmissible

Prime k-tuples are:

(1) Apart from the solitary [single-digit] odd prime number 5 with its last and only digit also ending in
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odd number 5, all other larger [multiple-digit] odd prime numbers cannot have their last digit ending in

odd number 5 and, consequently, these forbidden numbers can never belong to any Prime k-tuplets and

Prime k-tuples. Thus, apart from the solitary odd prime number 5, it is an established mathematical fact

that all odd prime numbers must have their last digit ending in odd numbers 1, 3, 7 or 9.

(2) The arbitrarily large number of Admissible Prime 4-tuplets (p+0, p+2, p+6, p+8) with smallest possi-

ble diameter d = 8 is first given by consecutive primes (5, 7, 11, 13) whereby this must be differentiated

from the totally different [solitary] Inadmissible Prime 4-tuple (p+0, p+2, p+4, p+8) given by consecutive

primes (3, 5, 7, 11) with [same-valued] smallest diameter d = 8. All the arbitrarily large number of ≥ 2-

digit primes in Admissible Prime 4-tuplets commencing sequentially as (11, 13, 17, 19), (101, 103, 107,

109), (191, 193, 197, 199), (821, 823, 827, 829)... must always occur in the same ten-block. Hence it is

an established mathematical fact that there must be exactly one with each of these unit digits 1, 3, 7 and

9 in all ≥ 2-digit primes from Admissible Prime 4-tuplets. Except for the first term p1 = 5 in Admissible

Prime 4-tuplet (5, 7, 11, 13), all other terms are congruent to 11 (mod 30). Thus all Admissible Prime

4-tuplets except when first term p1 = 5 are of the form (15k-4, 15k-2, 15k+2, 15k+4) with k ≥ 1, and so

are centered on 15k.

With needing to include diameter d = 2 when k = 2 [viz, s(2) = 2]; Admissible Prime k-tuplets for k

≥ 3 can be computed recursively using the following algorithm ([4], p. 1740) whereby the diameter d

is denoted by s(k), gcd is abbreviation for greatest common divisor, and for p prime, the notation p# is

product of all primes up to and including p.

Procedure s(k): Do S(s,3,1) for s = s(k-1)+2, s(k-1)+4,... until an admissible set B is found.

Procedure S(s,q,H): Step 1. Set U = q#, the product of all the primes q. Set D =
U
q

and h = H. Step 2.

Set B = {i: i = 0, 2,..., s, gcd(h+i, U) =1}. Step 3. If B does not contain both 0 and s, go to step 8. Step 4.

If B has less than k elements, go to step 8. Step 5. If B has more than k elements, do S(s,q’,h), where q’

is the next prime after q. Then go to step 8. Step 6. If B has exactly k elements and if for each prime p, q

< p ≤ k, all residues modulo p are represented by B, go to step 8. Step 7. Indicate that B is an admissible

set and report s(k) = s. Step 8. Add D to h. If h < H + U, go to step 2. Otherwise return.

The above algorithm is related to A008407 Minimal difference s(n) between beginning and end of n con-

secutive large primes (n-tuplet) permitted by divisibility considerations.[5] having values 0 [symbolizing

the nonexisting 1-tuple], 2, 6, 8, 12, 16, 20, 26, 30, 32, 36, 42, 48, 50, 56, 60, 66, 70, 76, 80, 84, 90, 94,

100, 110, 114, 120, 126, 130, 136, 140, 146, 152, 156, 158, 162, 168, 176, 182, 186, 188, 196, 200, 210,

212, 216, 226, 236, 240, 246, 252, 254, 264, 270, 272, 278....

Remark 6.3. As opposed to Admissible Prime k-tuplets [with diameter d as small as possible], Admissible

Prime k-tuples [with diameter d not as small as possible] will cater more for existence of prime numbers

with large(r) prime gaps that tend to occur at large(r) range of x integer values. We deduce when these

Prime k-tuplets and Prime k-tuples are combined together, they should in principle be able to represent

every known odd prime numbers albeit in an overlapping manner.
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Figure 5. INPUT for σ = 1
2 (for Figure 6), 2

5 (for Figure 7), and 3
5 (for Figure 8). Rie-

mann zeta function, ζ(s), has countable infinite set of Completely Predictable trivial zeros

located at s = all negative even numbers and countable infinite set of Incompletely Pre-

dictable nontrivial zeros located at σ = 1
2 as various t-valued transcendental numbers.

Proposition 6.2. Both f (n) simplified Dirichlet eta function and F(n) Dirichlet Sigma-Power Law will

manifest Principle of Equidistant for Multiplicative Inverse.

Proof. Dirichlet eta function η(s) is the proxy function for Riemann zeta function ζ(s). We use sim-η(s)

to denote f (n) simplified Dirichlet eta function. With also containing variable n, and parameters t and

σ; sim-η(s) is essentially obtained by applying Euler formula to η(s) and the F(n) Dirichlet Sigma-Power

Law, denoted by DSPL, refers to
∫

sim-η(s)dn.

(6)
1
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2
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1
4
π) +C

ò∞
1
= 0

With exact Dimensional analysis homogeneity, Eq. (6) is F(n) DSPL at σ = 1
2 that will incorporate all

nontrivial zeros [as Pseudo-zeroes to Zeroes conversion]. There is total absence of (non-existent) virtual

nontrivial zeros [as virtual Pseudo-zeroes to virtual Zeroes conversion]. If alternatively using infinitesimal

small number below [by letting variable δ =
1
∞

], we immediately recognize this action also confirms

Proposition 6.2 to be true [and provide further definitive evidence to support rigorous Equation-type proof

for Riemann hypothesis].

Let variable δ= 1
10 . This will consistently generate in Figure 7 and Figure 8 the δ induced shift of [infinitely

many] Varying Loops in reference to Origin; viz, the simple relationship of [more negative] left-shift given

by ζ( 1
2 − δ + ıt) [Figure 7] < [neutral] nil-shift given by ζ( 1

2 + ıt) [Figure 6] < [more positive] right-shift

given by ζ( 1
2 + δ + ıt) [Figure 8].

Given δ = 1
10 , the σ = 1

2 −δ =
2
5 -non-critical line (represented by Figure 7) and σ = 1

2 +δ =
3
5 -non-critical

line (represented by Figure 8) are equidistant from σ = 1
2 -critical line (represented by Figure 6). The

additive inverse operation of sin(δ) + sin(-δ) = 0 indicating symmetry with respect to Origin [or cos(δ) -

cos(-δ) = 0 indicating symmetry with respect to y-axis] is not applicable to our complex single sine wave

[or single cosine wave] since (2n)-complex or (2n-1)-complex term with transcendental functions
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Figure 6. OUTPUT for σ = 1
2 as Gram points. Polar graph of ζ( 1

2 + ıt) plotted along

critical line for real values of t running from 0 to 34. Horizontal axis: Re{ζ( 1
2 + ıt)}.

Vertical axis: Im{ζ( 1
2 + ıt)}. Presence of Origin intercept points.

Figure 7. OUTPUT for σ = 2
5 as virtual Gram points. Varying Loops are shifted to left

of Origin with horizontal axis: Re{ζ( 2
5 + ıt)}, and vertical axis: Im{ζ( 2

5 + ıt)}. Nil Origin

intercept points.

Figure 8. OUTPUT for σ = 3
5 as virtual Gram points. Varying Loops are shifted to right

of Origin with horizontal axis: Re{ζ( 3
5 + ıt)}, and vertical axis: Im{ζ( 3

5 + ıt)}. Nil Origin

intercept points.
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consisting of sine, cosine, single sine wave, single cosine wave, natural logarithm are independent of

parameter σ.

However, (2n)-complex or (2n-1)-complex term with algebraic functions consisting of powers, frac-

tional powers, root extraction [and scaled amplitude R on its (in)dependency on parameter t] are depen-

dent on parameter σ. Let x = (2n) or
1

(2n)
or (2n− 1) or

1
(2n − 1)

. With multiplicative inverse operation

of xδ·x−δ = 1 or
1
xδ
·

1
x−δ
= 1 that is applicable, this imply intrinsic presence of Multiplicative Inverse in

sim-η(s) or DSPL for all σ values with this function or law rigidly obeying relevant trigonometric identity.

We call this phenomenon Principle of Equidistant for Multiplicative Inverse. By letting δ = 0, we will

generate Figure 6 representing σ = 1
2 -critical line. The proof is now complete for Proposition 6.22.

7. Infinitesimal numbers applied to Prime numbers and Nontrivial zeros

The following is considered under real-valued functions of a positive real variable: The asymptotic law of

distribution of prime numbers states the limit of quotient of two functions Prime-π(x) and
x

loge x
as x in-

creases without bound is 1; viz, lim
x→∞

Prime-π(x)î
x

loge x

ó = 1. Whereby the deceleratingly distributed prime num-

bers mathematically involves loge x, then the acceleratingly distributed composite numbers must mathe-

matically involves ex since these two set of numbers are [complementary] mutually exclusive entities and

natural logarithm function is the inverse function of natural exponential function. Then the corresponding

asymptotic law of distribution of composite numbers is lim
x→∞

Composite-π(x)[ x
ex

] = 1. A direct consequence

of Prime number theorem [discussed under li(x) in section 6] is average gap between primes [arising from

arbitrarily large number of all even prime gaps 2, 4, 6, 8...] increases as natural logarithm of these primes,

and therefore the ratio of average prime gap to all primes involved decreases (and is asymptotically zero).

Heuristically, we expect the probability that the ratio of the length of prime gap to the natural logarithm is

≥ a fixed positive number k to be e−k. The average prime gap between all primes, and the ratio of prime

gap to number of digits in the integers involved, will both increase without bound as we go out on the

number line.

