Mirror composite numbers. Their factorization and their relationship with Goldbag conjecture.

Ángeles Jimeno Yubero. Óscar E. Chamiro Sánchez:
Redonda Kingdom University, Faculty of Sciences, Department of Mathematics.

Abstract

:

In this paper we present the concept of mirror composite numbers. Mirror composite numbers are composite numbers of the form $2 n-p$ for some n positive natural number and p prime. We shall show that the factorization of these numbers have interesting properties in order to face the Goldbach conjecture [1][2] by the divide et impera method.

Definitions:

From now on, m and n are positive integer numbers, p and q are prime numbers.

All prime numbers $\mathrm{p} \geq 5$ are of the form $6 m+1$ or $6 m-1$. A prime of the form $6 m+1$ is a right prime; a prime of the form $6 m-1$ is a left prime.

A mirror composite number is a composite number of the form $2 n-p$ for some n and some prime $\mathrm{p} \geq 5$.

Given a mirror composite $2 \mathrm{n}-\mathrm{p}$, if $\mathrm{p}=6 \mathrm{~m}+1$, i.e., if p is a right prime, $2 \mathrm{n}-\mathrm{p}$ is a right mirror composite (r.m.c.).

Given a mirror composite $2 \mathrm{n}-\mathrm{p}$, If $\mathrm{p}=6 \mathrm{~m}-1$, i.e., if p is a left prime, $2 \mathrm{n}-$ p is a left mirror composite (l.m.c.).

Lemma 1.

Fixed n, if 3 is a factor of some l.m.c (respectively r.m.c.), 3 is a factor of every l.m.c. (r.m.c.) and 3 is not a factor of any r.m.c. (l.m.c)

Proof:
The difference between two l.m.c. (r.m.c.) is 6 n . If $3|\mathrm{~m}, 3| \mathrm{m} \pm 6 \mathrm{n}$. On the other hand, if $3 \mid 2 \mathrm{n}-(6 \mathrm{~m}-1)$, then $3 \nmid 2 \mathrm{n}-(6 \mathrm{~m}+1)$ and viceversa.

Lemma 2.

Fixed n, if $\mathrm{q} \neq 3$ is a prime factor of two different l.m.c. (respectively r.m.c.), the difference between them is a multiple of 6 q so the minimum gap between two consecutive occurrences of factor q is 6 q for all l.m.c. (r.m.c.).

Proof:
If $\mathrm{q} \mid 2 \mathrm{n}-(6 \mathrm{x}-1)$ and $\mathrm{q} \mid 2 \mathrm{n}-(6 \mathrm{y}-1)$ exists z such that $\mathrm{zq}=6(\mathrm{x}-\mathrm{y})$, so z is multiple of 6 , given that q is a prime and $\mathrm{q} \neq 2,3$.

If $\mathrm{q} \mid 2 \mathrm{n}-(6 \mathrm{x}+1)$ and $\mathrm{q} \mid 2 \mathrm{n}-(6 \mathrm{y}+1)$ exists z such that $\mathrm{zq}=6(\mathrm{x}-\mathrm{y})$, so z is
multiple of 6 , given that q is a prime and $\mathrm{q} \neq 2,3$.
Goldbach conjecture states that for all n and all p such that $3 \leq p \leq n$, some 2 n -p is a prime, i.e., not every $2 \mathrm{n}-\mathrm{p}$ is composite.

Let's assume for the sake of contradiction that exists n such that every $2 \mathrm{n}-\mathrm{p}$ is composite. Then, 3 consecutive odd numbers, $2 \mathrm{n}-3,2 \mathrm{n}-5$ and $2 \mathrm{n}-7$ are composite, so one and only one of them must be multiple of 3 .

Case A: $3 \mid 2 n-7$:
$3|2 n-7 \Rightarrow 3| 2 n-(6 m+1)$ for all m (Lemma 1). Every right mirror composite is a multiple of 3 and no left mirror composite is a multiple of 3 . So all elements of the sequence:

$$
2 \mathrm{n}-3,2 \mathrm{n}-5,2 \mathrm{n}-11,2 \mathrm{n}-17,2 \mathrm{n}-23,2 \mathrm{n}-29,2 \mathrm{n}-41, \ldots, 2 \mathrm{n}-\mathrm{q}
$$

where $q \geq 5$ is a left prime, must be factorized. There are k consecutive primes $\mathrm{p}_{\mathrm{i}}(\mathrm{i}=1,2,3, \ldots, \mathrm{k})$ from $\mathrm{p}_{1}=5$ to p_{k}, where p_{k} is the largest prime $\mathrm{p}_{\mathrm{k}} \leq \sqrt{2 n-5}$, available for that factorization.

