A Simple Proof That $e^{p/q}$ is Irrational

Timothy Jones

November 6, 2023

Abstract

Using a simple application of the mean value theorem, we show that rational powers of e are irrational.

Introduction

Hermite proved that e is transcendental in 1873 [3]. His proof has been improved over the years by several mathematicians. A similar evolution has not taken place for proofs that show the irrationality of rational powers of e. In this note, we use relatively recent transcendence techniques [4, 6] to prove that the powers of e are irrational.

This approach may have pedagogical advantages in that it allows for the understanding of recent transcendental techniques, for both e and π , in the simpler context of an irrationality proof. It also gives a nice use of the mean value theorem that in suitable for first-year calculus students.

e^p is irrational

Assume, to the contrary, that $e^p = a/b$ with a, b, and p positive integers.

Since factorial growth exceeds polynomial, we can choose a positive integer n large enough that

$$be^p p^{2n+1} < n!.$$
 (1)

Choose a value of n satisfying (1) and define $f(x) = x^n(p-x)^n$. Define P(x) as the sum of f(x) and its derivatives; that is,

$$F(x) = f(x) + f'(x) + \dots + f^{(2n)}(x).$$

Next, let $G(x) = -e^{-x}F(x)$. Then $G'(x) = e^{-x}f(x)$. Using the mean value theorem on the interval [0, p], we know there exists $\zeta \in (0, p)$ such that

$$\frac{G(p) - G(0)}{p} = G'(\zeta),$$

or

$$\frac{-e^{p}F(p) + F(0)}{p} = e^{-\zeta}f(\zeta)$$
 (2)

Now, multiplying both sides of (2) by pe^p gives

$$-F(p) + e^p F(0) = p e^{p-\zeta} f(\zeta),$$

and then substituting $e^p = a/b$ and multiplying by b gives

$$-bF(p) + aF(0) = bpe^{p-\zeta}f(\zeta).$$
(3)

We claim that the left side of (3) is an integer multiple of n!. When we repeatedly differentiate f(x), we find that every term of every derivative includes either a factor of x or a factor of n!. Similarly, each term includes either a factor of (p - x) or a factor of n!. It follows that both F(0) and F(p) are integer multiples of n!, and so the left side of (3) is also an integer multiple of n!. A Leibniz table, developed in [7], shows these properties succinctly.

Meanwhile, the right-hand side of (3) is strictly positive, and it is at most $bp^{2n+1}e^p$. This follows as the maximum values of x^n and $(p - x)^n$ on (0, p) are both p^n , so that $f(\zeta)$ is bounded above by p^{2n} . The additional p factor in $pbe^{p-\zeta}f(\zeta)$ gives the 2n + 1 exponent. Therefore, by (1), the right side of (3) is strictly less than n!.

We have, then, a contradiction. An integer multiple of n! is positive, but less than n!.

$e^{p/q}$ is irrational

To show that rational powers of e are irrational, suppose to the contrary that $e^{p/q} = a/b$, where p, q, a, and b are positive integers. Then

$$(e^{p/q})^q = e^p = (a/b)^q,$$

and, as $(a/b)^q$ is rational, this contradicts the irrationality of e^p .

Further reading

To see how the techniques used in this article can be applied, with some modifications, to show the irrationality of π , see [7]. Readers interested in a transcendence proof for *e* should give Herstein's proof a try [4]. After mastering the transcendence of *e*, we are ready to approach the big brother and big sister of all these irrationality and transcendence proofs: the transcendence of π , which shows that you can't square the circle. Hobson gives the history of attempts to square the circle from antiquity up to the proof of its impossibility [5]. Niven's 1939 transcendence of π proof [8] adds some further historical perspectives while giving a simplification of Lindemann's original 1882 proof. Original proofs of *e* and π can be found in [1].

References

- [1] L. Berggren, J. Borwein, and P. Borwein, *Pi: A Source Book*, 3rd ed., Springer, New York, 2004.
- [2] Hardy, G. H., Wright, E. M., Heath-Brown, R., Silverman, J., Wiles, A. (2008). An Introduction to the Theory of Numbers, 6th ed. London: Oxford Univ. Press.
- [3] C. Hermite, Sur la fonction exponentialle, *Compt. Rend. Acad. Sci. Paris*, 77 (1873) 18-24, 74-79, 226-233, 285-293.
- [4] I.N. Herstein, *Topics in Algebra*, 2nd. ed., John Wiley, New York, 1975.
- [5] E. W. Hobson, Squaring the Circle: A History of the Problem, Cambridge University Press, Cambridge, 1913; Reprinted by Merchant Books, New York, 2007.
- [6] A. Hurwitz, Beweis der Transcendenz der Zahl e, Mathematische Annalen
 43 (1893) 220-221.
- [7] T. W. Jones, Euler's Identity, Leibniz tables, and the irrationality of pi with endnotes.
- [8] I. Niven, The transcendence of π . Amer. Math. Monthly 46 (1939) 469-471.