Manifesting perpetual asymptotically zero behavior as the graphical distance gets closer to 0 or ∞; the

natural logarithm of a number is its logarithm to base of mathematical constant e – an irrational (transcen-

dental) number ≈ 2.718281828459. With logee = 1 and loge1 = 0, the logex function will deceleratingly

grow to +∞ [conceptually a ”zero”] as x increases without bound, and deceleratingly grow to –∞ [con-

ceptually a ”zero”] as x approaches 0. Let f (x) = g(x) + h(x) + i(x)... be a mathematically well-defined

component function constituted by sum of its sub-component functions that all contain natural logarithm

[and are all Infinite-Length functions]. Then f (x) together with g(x), h(x), i(x)... must all manifest the

asymptotically zero behavior of natural logairthm. Conceptually, f (x) can represent average prime gap

between all odd primes [from arbitrarily large number of all even Prime gaps 2, 4, 6, 8, 10...], g(x) can
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represent average prime gap between all twin primes [from even Prime gap 2], h(x) can represent aver-

age prime gap between all cousin primes [from even Prime gap 4], i(x) can represent average prime gap

between all sexy primes [from even Prime gap 6], etc whereby relevant computations from Appendix

C confirm average prime gap between all odd primes manifesting this asymptotically zero behavior of

natural logarithm.

For Modified Polignac’s and Twin prime conjectures to be true, none of the arbitrarily large number of

Subsets Odd Primes generated by corresponding even Prime gaps should ever become countably finite

subsets. There are two somewhat anomalous situations.

(A) Prime numbers tend to be clustered around large or larger prime gaps occurring as multiples of 6; viz,

prime gaps 6, 12, 18.... We deduce this observation do not prove or disprove Modified Polignac’s and

Twin prime conjectures, and can be logically explained as follow. Excepting the first two prime gaps, all

prime gaps are between numbers that are either 1 or 5 modulo 6. Under the assumption that both cases

are equally likely, half the prime gaps will be between numbers in the same class, and therefore of size 0

modulo 6, and the other half will be between numbers in different classes, which split up into sizes that

are 2 and 4 modulo 6. Since each of the latter cases only gets one quarter of the total, it is clear that

ignoring all other factors, gaps that are 2 or 4 modulo 6 are about half as likely to occur as gaps of the

same approximate magnitude that are 0 modulo 6.

(B) Here is a simple proof for two consecutive prime gaps that are equal must be of the form (6n, 6n) for

n = 1, 2, 3, 4, 5...: Suppose there were two consecutive gaps between 3 consecutive prime numbers that

were equal, but not divisible by 6. Then the difference is 2k where k is not divisible by 3. Therefore the

(supposed) prime numbers will be p, p+2k, p+4k. But then p+4k is congruent modulo 3 to p+k. That

makes the three numbers congruent modulo 3 to p, p+k, p+2k. One of those is divisible by 3 and so cannot

be prime. So two consecutive gaps must be divisible by 3 and therefore (as they have to be even) by 6.

However this observation neither prove nor disprove Modified Polignac’s and Twin prime conjectures.

Riemann hypothesis propose all nontrivial zeros to be located on σ = 1
2 -critical line of Riemann zeta func-

tion. Previous confirmation of first 10,000,000,000,000 nontrivial zeros location on this critical line im-

plies but does not prove Riemann hypothesis to be true. Hardy initially[9], and then with Littlewood[10],

showed there are infinitely many nontrivial zeros lying on critical line or, equivalently, there are infinitely

many Origin intercept points lying on Origin point by considering moments of certain functions related to

Riemann zeta function. This discovery cannot constitute rigorous proof for Riemann hypothesis because

they have not exclude theoretical existence of nontrivial zeros located away from critical line when σ , 1
2 .

Furthermore, it is literally a mathematical impossibility (mathematical impasse) to computationally check

[in a complete and successful manner] the locations of all infinitely many nontrivial zeros to correctly be

the critical line. There must be infinitely many ±t-valued Origin intercept points lying on Origin point

[and hence infinitely many ±t-valued nontrivial zeros] since variable t has full range of values given by

–∞ < t < +∞ that involves ±∞.
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An infinitesimal number is a quantity that is closer to zero than any standard real number, but that is not

zero. The mathematical concept infinity is represented by symbol∞. The reciprocal or inverse symbol 1
∞

is the representation of the mathematical concept infinitesimal.

Proposition 7.1. With the prevalence of various selected odd prime numbers as endpoints never becoming

zero [which are conceptually defined as the nonexisting zero in this instance], we can apply infinitesimal

numbers to rigorously show both the prevalence of total odd prime numbers having all even Prime gaps

and the prevalence of subtotal odd prime numbers having corresponding even Prime gaps will never

become zero.

Proof. We recall that all CIS-ALN-decelerating computed prime numbers are extrapolated out over a

wide range of x ≥ 2 integer values; the prime counting function Prime-π(x) = number of primes ≤ x with

x [conveniently] assigned to having odd number values of the form 10n − 1 whereby n = 1, 2, 3, 4, 5...;

and the Prevalence of prime numbers = Prime-π(x) / x = Prime-π(x) / (10n − 2) when x = 2 to 10n − 1.

Note: The probability theory applied to n-digit primes and n-digit composites are given in subsection 7.1.

Apart from even Prime gaps of the form 6n with n = 1, 2, 3, 4, 5... and the [solitary] consecutive prime

gaps (2, 2) present in Inadmissible Prime 3-tuple with consecutive primes (3, 5, 7), no other types of two

consecutive prime gaps that are identical is possible. In reality, one could then rigorously argue from first

principle alone there must be at least three even Prime gaps that will perpetually reappear over the entire

sequence of prime numbers because the alternatingly appearance of just two different even Prime gaps at

extremely large x integer values simply cannot occur.

We recall from Proposition 6.1 concerning a given k0-tuple H = (h1,. . . , hk0) of k0 distinct integers for

some k0 ≥ 1, arranged in increasing order whereby one can, in principle, find an arbitrarily large number

of translates n + H =(n+h1,. . . , n+hk0) of H which consists entirely of consecutive primes. The case k0

= 1 is just Euclid’s theorem on the infinitude of primes. From this simple theorem, we provide following

mathematical arguments:

The cardinality of all prime numbers [or all odd prime numbers when we validly ignore the only even

prime number 2] is given by ∥CIS-ALN-decelerating∥ = ℵ0-decelerating when n→ ∞ in x = 2 to 10n − 1.

The cardinality of all integer numbers is given by ∥CIS-IM-linear∥ = ℵ0-linear when n → ∞ in x = 0

to 10n − 1. As n → ∞, there are an arbitrarily large number (ALN) of deceleratingly-occurring prime

numbers amongst the infinitely many linearly-occurring x integer numbers; viz, x integer numbers ≫

prime numbers. Then Prevalence of prime numbers = Prime-π(x) / x = ALN / ∞ = an infinitesimal

number symbolized by
1
∞

when denominator x represents the range 0 to∞. Since Euclid’s theorem holds

for x = 2 to ∞, then Prevalence of prime numbers is constituted by an infinitesimal number but can

never become zero; viz, Prevalence of prime numbers conceptually have a nonexisting zero.

A substantial amount of previous materials refer to the proposal on subsets of odd prime numbers uniquely

derived from corresponding arbitrarily large number of even Prime gaps 2i with i = 1, 2, 3, 4, 5... in that

all these subsets [which equates to Admissible Prime 2-tuplets with diameter or prime gap 2 + Admissible



56 JOHN TING

Prime 2-tuples with diameter or prime gap 4, 6, 8, 10...] must also be arbitrarily large in number. Remark

6.2, in particular, support this proposal. There must be full compliance with (i) Dimensional analysis

homogeneity on relevant cardinality, and (ii) even Prime gaps will never terminate. All odd prime numbers

having all even Prime gaps 2, 4, 6, 8, 10... = odd prime numbers having even Prime gap 2 + odd prime

numbers having even Prime gap 4 + odd prime numbers having even Prime gap 6 +... + odd prime

numbers having even Prime gap 2i =⇒ ℵ0-decelerating [all odd prime numbers] = ℵ0-decelerating

[odd prime numbers having even Prime gap 2] + ℵ0-decelerating [odd prime numbers having even Prime

gap 4] + ℵ0-decelerating [odd prime numbers having even Prime gap 6] +... + ℵ0-decelerating [odd

prime numbers having even Prime gap 2i]. Based on similar reasoning from previous paragraph, we

logically deduce that for x = 2 to ∞, Prevalence of various odd prime numbers as specified by their

corresponding even Prime gaps 2i can similarly all be constituted by infinitesimal numbers symbolized

by
1
∞

but never become zero; viz, Prevalence of various odd prime numbers as specified by their

corresponding even Prime gaps 2i conceptually have a nonexisting zero.

The proof is now complete for Proposition 7.12.

Proposition 7.2. With σ = 1
2 -Origin point or σ = 1

2 -critical line of Riemann zeta function (via proxy

Dirichlet eta function) regarded as the zero endpoint [which is conceptually defined as the existing zero in

this instance], we can apply infinitesimal numbers to rigorously show the equivalent [geometrical] Origin

intercept points located at the zero-dimensional σ = 1
2 -Origin point and [mathematical] nontrivial zeros

located at the one-dimensional σ = 1
2 -critical line will uniquely appear only when parameter σ = 1

2 .

Proof. For simplicity, we use Riemann zeta function to also indicate Dirichlet eta function, simplified

Dirichlet eta function and Dirichlet Sigma-Power Law [and note the relevant Zeros = Pseudo-zeros –
π

2
relationship]. We recall that all CIS-IM-linear computed nontrivial zeros are extrapolated out over a wide

range of t ≥ 0 real number values; and the Nontrivial zeros gaps, Nontrivial zeros counting function and

Prevalence of nontrivial zeros can be defined. Although inevitably fluctuating, the initial Prevalence of

nontrivial zeros is approximated by, for instance, using t = 0 to 100 range as 29/100 = 0.29 = 29% since

there are precisely 29 nontrivial zeros in this range. As noted in section 3, the rolling Prevalence of

nontrivial zeros seems to overall increase by around 0.366 in a ”linear” manner over t = 0 to∞.