Now, given the correlative sequence of odd numbers $2 \mathrm{n}-3,2 \mathrm{n}-5,2 \mathrm{n}-7$, $2 \mathrm{n}-9,2 \mathrm{n}-11,2 \mathrm{n}-13,2 \mathrm{n}-15,2 \mathrm{n}-\mathrm{a} .$. , let be $2 \mathrm{n}-\mathrm{a}_{\mathrm{i}}$ the number containing the first occurrence of prime factor p_{i} in that sequence.
Notice that:
For each p_{i}, a_{i} is unique.
$3 \leq \mathrm{a}_{\mathrm{i}} \leq 2 \mathrm{p}_{\mathrm{i}}+1$.
For some $i, a_{i}=3$; for some $i, a_{i}=5$; for some $i, a_{i}=11$ MOD p_{i}; for some $i, a_{i}=17$ MOD p_{i}; for some $i, a_{i}=23$ MOD p_{i} and so on.
$2 \mathrm{n}-\mathrm{q}$, i.e., $2 \mathrm{n}-(6 \mathrm{~m}-1)$, is composite if and only if exists i such that $6 \mathrm{~m}-$ $1 \equiv a_{1} \bmod p_{i}($ Lemma 2).

Now, let's state conditions in order to find some $2 \mathrm{n}-\mathrm{q}$ with $\mathrm{q}=6 \mathrm{~m}-1$ and q inside the interval $\sqrt{2 n-5} \leq \mathrm{q} \leq \mathrm{n}$ that can not be factorized:

1) q is a prime, i.e., q is not multiple of any p_{i}, so $6 m-1 \not \equiv 0 \bmod p_{i}$ for all i.
2) There is no p_{i} factor available for $2 n-q$, so $6 m-1 \not \equiv$ almod p_{i} for all i.

Prime condition for $6 \mathrm{~m}-1$
$6 \mathrm{~m} \not \equiv 1 \bmod 5$ $6 \mathrm{~m} \not \equiv 1 \bmod 7$

No factor available condition for 2 n -($6 \mathrm{~m}-1$)
$6 \mathrm{~m} \not \equiv\left(\mathrm{a}_{1}+1\right) \bmod 5$
$6 \mathrm{~m} \not \equiv\left(\mathrm{a}_{2}+1\right) \bmod 7$
$6 \mathrm{~m} \not \equiv 1 \bmod 11$
$6 \mathrm{~m} \not \equiv 1 \bmod 13$
$6 \mathrm{~m} \not \equiv \equiv 1 \bmod \mathrm{pk}_{\mathrm{k}}$
$6 \mathrm{~m} \not \equiv\left(\mathrm{a}_{3}+1\right) \bmod 11$
$6 \mathrm{~m} \not \equiv\left(\mathrm{a}_{4}+1\right) \bmod 13$
$6 \mathrm{~m} \not \equiv \mathrm{~F}\left(\mathrm{a}_{\mathrm{k}}+1\right) \bmod \mathrm{p}_{\mathrm{k}}$

Hence for each p_{i} there are at least $\mathrm{p}_{\mathrm{i}}-2$ remainders moduli p_{i} that fullfill the conditions. That amounts up to a minimum of $\left(p_{1}-2\right)\left(p_{2}-2\right)\left(p_{3}-2\right) \ldots\left(p_{k}-2\right)$, id est, 3.5.9.11.... $\mathrm{p}_{\mathrm{k}}-2$) different systems of linear congruences with prime moduli. The chinese remainder theorem ensures that each one of them has a different and unique solution moduli $5.7 .11 .13 \ldots \mathrm{p}_{\mathrm{k}}$.

It's necessary then to prove that exists at least a multiple of 6 that fullfills the preceding conditions inside the interval:

$$
\sqrt{2 n-5}<6 \mathrm{~m}<\mathrm{n}
$$

So let's prove that at least one in 3.5.9.11... $\left(p_{k}-2\right)$ solutions from 5.7.11.13 ... p_{k} systems lies inside the aformentioned interval.