We recall variable δ = 1
10 when applied to Riemann zeta function in Proposition 6.2 to confirm Principle

of Equidistant for Multiplicative Inverse refers to Figure 7 representing σ = 2
5 -non-critical line and

Figure 8 representing σ = 3
5 -non-critical line. We recognize zero-dimensional σ = 1

2 -Origin point in

Figure 6 is synonymous with one-dimensional σ = 1
2 -critical line, and this particular point or line is

conceptually regarded as the existing zero. Then Varying Loop trajectory in Figure 6 will only depict

CIS-linear [geometrical] Origin intercept points that is precisely equivalent to CIS-linear [mathematical]

nontrivial zeros when δ = 0 since Origin point is a zero-dimensional point that can only be touched by the

trajectory when δ = 0 and σ = 1
2 . We logically deduce variable δ = infinitesimal number value

1
∞

will
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never become the existing zero since this equates to σ ≊ 1
2 [or the trajectory is extremely close to zero-

dimensional Origin point] but this is categorically still not the same as σ = 1
2 [or the trajectory touching

zero-dimensional Origin point]. Thus variable δ will instead only become the existing zero when both

σ = 1
2 and δ = 0 conditions are simultaneously fully satisfied.

Manifestation of Dimensional analysis (DA) homogeneity by parameter σ in Riemann zeta function: The

exact DA homogeneity indicate calculated values of [exact] integer −1 and 1 as derived from
∑

(all frac-

tional exponents) = 2(−σ) and 2(1−σ). Respectively, these act as surrogate markers in simplified Dirichlet

eta function and Dirichlet Sigma-Power Law on the solitary unique σ = 1
2 ”Proposition” situation. Oth-

erwise, for the infinitely many non-unique σ , 1
2 ”Corollary” situations, calculated values of [inexact]

fractional numbers , integer –1 and , integer 1 are derived from
∑

(all fractional exponents) = 2(−σ) and

2(1 − σ) to indicate inexact DA homogeneity. The proof is now complete for Proposition 7.22.

Let Pi, Pi+1, Pi+2 and Pi+3 = four randomly selected consecutive prime numbers whereby Pi+3 > Pi+2 >

Pi+1 > Pi. If this four primes are considered in total isolation, then there are only three possible prime

gaps able to be computed: Prime gapi = Pi+1 – Pi, Prime gapi+1 = Pi+2 – Pi+1 and Prime gapi+2 = Pi+3 –

Pi+2. In principle, we recognize these three prime gaps can be constituted by all possible combinations

of small prime gaps 2 and 4 and/or large prime gaps ≥ 6; viz, all three prime gaps are constituted by

small prime gaps, all three prime gaps are constituted by large prime gaps, and the three prime gaps are

constituted by a mixture of small and large prime gaps. Intuitively, every even Prime gap 2, 4, 6, 8, 10...

and its correspondingly associated odd prime numbers must exist at least once; viz, occurring only one

time, occurring a finite number of times, or occurring an arbitrarily large number of times. Proving the

only correct possibility of both even Prime gaps 2, 4, 6, 8, 10... and their correspondingly associated odd

prime numbers occurring an arbitrarily large number of times is equivalent to proving Modified Polignac

and Twin prime conjectures to be true.

There is one and only one σ = 1
2 critical line that is mutually exclusive and independent from the infin-

itely many σ , 1
2 noncritical lines. Since there is zero probability that any particular parameter σ , 1

2

values that do occur in Dirichlet eta function will mathematically represent the σ = 1
2 critical line [or will

geometrically represent the analogous σ = 1
2 Origin point], we consequently deduce all countably infin-

itely large number of nontrivial zeros that linearly reach an infinity value as generated from Dirichlet eta

function when parameter σ = 1
2 will, by default, also have to be located on the σ = 1

2 critical line. Proving

the only correct possibility of unique σ = 1
2 critical line location for all nontrivial zeros is equivalent to

proving Riemann hypothesis to be true.

7.1. Probability theory applied to n-digit Primes and n-digit Composites. With Probability = 100% X

Proportion, Probability and Proportion are literally equivalent to each other for analysis on prime and

composite numbers (and nontrivial zeros). If the probability [range between 0 or 0% and 1 or 100%] of an

event occurring is Y, then the probability [range between 0 or 0% and 1 or 100%] of the event not occurring
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is 1–Y. The odds of an event represent the ratio Probability that the event will occur : Probability that the

event will not occur. This can be succinctly expressed as Odds of event =
Y

1 − Y
.

Based on cardinality of (sub)sets of primes and composites used in Prime-Composite quotient from section

6, we interpret their Probability or Proportion will satisfy

P(odd primes) ≈
1

2 · P(Gap 1-Even composites) + 2 · P(Gap 1-Odd composites)
.

P(any number is divisible by a prime p, or in fact any integer) = 1/p. Let there be k randomly chosen

integers. When k = 2, P(two numbers are both divisible by p) = 1/p2, and P(at least one of the two

numbers is not divisible by p) = 1 − 1/p2. Any finite collection of divisibility events associated to distinct

primes is mutually independent. For example, in the case of two events, a number is divisible by primes p

and q iff it is divisible by pq; the latter event has probability 1/pq. We make the heuristic assumption that

such reasoning can be extended to infinitely many divisibility events. Then, P(two numbers are coprime) =∏
prime p

Å
1 −

1
p2

ã
=

Ñ ∏
prime p

1
1 − p−2

é−1

=
1
ζ(2)
=

6
π2 ≈ 0.607927102 ≈ 61% – a product over all primes.

More generally, P(k randomly chosen integers being coprime) =
1
ζ(k)

.

The fundamental theorem of arithmetic asserts that every nonzero integer can be written as a product of

primes in a unique way, up to ordering and multiplication by units. Prime numbers are defined as All

integers apart from 0 and 1 that are evenly divisible by itself and by 1. Composite numbers are defined as

All integers apart from 0 and 1 that are evenly divisible by numbers other than itself and 1. The integer

numbers (Z) = {0, 1, 2, 3, 4...}, prime numbers (P) = {2, 3, 5, 7, 11...} and composite numbers (C) = {4, 6,

8, 9, 10...} can all be analyzed in terms of their corresponding unique n-digit numbers.

n 0 1 2 3 4 5 6

A006879n 0 4 21 143 1061 8363 68906

A006880n 0 4 25 168 1229 9592 78498

7 8 9 10 ...

586081 5096876 45086079 404204977 ...

664579 5761455 50847534 455052511 ...

A006879 Number of primes with n digits. Number of primes between 10(n−1) and 10n[24]. Using our

unique n-digit P grouping, this statement is mathematically equivalent to Number of primes between

10(n−1) and 10n − 1 since the integer 10n itself can never be prime.

A006880 Number of primes < 10n. Number of primes with at most n digits or Prime counting function

P-π(< 10n) defined as ∥P < 10n∥[25]. Using our unique n-digit P and n-digit C groupings, Prime counting

function P-π(≤ 10n − 1) is defined as ∥P ≤ 10n − 1∥; and Composite counting function C-π(≤ 10n − 1) as

∥C ≤ 10n − 1∥.

The above two integer sequences A006879 and A006880 are directly related to our unique n-digit P and

n-digit C groupings whereby n = 0, 1, 2, 3, 4... [to an arbitrarily large number]. A006880 forms the

partial sums of A006879. Using n-digit P grouping, A006879 can be alternatively defined as The number

of primes between 10(n−1) and 10n − 1 which supply precisely the original and identical A006879n as

n-digit prime number values. By employing similar crucial step of using n-digit C grouping The number

of composites between 10(n−1) and 10n − 1, we obtain the complementary-A006879n as n-digit composite
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number values. There are precisely 10n − 1 minus 10(n−1) plus 1 = 10n – 10(n−1) integer numbers between

10(n−1) and 10n − 1. The important implication is that we are now always dealing with the same n-digit

integer, prime and composite numbers whereby the relationship n-digit Z = n-digit P + n-digit C will

always hold [except for when n = 1 because 0 and 1 are neither prime nor composite]. We note from

A006879 and A006880 the number of primes that are still constituted by very large number values will

proportionately decline rapidly with progressively larger n values assigned to 10(n−1) and 10n−1. One can

aesthetically speculate there will always be many allocated primes to theoretically represent all possible

small or large Prime gaps.

For i = 1, 2, 3, 4, 5..., Set of Zi {0, 1, 2, 3, 4...} as CIS-IM-linear = Set of neither P nor C {0, 1} as CFS +

Set of Pi {2, 3, 5, 7, 11...} as CIS-ALN-decelerating + Set of Ci {4, 6, 8, 9, 10...} as CIS-IM-accelerating.

All P are odd except for the first and only even P 2. There is only one solitary even P 2 and one solitary

odd P 5 that are not C. Otherwise, all Z with their last digit ending as even numbers 0, 2, 4, 6 or 8, or odd

number 5 must always be C. Apart from P 2 and P 5, all P have their last digit ending as odd numbers 1, 3,

7 or 9. But not all Z with their last digit ending as odd numbers 1, 3, 7 or 9 are P – in fact, these numbers

are more likely to be C than P. We deduce that for ≥2-digit numbers, (i) C can have their last digit ending

in 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9 but (ii) P can only have their last digit ending in 1, 3, 7 or 9; and thus (iii) all

Z with their last digit ending in 0, 2, 4, 5, 6 or 8 must be C.

For n = 1, 2, 3, 4, 5...[to an arbitrarily large number]; we apply probability theory to the generated subsets

of n-digit P as CIS-ALN-decelerating and n-digit C as CIS-IM-accelerating. With probability 1, all

randomly selected Z that has its last digit ending with 0, 2, 4, 5, 6 or 8 must be almost surely C. This

is equivalently stated as: With probability 0, all randomly selected Z that has its last digit ending with

0, 2, 4, 5, 6 or 8 must be almost never P. Thus, P(randomly selected Z is C with 100% certainty) = 0.6

[except for the isolated 1-digit Z 0 and 1-digit P 2 and 5 which are not C]. The terms almost surely and

almost never can now be replaced with surely and never when we disregard the 1-digit P and 1-digit C.

Since the condition ”randomly selected Z that has its last digit ending with 0, 2, 4, 5, 6 or 8 must be surely

C” will always apply to any chosen subsets of ≥2-digit Z, the consequently derived equivalent condition

”60% of all Z being C with 100% certainty” will also always apply to these same subsets. Then, with

60% of all Z being C with 100% certainty, there are always more C than P for any chosen corresponding

subsets of ≥2-digit P and ≥2-digit C.

Constraints on Prime numbers and Prime gaps: We define Prime gapi = Pi+1 − Pi. We ignore P1 = 2 and

P3 = 5. We convey the paired list of (last digit for Pi, last digit for Pi+1) as full range of choices permissible

for corresponding specified groupings of prime gaps:

CIS-ALN-decelerating Pi selected from Prime gapi = 2, 12, 22, 32...[to an arbitrarily large number as

CIS-ALN-decelerating] → (1, 3), (7, 9), (9, 1). The last digit of Pi with prime gap having last digit

ending in 2 cannot end in 3 or 5 but can end in 1, 7 or 9.

CIS-ALN-decelerating Pi selected from Prime gapi = 4, 14, 24, 34...[to an arbitrarily large number as

CIS-ALN-decelerating] → (3, 7), (7, 1), (9, 3). The last digit of Pi with prime gap having last digit
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ending in 4 cannot end in 1 or 5 but can end in 3, 7 or 9.

CIS-ALN-decelerating Pi selected from Prime gapi = 6, 16, 26, 36...[to an arbitrarily large number as

CIS-ALN-decelerating] → (1, 7), (3, 9), (7, 3). The last digit of Pi with prime gap having last digit

ending in 6 cannot end in 5 or 9 but can end in 1, 3 or 7.

CIS-ALN-decelerating Pi selected from Prime gapi = 8, 18, 28, 38...[to an arbitrarily large number as

CIS-ALN-decelerating] → (1, 9), (3, 1), (9, 7). The last digit of Pi with prime gap having last digit

ending in 8 cannot end in 5 or 7 but can end in 1, 3 or 9.

CIS-ALN-decelerating Pi selected from Prime gapi = 10, 20, 30, 40...[to an arbitrarily large number as

CIS-ALN-decelerating]→ (1, 1), (3, 3), (7, 7), (9, 9). The last digit of Pi with prime gap having last digit

ending in 0 cannot end in 5 but can end in 1, 3, 7 or 9.

The coprime numbers [and all prime numbers] are numbers whose HCF is 1. The difference between

any two Odd Primes is always equal to 2, 4, 6, 8, 10... whereas the difference between two coprime

numbers can be any number. Odd Primes are always prime numbers, whereas coprime numbers can also

be composite numbers. As per the List above [which was previously discussed under Axiom 1], it is a

mathematical impossibility that, for instance, twin primes Pi can be constituted by a random integer with

last digit ending in 3 or 5 since only the paired last digit combinations of (Pi+1, Pi) = (1, 3), (7, 9), (9, 1)

are possible.

CIS-ALN-decelerating Pi having Prime gapi [given as multiples of 10] with last digit ending in 0 is

associated with four choices that are available arbitrarily often. Otherwise, CIS-ALN-decelerating Pi

having Prime gapi with last digit ending in 2, 4, 6 or 8 is each associated with three choices that are

available arbitrarily often. Statistically, the last digit of Zi ending in 1, 3, 7 or 9 are more likely to be

just Oi than [odd] Pi. At ever larger range of numbers for the paired list of (last digit for Pi, last digit for

Pi+1), we can intuitively surmise that P associated with progressively larger prime gaps moving from left

to right and from top to bottom should occur relatively more often than P associated with comparatively

smaller prime gaps. However, both P associated with progressively larger prime gaps and P associated

with comparatively smaller prime gaps should generally occur less often at ever larger range of numbers.

Thus, although prime gap having last digit ending in 0 can be associated with last digit of Pi ending in 1,

3, 7 or 9 as four choices [instead of just three choices]; these prime gaps as a unique group will still always

constitute larger prime gaps that will overall intrinsically occur less often at ever larger range of numbers.

The crucial overall inference here is that all known last digit of Pi ending in 1, 3, 7 or 9 that literally

represent all existing even Prime gaps must do so on in an eternal manner thus confirming Modified

Polignac’s and Twin prime conjectures to be true.

Definition 7.1. Our Modified Polignac’s and Twin prime conjectures can now be explicitly defined here

as ∥Set all even Prime gaps∥ = ∥Subset odd prime numbers associated with each even Prime gap∥ =

CIS-ALN-decelerating. Previously, Polignac’s and Twin prime conjectures were traditionally stated in a

less informative manner as ∥Set all even Prime gaps∥ = ∥Subset odd prime numbers associated with

each even Prime gap∥ = CIS.
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Constraints on Composite numbers and Composite gaps: We define Composite gapi = Ci+1 − Ci. For

1-digit P and 1-digit C that are members of 1-digit Z, there are always more P than C except at Z = 9

which is C and whereby now ∥P∥ = ∥C∥ = 4. There will always be more C as CIS-IM-accelerating than

P as CIS-ALN-decelerating when Z ≥ 10 with ∥C∥ = 2 ∥P∥ at Z = 14 and ∥C∥ > 2 ∥P∥ at Z > 14.

Let P(certain C) denote P(randomly selected Z is C with 100% certainty). Then, P(certain even C) = 0.5

for all subsets ≥2-digit C having elements with their last digit ending in 0, 2, 4, 6 or 8 [as CIS-IM-linear]

and P(certain odd C) = 0.1 for subset ≥2-digit C having elements with their last digit ending in 5 [as

CIS-IM-linear].

One can more closely analyze P-C identifier grouping which was defined in section 5. Event 1: P(uncertain

even C with last digit ending in 0, 2, 6 or 8) [as CIS-ALN-decelerating] can represent Gap-2-E-C1 that

always occur before every O-Pi with last digit ending in 1, 3, 7 or 9. Event 2: P(uncertain even C with last

digit ending in 0, 2, 4 or 8) [as CIS-IM-accelerating] can represent Gap-1-E-C2 that always occur after

every O-Pi with last digit ending in 1, 3, 7 or 9. Event 3: P(uncertain odd C with last digit ending in 1, 3,

5, 7 or 9) [as CIS-IM-accelerating] can represent Gap-1-O-C3 that always occur after Gap-1-E-C2. Event

4: P(uncertain even C with last digit ending in 0, 2, 4, 6 or 8) [as CIS-IM-accelerating] can represent

Gap-1-E-C4 that always occur after Gap-1-O-C3. Event 5: P(uncertain odd C with last digit ending in 1,

3, 5, 7 or 9) [as CIS-IM-accelerating] can represent Gap-1-O-C5 that always occur after Gap-1-E-C4...

until Event 6: P(uncertain even C with last digit ending in 0, 2, 6 or 8) [as CIS-ALN-decelerating] can

represent Gap-2-E-Cn that always occur before every O-Pi+1 with last digit ending in 1, 3, 7 or 9.

Only Events 1 and 6 [but not Events 2, 3, 4 and 5] can occur for twin primes. In Event 2, there are

four choices for Gap-1-E-C [because O-Pi generally cannot have their last digit ending in 5] as opposed

to Event 4 whereby there are, instead, five choices for Gap-1-E-C. With only the solitary 1-digit Odd P

5 existing, we deduce odd numbers with last digit ending in 5 are almost always Gap-1-O-C [or almost

never Odd P].

Computed data on n-digit prime numbers to obtain average prime gaps are supplied in Appendix C. CIS-

ALN-decelerating Subsets Gap 2i-Odd P, CIS-ALN-decelerating Gap 2-Even C, CIS-IM-accelerating

Gap 1-Even C and CIS-IM-accelerating Gap 1-Odd C present in P-C identifier grouping must obey

Constraints on Prime numbers & Prime gaps and Constraints on Composite numbers & Composite gaps.

Remark 7.1. Summary of major statistical deductions on Primes and Composites based on last digit

of the chosen number ending in even or odd numbers.

· (I) P(certain Even C with last digit ending in 0, 2, 4, 6, 8) = 0.5 when contextually based on ”Apart

from the even Prime number 2, all even numbers cannot be prime numbers [or must be either Gap 1-Even

composite numbers or Gap 2-Even composite numbers] with 100% certainty”. P(certain Odd C with last

digit ending in 5) = 0.1 when contextually based on ”Apart from the 1-digit Odd prime number 5, all

other odd numbers with last digit ending in 5 cannot be prime numbers [or must be Gap 1-Odd composite

numbers] with 100% certainty”. Then P(certain C with 100% certainty) = 0.5 + 0.1 = 0.6 total.
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Figure 9. Prime-Composite mathematical (graphed) landscape for x = 2 to 64.

Figure 10. Prime-Composite Varying Loops. This figure is a geometric representation of

prime and composite numbers computed for prime numbers {2, 3, 5, 7, 11, 13 and 17}.