Let be M the highest number of consecutive occurrences of 6 m that do not fullfill the conditions. ${ }^{1}$ Is not easy to figure out the value of M, given the unpredictable nature of prime number distribution. But we can prove that exists an upper bound S for M such that for sufficient large n :

$$
\begin{equation*}
S<\left[\frac{n-\sqrt{2 n-5}}{6}\right] \tag{1}
\end{equation*}
$$

Given p_{k}, an upper bound for the total number of occurrences of each one of the two remainders moduli p are $2\left\lceil\frac{p_{k}}{p}\right\rceil$. So
$S=2\left(\left\lceil\frac{p_{k}}{5}\right\rceil+\left\lceil\frac{p_{k}}{7}\right\rceil+\left\lceil\frac{p_{k}}{11}\right\rceil+\left\lceil\frac{p_{k}}{13}\right\rceil+\ldots+\left\lceil\frac{p_{k}}{p_{k-1}}\right\rceil+1\right)$
is an upper bound for M :

\mathbf{k}	$\mathbf{p}_{\mathbf{k}}$	\mathbf{M}	\mathbf{S}
1	5	2	2
2	7	4	6
3	11	8	11
4	13	13	16

[^0]| \mathbf{k} | $\mathbf{p}_{\mathbf{k}}$ | \mathbf{M} | \mathbf{S} |
| :--- | :--- | :--- | :--- |
| 5 | 17 | 19 | 24 |
| 6 | 19 | 22 | 28 |

In turn:

$$
\begin{gathered}
\left\lceil\frac{p_{k}}{5}\right\rceil+\left\lceil\frac{p_{k}}{7}\right\rceil+\left\lceil\frac{p_{k}}{11}\right\rceil+\left\lceil\frac{p_{k}}{13}\right\rceil+\ldots+\left\lceil\frac{p_{k}}{p_{k-1}}\right\rceil+1< \\
\frac{p_{k}}{2}+\frac{p_{k}}{3}+\frac{p_{k}}{5}+\frac{p_{k}}{7}+\frac{p_{k}}{11}+\ldots+\frac{p_{k}}{p_{k-1}}+1= \\
p_{k}\left\{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{11} \ldots+\frac{1}{p_{k-1}}+\frac{1}{p_{k}}\right\}
\end{gathered}
$$

The series between brackets is the well known partial summation of the reciprocal of the primes whose divergence was proved by Euler in 1737 together with the relationship:

$$
\begin{equation*}
\sum_{p \leq x} \frac{1}{p} \approx \log \log (\mathrm{x}) \tag{2}
\end{equation*}
$$

Taking $x=p_{k}$ and given that an upper bound for all $x>e^{4}$ in (2) is $\log \log x+6[3]$ allows us to state:

$$
\mathrm{S}<2 \mathrm{p}_{\mathrm{k}}\left(\log \log \mathrm{p}_{\mathrm{k}}+6\right)
$$

Now it's inmediate to conclude, since $\mathrm{p}_{\mathrm{k}} \leq \sqrt{2 n-5}$, that (1) holds for, let's say, every $2 \mathrm{n} \geq 10^{6}$.

For every $2 \mathrm{n}<10^{6}$ the verification of the conjecture have alredy been settled.

That completes the demonstration.
Hence, for all 2 n such that $3 \mid 2 \mathrm{n}-7$, i.e., for all $2 \mathrm{n} \equiv 1 \bmod 3$, exists some $2 \mathrm{n}-\mathrm{q}$ that can not be factorized, so $2 \mathrm{n}-\mathrm{q}$ is prime and the conjecture holds for all $2 \mathrm{n} \equiv 1 \bmod 3$.

Case B: $3 \mid 2 n-5$:
$3|2 n-5 \Rightarrow 3| 2 n-(6 m-1)$ for all m (Lemma 1). So every left mirror composite is a multiple of 3 and no right mirror composite is a multiple of 3...

Following the same thought process than before, with q a right prime
of the form $6 m+1$, it's straightforward to conclude that the conjecture holds for all 2 n such that $3 \mid 2 \mathrm{n}-5$, i.e., for all $2 \mathrm{n} \equiv 2 \bmod 3$.

Case C: $3 \mid 2 n-3$:
Interesting matter of forward research.

November, 6, 2023.
Ángeles Jimeno Yubero \& Óscar E. Chamizo Sánchez. ajedrezjrodrigo@gmail.com PA^{3}.

References:

[1]Christian Goldbach, Letter to L. Euler, June 7 (1742).
[2]Vaughan, Robert. Charles. Goldbach's Conjectures: A Historical Perspective. Open problems in mathematics. Springer, Cham, 2016. 479-520.
[3]Pollack, Paul. Euler and the partial sums of the prime harmonic series. University of Georgia. Athens. Georgia.

[^0]: ${ }^{1}$ For all those who, like myself, enjoy practical questions that sometimes shed light on some more abstract matter of discussion, the problem to determine an accurate value for \mathbf{M} is the same as the following: Suppose you may not work on 2 predetermined days in five, 2 predetermined days in seven, 2 days in 11, 2 in 13 and so on until 2 days in p_{k} days. What is the maximum number, as a function of p_{k}, of consecutive days off?