· (II) P(uncertain Gap 1-Odd C with last digit ending in 1, 3, 7, 9) + P(uncertain Gap 1-Even C with last

digit ending in 0, 2, 4, 6, 8) + P(uncertain Gap 2-Even C with last digit ending in 0, 2, 6, 8) + P(uncertain

Gap 2i-Odd P with last digit ending in 1, 3, 7, 9) = 0.4 when contextually based on P(uncertain C with <

100% certainty) + P(uncertain P with < 100% certainty) = 0.4 total, whereby

P(uncertain Gap 1-Even C) + P(uncertain Gap 1-Odd C)

∝
1

P(uncertain Gap 2-Even C) + P(uncertain Gap 2i-Odd P)
. As x → ∞, P(uncertain Gap 1-Even C)

+ P(uncertain Gap 1-Odd C) approaches 1 [but never becomes 1] and P(uncertain Gap 2-Even C) +

P(uncertain Gap 2i-Odd P) approaches 0 [but never becomes 0].

8. Anatomy of Prime-Composite Varying Loop

The tabulated and graphed Prime-Composite finite scale mathematical landscape are provided in Table 2

and Figure 9. Figure 10 geometrically depict Incompletely Predictable Prime-Composite Varying Loops.

This allows visual representation of two algorithms in action; viz, Sieve-of-Eratosthenes algorithm that

generate all primes and Complement-Sieve-of-Eratosthenes algorithm that generate all composites.

Let N = natural numbers, P = prime numbers, and C = composite numbers. Based on the innovative

Dimension (2x - N) system with N = 2x - ΣPCx-Gap and x = all integers commencing from 1; Dimension

(2x - N) when expanded is numerically just equal to ΣPCx-Gap since Dimension (2x - N) = 2x - 2x +



PRIME NUMBERS, NONTRIVIAL ZEROS 63

x Pi/Ci Gaps ΣPCx-Gaps Dim x Pi/Ci Gaps ΣPCx-Gaps Dim

1 N/A 0 2x-2 33 C21, 1 58 2x-8

2 P1, 1 0 2x-4 34 C22, 1 59 2x-9

3 P2, 2 1 2x-5 35 C23, 1 60 2x-10

4 C1, 2 1 Y 36 C24, 2 61 2x-11

5 P3, 2 3 Y 37 P12, 4 67 Y

6 C2, 2 5 Y 38 C25, 1 69 Y

7 P4, 4 7 Y 39 C26, 1 70 2x-8

8 C3, 1 9 Y 40 C27, 1 71 2x-9

9 C4, 1 10 2x-8 41 P13, 2 75 Y

10 C5, 2 11 2x-9 42 C28, 2 77 Y

11 P5, 2 15 Y 43 P14, 4 79 Y

12 C6, 2 17 Y 44 C29, 1 81 Y

13 P6, 4 19 Y 45 C30, 1 82 2x-8

14 C7, 1 21 Y 46 C31, 2 83 2x-9

15 C8, 1 22 2x-8 47 P15, 6 87 Y

16 C9, 1 23 2x-9 48 C32, 1 89 Y

17 P7, 2 27 Y 49 C33, 1 90 2x-8

18 C10, 2 29 Y 50 C34, 1 91 2x-9

19 P8, 4 31 Y 51 C35, 1 92 2x-10

20 C11, 1 33 Y 52 C36, 1 93 2x-11

21 C12, 1 34 2x-8 53 P16, 6 99 Y

22 C13, 2 35 2x-9 54 C37, 1 101 Y

23 P9, 6 39 Y 55 C38, 1 102 2x-8

24 C14, 1 41 Y 56 C39, 1 103 2x-9

25 C15, 1 42 2x-8 57 C40, 1 104 2x-10

26 C16, 1 43 2x-9 58 C41, 1 105 2x-11

27 C17, 1 44 2x-10 59 P17, 2 111 Y

28 C18, 2 45 2x-11 60 C42, 2 113 Y

29 P10, 2 51 Y 61 P18, 6 115 Y

30 C19, 2 53 Y 62 C43, 1 117 Y

31 P11, 6 55 Y 63 C44, 1 118 2x-8

32 C20, 1 57 Y 64 C45, 1 119 2x-9

Table 2. Prime-Composite mathematical (tabulated) landscape for x = 2 to 64. Legend:

C = composite, P = prime, Dim = Dimension, Y = 2x - 7, N/A = Not Applicable.
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Figure 11. Close-up view of virtual Origin points when σ = 1
3 . OUTPUT for σ = 1

3

[σ < 1
2 situation] as virtual Gram points. Polar graph of ζ( 1

3 + ıt) plotted along non-

critical line for real values of t running between 0 and 100, horizontal axis: Re{ζ( 1
2 + ıt)},

and vertical axis: Im{ζ( 1
2 + ıt)}. Total absence of all Origin intercept points at ”static”

Origin point. Total presence of all virtual Origin intercept points (as additional negative

virtual Gram[y=0] points on x-axis) at ”varying” [infinitely many] virtual Origin points.

ΣPCx-Gap = ΣPCx-Gap. Definition for this system is explained using position x = 31 and 32. For i and x

∈ N [in Table 2]; ΣPCx-Gap = ΣPCx−1-Gap + Gap value at Pi−1 or Gap value at Ci−1 whereby (i) Pi or Ci

at position x is determined by whether relevant x value belongs to a P or C, and (ii) both ΣPC1-Gap and

ΣPC2-Gap = 0. Examples: For position x = 31: 31 is P (P11). Desired Gap value at P10 = 2. ΣPC31-Gap

(55) = ΣPC30-Gap (53) + Gap value at P10 (2). For position x = 32: 32 is C (C20). Desired Gap value at

C19 = 2. ΣPC32-Gap (57) = ΣPC31-Gap (55) + Gap value at C20 (2).

Plus-Minus Gap 2 Composite Number Alternating Law refers to rhythmic patterns of alternating presence

and absence for relevant Gap 2 Composite Numbers. Mathematically, it has built-in intrinsic mechanism

to automatically generate all prime numbers from prime gaps ≥ 4 appearances in a consistent ad infinitum

manner. Plus Gap 2 Composite Number Continuous Law refers to (non-)rhythmic patterns with contin-

ual presence for relevant Gap 2 Composite Numbers. Mathematically, it has built-in intrinsic mechanism

to automatically generate all prime numbers from prime gap = 2 appearances in a consistent ad infini-

tum manner. These two deduced Laws that crucially involve both prime and composite numbers being

dependently and algorithmically tabulated together with subsequent analysis on their [combined] cor-

responding gaps will qualitatively confirm Modified Polignac’s and Twin prime conjectures to be true.

9. Anatomy of Nontrivial Zeros-Gram Points Varying Loop

Let Origin intercept point = nontrivial zero (or NTZ) = Gram[x=0,y=0] point (or G[x=0,y=0]P); x-axis

intercept point = Gram[y=0] point (or G[y=0]P aka the ’usual’ / ’traditional’ Gram point); and y-axis

intercept point = Gram[x=0] point (or G[x=0]P). We follow the peculiar choice of the index n used for

Gram points and NTZ [depicted in order of their initial appearances for σ = 1
2 and positive t values]: n
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Figure 12. Simulated dynamic trajectories showing Origin intercept points when σ = 1
2

and virtual Origin intercept points when σ = 2
5 and σ = 4

5 . Horizontal axis: Re{ζ(σ+ ıt)},

and vertical axis: Im{ζ(σ+ ıt)}. Total presence of all Origin intercept points at the [static]

Origin point. Total presence of all virtual Origin intercept points as additional negative

virtual Gram[y=0] points on the x-axis (e.g. when using σ = 2
5 value) at the [infinitely

many varying] virtual Origin points; viz, these negative virtual Gram[y=0] points on the

x-axis cannot exist at the solitary Origin point since the two trajectories form two co-lines.

= –3 for 1st –ve G[y=0]P, n = –1 for 1st –ve G[x=0]P, n = –2 for 2nd +ve G[y=0]P, n = –1 for 3rd +ve

G[y=0]P, n = 1 for 1st NTZ, n = 0 for 2nd +ve G[x=0]P, n = 0 for 4th +ve G[y=0]P, n = 1 for 3rd –ve

G[x=0]P, n = 2 for 2nd NTZ, n = 1 for 5th +ve G[y=0]P, n = 3 for 3rd NTZ, n = 2 for 4th +ve G[x=0]P,

n = 2 for 6th +ve G[y=0]P, n = 3 for 5th –ve G[x=0]P, and so on. Thus, we observe different varieties of

Nontrivial Zeros-Gram Points Varying Loops commencing from 1st NTZ: (A) NTZ, +ve G[x=0]P, +ve

G[y=0]P, –ve G[x=0]P, NTZ; (B) NTZ, +ve G[y=0]P, NTZ; (C) NTZ, +ve G[x=0]P, +ve G[y=0]P, –ve

G[x=0]P, NTZ; (D) NTZ, +ve G[y=0]P, NTZ; (E) NTZ, +ve G[x=0]P, +ve G[y=0]P, –ve G[x=0]P, NTZ;

(F) NTZ, +ve G[y=0]P, –ve G[x=0]P, NTZ; (G) NTZ, +ve G[y=0]P, (H) NTZ; (I) NTZ, +ve G[x=0]P,

+ve G[y=0]P, –ve G[x=0]P, NTZ; etc.

We geometrically depict σ = 1
2 as Gram points in Figure 3, Close-up view of virtual Origin points when

σ = 1
3 in Figure 11, and Simulated dynamic trajectories showing Origin intercept points when σ = 1

2

and virtual Origin intercept points when σ = 2
5 and σ = 4

5 in Figure 12. As demonstrated in Figure

12, two different trajectories as specified by two different σ values will always form two colinear lines

(colines) [which is conveniently defined as two parallel curved lines that will never cross over]. We

crucially note the unique trajectory formed by solitary σ = 1
2 value will also always form colines with

other trajectories formed by any arbitrarily chosen σ , 1
2 values. Since only the trajectory formed by

σ = 1
2 value will intersect with Origin point thus giving rise to Origin intercept points [nontrivial zeros],

all other trajectories formed by σ , 1
2 values will never intersect with Origin point.

In Figure 11 for σ = 1
3 [σ < 1

2 situation], there are relatively more virtual Gram[x=0] points existing as

y-axis intercept points. On the contrary σ > 1
2 situation e.g. σ = 2

3 , there will instead be virtual Origin in-

tercept points (as additional positive virtual Gram[y=0] points on x-axis) at the ”varying” [infinitely many]
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virtual Origin points with relatively less virtual Gram[x=0] points existing as y-axis intercept points. Then

proof for Riemann hypothesis can be stated as fulfilling two conditions: The position of Origin point when

σ = 1
2 is uniquely a solitary point, and the positions of virtual Origin points for any σ values when σ , 1

2

are non-uniquely infinitely many points but these cannot include the position of Origin point.

The Incompletely Predictable Nontrivial zeros-Gram points Varying Loops (NTZ-GP VL), indicating NTZ

gaps as geometrically depicted in Figure 6, are dynamically defined by the line tracing joining nth NTZ to

(n+1)th NTZ with the [solitary] Origin point acting as the unique σ = 1
2 -Attractor. The four boundaries in

a usual NTZ-GP VL on the short range scale will typically consist of the two sequential patterns nth NTZ,

then a [alternatingly] positive and negative G[x=0]P (or vice versa), then a positive G[y=0]P, and finally

(n+1)th NTZ. The area enclosed by each NTZ-GP VL can be obtained by integrating the relevant equation

for each Varying Loop in interval from 0π to 2π.

10. Conclusions

Godel’s incompleteness theorems are two theorems of mathematical logic concerning the limits of prov-

ability in formal axiomatic theories. The first incompleteness theorem states that no consistent system of

axioms whose theorems can be listed by an effective procedure (i.e., an algorithm) is capable of proving all

truths about the arithmetic of natural numbers. For any such consistent formal system, there will always

be statements about natural numbers that are true, but that are unprovable within the system. The sec-

ond incompleteness theorem, an extension of the first, shows that the system cannot demonstrate its own

consistency. Thus Godel’s incompleteness theorems may apply to the first Hardy-Littlewood conjecture.

Side Note: The second Hardy-Littlewood conjecture states that Prime-π(x + y) ≤ Prime-π(x) + Prime-

π(y) for all x, y ≥ 2 whereby Prime-π(x) is the prime counting function; viz, the number of primes from

x+1 to x+y is always less than or equal to the number of primes from 1 to y. These two Hardy-Littlewood

conjectures[11] were subsequently proven to be incompatible with each other[12] with an arbitrarily large

number of violations. The first such violation is expected to likely occur for very large values of x; for

example, an Admissible Prime k-tuplet of 447 primes [with smallest possible diameter = 3158] can be

found in an interval of y = 3159 integers, while Prime-π(3159) = 446. Although unproven, the first

Hardy-Littlewood conjecture is generally considered by most people to likely be true. If that is the case,

it implies that the second Hardy-Littlewood conjecture, in contrast, is false.

Gap 1-Composites as Even and Odd Composites belong to CIS-IM-accelerating. Gap 2-Composites as

Even Composites [and Gap 2i-Odd Primes as All Odd Primes (with i = 1, 2, 3, 4, 5...)] belong to CIS-

ALN-decelerating. Therefore, not least to preserve homogeneity in all cardinality to be ”CIS” [and not

be partially or fully ”CFS”]; Total Gap 2i-Odd Primes as ALN of Subtotals Gap 2-Odd Primes, Gap

4-Odd Primes, Gap 6-Odd Primes, Gap 8-Odd Primes, Gap 10-Odd Primes... must logically all belong to

CIS-ALN-decelerating.
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Yitang Zhang proved a landmark result showing some unknown even number N < 70 million such that this

condition holds: There are CIS-ALN-decelerating Odd Primes that differ by N between each other[33].

Aesthetically, this solitary N < 70 million value as an even Prime gap is insufficient since its generated

CIS-ALN-decelerating Odd Primes simply cannot exist alone in the large range of prime numbers. Hence

there must be at least two, if not three, existing even Prime gaps that generate their corresponding CIS-

ALN-decelerating Odd Primes. Modified Polignac’s and Twin prime conjectures equates to all even Prime

gaps 2, 4, 6, 8, 10... will generate their corresponding CIS-ALN-decelerating Odd Primes.

Treated as Incompletely Predictable problems, we provide a comparatively elementary algorithm-type

proof for Modified Polignac’s and Twin prime conjectures [whereby this could now be dubbed Modified

Polignac’s and Twin prime Theorem]. This statement can also be phrased as Plus-Minus Gap 2 Composite

Number Alternating Law and Plus Gap 2 Composite Number Continuous Law that are applicable on the

finite (small) scale, are also applicable on the infinite (large) scale. There is zero probability that any

particular prime gaps from eternal repeated groupings of small and/or large prime gaps that faithfully

generate all the countably arbitrarily large number of Odd Primes will abruptly terminate or disappear.

Treated as Incompletely Predictable problems, we provide a comparatively elementary equation-type

proof on Riemann hypothesis [whereby this could now be dubbed Riemann Theorem] while explaining the

existence of mutually exclusive three types of Gram points and two types of virtual Gram points. There

is zero probability that any of the countably infinitely many nontrivial zeros can be located away from

[geometrical] Origin point, which is equivalent to [mathematical] critical line.

With methods historically based on the blends of computational, analytic, algebraic and geometric number

theory; the geometrical-mathematical unified approach used in all our proofs is analogically similar to

the algebra-geometry unified approach of geometric Langlands program that was formalized by Professor

Peter Scholze and Professor Laurent Fargues[3]. Our Algebra and Number Theory achievements represent

solving the overall complex (meta-) properties on Incompletely Predictable problems.

Author’s Personal Note In perspective, there are also Completely Unpredictable entities (Completely

Random entities) [e.g. obtained from true Random Number Generator with maximum entropy] as well as

Completely Predictable entities and Incompletely Predictable entities [→ Mathematics for Incompletely

Predictable Problems]. In increasing order of complexity, we have the following previously derived Laws

as outlined on p. 49 of [27]:

Law I: Simple Elementary Fundamental Law for ”simple” Nonliving Things with simple properties

Law II: Complex Elementary Fundamental Law for ”complex” Nonliving Things with complex properties

Law III: Simple Emergent Fundamental Law for ”simple” Living Things with simple properties

Law IV: Complex Emergent Fundamental Law for ”complex” Living Things with complex properties
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Appendix A. Gram’s Law and Rosser’s Rule

Named after Danish mathematician Jørgen Pedersen Gram (June 27, 1850 – April 29, 1916), [’traditional’

/ ’usual’] Gram points or (mathematical) Gram[y=0] points or (geometrical) x-axis intercept points are

other conjugate pairs values in Riemann zeta function ζ(s) on σ = 1
2 critical line. Then s = 1

2 + ıt gives rise

to ζ( 1
2 + ıt) on critical line; and Gram points when defined in terms of ζ(s) is given by

∑
ReIm{ζ(s)} =

Re{ζ(s)} + 0, or simply Im{ζ(s)} = 0. Alternatively defined using expression denoting ζ(s) on critical line

ζ( 1
2 + ıt) = Z(t)e−ıθ(t) whereby Hardy’s function, Z, is real for real t, and θ is Riemann-Siegel theta function

given in terms of gamma function as θ(t) = arg
Å
Γ

Å
1
4
+

it
2

ãã
−

ln π
2

t for real values of t; we note that
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ζ(s) is real when sin(θ(t)) = 0. This implies that θ(t) is an integer multiple of π which allows for location

of Gram points to be calculated easily by inverting the formula for θ. As already alluded to in section

3, Gram points are historically [crudely] numbered as gn for n = 0, 1, 2, 3,..., whereby gn is the unique

solution of θ(t) = nπ. Here, n = 0 is the [first] g0 value of 17.8455995405... which is larger than the

smallest [first] positive nontrivial zeros (NTZ) value of 14.13472515.... Thus, n = -3 correspond to g−3 =

0, n = -2 correspond to g−2 = 3.4362182261..., and n = -1 correspond to g−1 = 9.6669080561....

Paired [infinite-length] integer sequences with prestigious connections:

A100967+0, which is A100967[16], is precisely defined as ”Least k such that binomial(2k+1, k-n-1) ≥

binomial(2k, k) viz. (2k+1)!k!k! ≥ (2k)!(k-n-1)!(k+n+2)!”. The terms commencing from Position 0, 1,

2, 3,... of A100967+0 are 3, 9, 18, 29, 44, 61, 81, 104, 130, 159, 191, 225, 263, 303, 347, 393, 442, 494,

549, 606, 667, 730, 797, 866, 938, 1013, 1091, 1172, 1255, 1342, 1431, 1524, 1619, 1717, 1818, 1922,

2029, 2138, 2251, 2366, 2485, 2606, 2730, 2857, 2987, 3119, 3255, 3394, 3535,....

A100967+1 is precisely defined as ”Add 1 to each and every terms from A100967+0”. The terms com-

mencing from Position 0, 1, 2, 3,... of A100967+1 are 4, 10, 19, 30, 45, 62, 82, 105, 131, 160, 192, 226,

264, 304, 348, 394, 443, 495, 550, 607, 668, 731, 798, 867, 939, 1014, 1092, 1173, 1256, 1343, 1432,

1525, 1620, 1718, 1819, 1923, 2030, 2139, 2252, 2367, 2486, 2607, 2731, 2858, 2988, 3120, 3256, 3395,

3536,....

A228186[26] is defined as ”Greatest natural number k > n such that calculated peak values for ratio R

=
Combinations With Repetition

Combinations Without Repetition
=

(k + n − 1)!(n − k)!
n!(n − 1)!

belong to maximal rational numbers < 2”. It

is also defined as ”Smallest natural number k > n such that (k+n+1)!(k-n-2)! < 2k!(k-1)!”. The terms

commencing from Position 0, 1, 2, 3,... of A228186 are 4, 9, 18, 29, 44, 61, 81, 104, 130, 159, 191, 226,

263, 304, 347, 393, 442, 494, 549, 607, 667, 731, 797, 866, 938, 1013, 1091, 1172, 1256, 1342, 1432,

1524, 1619, 1717, 1818, 1922, 2029, 2139, 2251, 2367, 2485, 2606, 2730, 2857, 2987, 3120, 3255, 3394,

3535,....

Unexpected connection [and unrelated to NTZ and Gram points]: A228186 can be considered an innova-

tive [infinite-length] ”Hybrid integer sequence” that is identical to [infinite-length] ”non-Hybrid integer

sequence” A100967+0 except for the interspersed [finite] 21 ’exceptional’ terms located at Position 0, 11,

13, 19, 21, 28, 30, 37, 39, 45, 50, 51, 52, 55, 57, 62, 66, 70, 73, 77, and 81 with their corresponding 21

values exactly specified by ”non-Hybrid integer sequence” A100967+1.

A114856-”bad”-Gram-points, which is A114856[31], is precisely defined as ”Indices n of Gram points gn

for which (-1)nZ(gn) < 0 with Z(t) being Riemann-Siegel Z-function [and full given range of values n = 0,

1, 2, 3,...]”. The terms of A114856-”bad”-Gram-points are: 126, 134, 195, 211, 232, 254, 288, 367, 377,

379, 397, 400, 461, 507, 518, 529, 567, 578, 595, 618, 626, 637, 654, 668, 692, 694, 703, 715, 728, 766,

777, 793, 795, 807, 819, 848, 857, 869, 887, 964, 992, 995, 1016, 1028, 1034, 1043, 1046, 1071, 1086,....

A114856-”good”-Gram-points, given by ”total”-Gram points minus A114856-”bad”-Gram-points, is pre-

cisely defined as ”Indices n of Gram points gn for which (-1)nZ(gn) > 0 with Z(t) being Riemann-Siegel
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Z-function [and full given range of values n = 0, 1, 2, 3,...]”. The derived terms of A114856-”good”-

Gram-points: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,....

A216700[7] is precisely defined as ”Violations of Rosser’s rule: numbers n such that the Gram block [gn,

gn+k] contains fewer than k points t such that Z(t) = 0 with Z(t) being Riemann-Siegel Z-function [and full

given range of values n = 0, 1, 2, 3,...]”. The terms of A216700 are 13999525, 30783329, 30930927,

37592215, 40870156, 43628107, 46082042, 46875667, 49624541, 50799238, 55221454, 56948780,

60515663, 61331766, 69784844, 75052114, 79545241, 79652248, 83088043, 83689523, 85348958,

86513820, 87947597,....

Note: All NTZ (as conjectured by Riemann hypothesis) and Gram points (by definition) are located on the

same critical line of Riemann zeta function. Counting NTZ can be validly reduced to counting all Gram

points where Gram’s Law is satisfied and adding count of NTZ inside each Gram block. With this process,

we need not locate NTZ but just have to accurately compute Z(t) to show that it changes sign.

Gram’s Law: there is [usually] exactly one NTZ (Gram[x=0,y=0] points or Origin intercept points) be-

tween any two ”good” Gram points. Examples of closely related statements equivalent to Gram’s law are:

(−1)nZ(gn) is [usually] positive or Z(t) [usually] has opposite sign at consecutive Gram points. Thus, a

t-valued Gram point is called a ”good” Gram point if ζ(s) is positive at 1
2 + ıt with (−1)nZ(gn) > 0 and a

”bad” Gram point if ζ(s) is negative at 1
2 + ıt with (−1)nZ(gn) < 0. The indices of ”bad” Gram points where

Z has the ’wrong’ sign are given by A114856 in OEIS. A Gram block [gn, gn+k] is a half-open interval

bounded by two ”good” Gram points gn and gn+k such that all Gram points gn+1,..., gn+k−1 between them

are ”bad” Gram points. A refinement of Gram’s Law is known as Rosser’s Rule[20] which stated that

Gram blocks [usually] have the expected number of NTZ in them (identical to number of Gram intervals),

even though some of the individual Gram intervals in the block may not have exactly one NTZ in them.

Example, the interval bounded by g125 and g127 is a Gram block containing a unique ”bad” Gram point

g126 and expected number 2 of NTZ although neither of its two Gram intervals contains a unique NTZ.

Gram’s Law and Rosser’s Rule both imply that in some sense NTZ do not stray too far from their ex-

pected positions, and that they hold most of the time but are violated infinitely often (in an Incompletely

Predictable manner)[29], [30]. Professor Timothy Trudgian in 2011 explicitly showed that both Gram’s

Law and Rosser’s Rule fail in a positive proportion of cases. In particular, it is expected that in about 73%

[≈ 3
4 ] one NTZ is enclosed by two successive Gram points [and thus Gram’s Law fails for about 27% ≈ 1

4

of all Gram intervals to contain exactly one NTZ], but in about 14% no NTZ and in about 13% two NTZ

are in such a Gram interval on the long run.

Appendix B. The 18 patterns of Admissible Prime 25-tuplets

The 18 patterns for the [randomly-selected] Prime 25-tuplets are depicted as cummulative prime gaps and

progressive prime gaps. Frequency of patterns [that are progressively decreasing by 8, 4 and 2 as related
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by 2−1] containing prime gap 8 = 16/18, prime gap 10 = 8/18, prime gap 12 = 4/18, and prime gap 14

= 2/18. Frequency of patterns [that are progressively increasing by 8, 4 and 2 as related by 2−1] NOT

containing prime gap 8 = 2/18, prime gap 10 = 10/18, prime gap 12 = 14/18, and prime gap 14 = 16/18.

Pat-1 (0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50, 56, 62, 68, 72, 78, 86, 90, 96, 98, 102, 110) ≡ (0, 2,

4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 6, 6, 4, 6, 8, 4, 6, 2, 4, 8); #Gap 8 = 2, #Gap 10 = 0, #Gap 12 = 0, #Gap

14 = 0

Pat-2 (0, 2, 6, 8, 12, 20, 26, 30, 36, 38, 42, 48, 56, 66, 68, 72, 78, 80, 86, 90, 92, 96, 98, 108, 110) ≡ (0,

2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 6, 8, 10, 2, 4, 6, 2, 6, 4, 2, 4, 2, 10, 2); #Gap 8 = 2, #Gap 10 = 2, #Gap 12 = 0,

#Gap 14 = 0

Pat-3 (0, 2, 6, 8, 12, 20, 26, 30, 36, 38, 42, 48, 50, 56, 66, 68, 72, 78, 80, 86, 90, 92, 98, 108, 110) ≡ (0,

2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 10, 2, 4, 6, 2, 6, 4, 2, 6, 10, 2); #Gap 8 = 1, #Gap 10 = 2, #Gap 12 = 0,

#Gap 14 = 0

Pat-4 (0, 2, 6, 8, 12, 20, 26, 30, 36, 38, 42, 50, 56, 66, 68, 72, 78, 80, 86, 90, 92, 96, 98, 108, 110) ≡ (0,

2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 8, 6, 10, 2, 4, 6, 2, 6, 4, 2, 4, 2, 10, 2); #Gap 8 = 2, #Gap 10 = 2, #Gap 12 = 0,

#Gap 14 = 0

Pat-5 (0, 2, 6, 8, 12, 20, 26, 30, 36, 38, 42, 50, 56, 62, 66, 68, 72, 78, 80, 86, 90, 92, 96, 108, 110) ≡ (0, 2,

4, 2, 4, 8, 6, 4, 6, 2, 4, 8, 6, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 12, 2); #Gap 8 = 2, #Gap 10 = 0, #Gap 12 = 1, #Gap

14 = 0

Pat-6 (0, 2, 6, 8, 12, 20, 26, 30, 36, 38, 42, 48, 56, 62, 66, 68, 72, 78, 80, 86, 90, 92, 96, 108, 110) ≡ (0, 2,

4, 2, 4, 8, 6, 4, 6, 2, 4, 6, 8, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 12, 2); #Gap 8 = 2, #Gap 10 = 0, #Gap 12 = 1, #Gap

14 = 0

Pat-7 (0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 50, 56, 62, 68, 72, 78, 86, 90, 92, 96, 98, 102, 110) ≡ (0, 2,

4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 8, 6, 6, 6, 4, 6, 8, 4, 2, 4, 2, 4, 8); #Gap 8 = 3, #Gap 10 = 0, #Gap 12 = 0, #Gap

14 = 0

Pat-8 (0, 2, 6, 12, 14, 20, 24, 26, 30, 32, 42, 44, 54, 56, 60, 66, 72, 74, 80, 86, 90, 96, 102, 104, 110) ≡ (0,

2, 4, 6, 2, 6, 4, 2, 4, 2, 10, 2, 10, 2, 4, 6, 6, 2, 6, 6, 4, 6, 6, 2, 6); #Gap 8 = 0, #Gap 10 = 2, #Gap 12 = 0,

#Gap 14 = 0

Pat-9 (0, 6, 8, 14, 20, 24, 30, 36, 38, 44, 50, 54, 56, 66, 68, 78, 80, 84, 86, 90, 96, 98, 104, 108, 110) ≡ (0,

6, 2, 6, 6, 4, 6, 6, 2, 6, 6, 4, 2, 10, 2, 10, 2, 4, 2, 4, 6, 2, 6, 4, 2); #Gap 8 = 0, #Gap 10 = 2, #Gap 12 = 0,

#Gap 14 = 0

Pat-10 (0, 2, 8, 12, 14, 18, 24, 30, 32, 38, 42, 44, 50, 54, 60, 68, 72, 74, 78, 80, 84, 98, 102, 108, 110) ≡

(0, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2); #Gap 8 = 1, #Gap 10 = 0, #Gap 12 = 0,

#Gap 14 = 1

Pat-11 (0, 2, 8, 12, 26, 30, 32, 36, 38, 42, 50, 56, 60, 66, 68, 72, 78, 80, 86, 92, 96, 98, 102, 108, 110) ≡

(0, 2, 6, 4, 14, 4, 2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6, 4, 2, 4, 6, 2); #Gap 8 = 1, #Gap 10 = 0, #Gap 12 = 0,

#Gap 14 = 1

Pat-12 (0, 8, 12, 14, 18, 20, 24, 32, 38, 42, 48, 54, 60, 68, 74, 78, 80, 84, 90, 92, 98, 102, 104, 108, 110)

≡ (0, 8, 4, 2, 4, 2, 4, 8, 6, 4, 6, 6, 6, 8, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2); #Gap 8 = 3, #Gap 10 = 0, #Gap 12 =
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0, #Gap 14 = 0

Pat-13 (0, 8, 12, 14, 20, 24, 32, 38, 42, 48, 54, 60, 62, 68, 74, 78, 80, 84, 90, 92, 98, 102, 104, 108, 110)

≡ (0, 8, 4, 2, 6, 4, 8, 6, 4, 6, 6, 6, 2, 6, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2); #Gap 8 = 2, #Gap 10 = 0, #Gap 12 =

0, #Gap 14 = 0

Pat-14 (0, 2, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 54, 60, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110)

≡ (0, 2, 10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 10, 6, 8, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2); #Gap 8 = 2, #Gap 10 = 2, #Gap 12

= 0, #Gap 14 = 0

Pat-15 (0, 2, 12, 18, 20, 24, 30, 32, 38, 42, 44, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110)

≡ (0, 2, 10, 6, 2, 4, 6, 2, 6, 4, 2, 10, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2); #Gap 8 = 1, #Gap 10 = 2, #Gap 12

= 0, #Gap 14 = 0

Pat-16 (0, 2, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 54, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110)

≡ (0, 2, 10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 10, 8, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2); #Gap 8 = 2, #Gap 10 = 2, #Gap 12

= 0, #Gap 14 = 0

Pat-17 (0, 2, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110)

≡ (0, 2, 12, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 8, 6, 4, 2, 6, 4, 6, 8, 4, 2, 6, 2); #Gap 8 = 2, #Gap 10 = 0, #Gap 12 =

1, #Gap 14 = 0

Pat-18 (0, 2, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 60, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110)

≡ (0, 2, 12, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 8, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2); #Gap 8 = 2, #Gap 10 = 0, #Gap 12 =

1, #Gap 14 = 0

Appendix C. Computed data on n-digit primes with average prime gaps

Examples of computed data on n-digit prime numbers that include their average prime gaps:

Corresponding subsets 1-digit P {2, 3, 5 and 7} and C {4, 6, 8 and 9} that are derived from subset 1-digit

Z {0, 1, 2, 3, 4, 5, 6, 7, 8 and 9} with cardinality of 10 have both equal cardinality of 4. First 1-digit Pi

occurs at i = 1 (odd position) and last 1-digit Pi ends at i = 4 (even position). Average P gap for 1-digit P

= 10/4 = 2.5.

Corresponding subsets 2-digit P {11, 13, 17, 19, 23...} with cardinality of 21 and C {10, 12, 14, 15, 16...}

with cardinality of 69 together form subset 2-digit Z {10, 11, 12, 13, 14,..., 99} with cardinality of 90.

There are 60% of 90 Z = 54 Z being C with 100% certainty. Consequently, there are 21 P and 69 - 54

= 15 C that together constitute the P(uncertain P + uncertain C) = 0.4 whereby we note that there are

more uncertain P [21/36 = 58.3%] than uncertain C [15/36 = 41.7%]. First 2-digit Pi starts at i = 5 (odd

position) and last 2-digit Pi ends at i = 25 (odd position). Average P gap for 2-digit P = 90/21 = 4.29.

Corresponding subsets 3-digit P {101, 103, 107, 109, 113...} with cardinality of 143 and C {100, 102, 104,

105, 106...} with cardinality of 757 together form subset 3-digit Z {100, 101, 102, 103, 104..., 999} with

cardinality of 900. There are 60% of 900 Z = 540 Z being C with 100% certainty. Consequently, there are

143 P and 757 - 540 = 217 C that together constitute the P(uncertain P + uncertain C) = 0.4 whereby we

note that there are less uncertain P [143/360 = 39.7%] than uncertain C [217/360 = 60.3%]. First 3-digit
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Pi starts at i = 26 (even position) and last 3-digit Pi ends at i = 168 (even position). Average P gap for

3-digit P = 900/143 = 6.29.

Corresponding subsets 4-digit P {1009, 1013, 1019, 1021, 1031...} with cardinality of 1061 and C {1000,

1001, 1002, 1003, 1004...} with cardinality of 7939 together form subset 4-digit Z {1000, 1001, 1002,

1003, 1004..., 9999} with cardinality of 9000. There are 60% of 9000 Z = 5400 Z being C with 100%

certainty. Consequently, there are 1061 P and 7939 - 5400 = 2539C that together constitute the P(uncertain

P + uncertain C) = 0.4 whereby we note that there are less uncertain P [1061/3600 = 29.5%] than uncertain

C [2539/3600 = 70.5%]. First 4-digit Pi starts at i = 169 (odd position) and last 4-digit Pi ends at i = 1229

(odd position). Average P gap for 4-digit P = 9000/1061 = 8.48.

Corresponding subsets 5-digit P {10007, 10009, 10037, 10039, 10061...} with cardinality of 8363 and C

{10000, 10001, 10002, 10003, 10004...} with cardinality of 81637 together form subset 5-digit Z {10000,

10001, 10002, 10003, 10004..., 99999} with cardinality of 90000. There are 60% of 90000 Z = 54000

Z being C with 100% certainty. Consequently, there are 8363 P and 81637 - 54000 = 27637 C that

together constitute the P(uncertain P + uncertain C) = 0.4 whereby we note that there are less uncertain P

[8363/36000= 23.2%] than uncertain C [27637/36000 = 76.8%]. First 5-digit Pi starts at i = 1230 (even

position) and last 5-digit Pi ends at i = 9592 (even position). Average P gap for 5-digit P = 90000/8363 =

10.76.

Corresponding subsets 6-digit P {100003, 100019, 100043, 100049, 100057...} with cardinality of 68906

and C {100000, 100001, 100002, 100004, 100005...} with cardinality of 831094 together form subset 6-

digit Z {100000, 100001, 100002, 100003, 100004..., 999999} with cardinality of 900000. There are 60%

of 900000 Z = 540000 Z being C with 100% certainty. Consequently, there are 68906 P and 831094 -

540000 = 291094 C that together constitute the P(uncertain P + uncertain C) = 0.4 whereby we note that

there are less uncertain P [68906/360000 = 19.1%] than uncertain C [291094/360000 = 80.9%]. First

6-digit Pi starts at i = 9593 (0dd position) and last 6-digit Pi ends at i = 78498 (even position). Average P

gap for 6-digit P = 900000/68906 = 13.06.

(Received: November 8, 2023)

Prof. Dr. John Yuk Ching Ting, Dental and Medical Surgery, 729 Albany Creek Road, Albany Creek, Queensland 4035, Australia.

Affiliated with University of Tasmania, Churchill Avenue, Hobart, Tasmania 7005, Australia

E-mail : jycting@utas.edu.au

E-mail : jycting1@gmail.com

https://jycting.wordpress.com

mailto:jycting@utas.edu.au
mailto:jycting1@gmail.com
https://jycting.wordpress.com

	1. Introduction
	1.1. General notations, (Sub)Sets versus (Sub)Tuples Classification
	1.2. Summary of Mathematics for Incompletely Predictable Problems including Primitive sets

	2. Infinite-length or Finite-length equations, sub-equations, algorithms and sub-algorithms
	2.1. The extended and generalized Riemann hypothesis, Hasse principle for equations and Modified Hasse principle for algorithms

	3. Prevalences of Nontrivial zeros, Primes and Composites as Incompletely Predictable entities
	3.1. p-adic absolute values applied to Prevalences of Nontrivial zeros, Primes and Composites

	4. Intersection of Riemann zeta function, Dirichlet eta function and Sieve of Eratosthenes
	4.1. Mirror symmetry and Law of continuity

	5. Prime-Composite identifier grouping and Co-linear Riemann zeta function
	5.1. Inverse functions of ln(x) with e(x) and li(x) with Ei(x)

	6. Prime number theorem and Composite number theorem with Prime-Composite quotient
	6.1. Admissible Prime k-tuplets, Inadmissible Prime (k+1)-tuples, Dirichlet Sigma-Power Law and Principle of Equidistant for Multiplicative Inverse

	7. Infinitesimal numbers applied to Prime numbers and Nontrivial zeros
	7.1. Probability theory applied to n-digit Primes and n-digit Composites

	8. Anatomy of Prime-Composite Varying Loop
	9. Anatomy of Nontrivial Zeros-Gram Points Varying Loop
	10. Conclusions
	Author's Personal Note
	Acknowledgements and Declarations
	References
	Appendix A. Gram's Law and Rosser's Rule
	Appendix B. The 18 patterns of Admissible Prime 25-tuplets
	Appendix C. Computed data on n-digit primes with average prime gaps

