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ABSTRACT
In this paper, we present a new method of evaluating the convergence and sum of a
series with the Riemann zeta function in its general term.We consider the convergence
and sum of a series by means of difference other than previous methods.
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1. Introduction

Riemann zeta function is defined as
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Riemann zeta function is a special function which can find wide applications in
natural science, engineering as well as mathematics, and which can provide
particularly powerful means for solving problems arising in physics, chemistry,
probability, computer science, control, etc.
Especially, Riemann zeta function is famous for Riemann’s hypothesis.
Riemann zeta function is very useful for sum computation as well, in which a lot of
attention has been paid. (See [1]-[4], [6], [7], [9]-[12]
[8] validated the following problem by using Abel’s summation formula and definition
of Riemann zeta function.
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This problem has been more generalized, one of which is as follows.(see[13])
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Where if 2k , then (2) is formedfrom equation(3).
In [5], series(3) was considered in case 3k , from which the following result was
obtained.
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In our paper, we aim at eliciting convergence of series (3) and calculating its sum.
We use the difference theory in consideration of convergence and sum unlike the
preceding literature.
Finally we check the correctness of our results by comparing with the previous
research results.

2. Main result
We introduce some basic conceptions and lemmas for further consideration.
First we note some things relevant to difference.
Given a function )(xf , )()1( xfxf  is called the first order difference of the
function )(xf and is denoted as

(4)
In general, the first order difference of porder difference of function )(xf is called

p+1 order difference and porder difference of function is )(xf denoted as
(5)

Namely

We arrange as ).()(0 xfxf 

Lemma 1.For function ),(xf

(6)
is formed.

Proof. It is proved by induction on n.
The base case 1n is clear.
For the induction step, assume that the statement holds for n . Then since
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even in case of 1n equation (6) holds good.
Hence, lemma 1 is validated.

Next, Let’s define p order arithmetic progression.
)}({ nf is called first difference progression of )}({ nf .

In general, porder difference progression is defined as
 .)()( 1 nfnf pp 

If porder difference progression of )}({ nf is notzero progression, but p+1 order

difference progression is zero progression, then progression )}({ nf is called porder
arithmetic progression.
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Also, arithmetic progression over second order is called higher order arithmetic
progression.
Lemma 2. The following equation holds good for parithmetic progression.
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Proof. Substituting 0x into equation(6),the following equation yields.
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If pn  , then we get that
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Moreover, when nm  , 0n
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So, the proof of the lemma 2 is complete.
Lemma 3. )}({ nf is porder arithmetic progression, if and only if )(nf is porder
polynomial.
Proof.The necessity is derived from lemma 2.
If pxf ))(deg( , then since
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it is sufficient. Here 0a is highest leading knot coefficient of )(nf .

Lemma 4.Assuming that )}({ nf is higher arithmetic progression,the first n knot
summation of progression is as follows.
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Proof.It is proved by induction on n.
When n=1, it holds.
Assume that when it is n, it holds good.Then by using lemma 1 we can get the
following, which demonstrates that even in case of n+1 equation (8) holds good.
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Thus, the proof is completed.
Let’s define difference polynomial. In case of 1r , it is defined as
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Conspicuously it is true that 1)(  xpr
r .

For convenience sake it is expressed as
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Since any r order polynomial can be written as the first order combination in terms of



difference polynomial, it is expressed as
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where rccc ,,, 10  areconstants.

Taking the first order, second order, ...rorder difference to both terms of this equation

in turn, and using 
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Here we consider convergence and sum of equation (3).
If we use the foregoing solution method,we can’t solve this problem.

So we are going to solve this problem with the aid of aforementioned difference

theory.

At first let’s consider convergence.
Lemma 5.For a natural number 2k , any natural number nsatisfies the following
inequality.
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Proof.The left-side inequality of (9) is equivalent to the following expression
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which is readily proved by binomial formula. Thus the left-side inequality is easily
proved.
Next, let’s prove the right-side inequality.
The right-side inequality is equivalent to the following inequality.
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We consider function kxxg )( , 0x in order to prove equation (10).

Since this function is differentiable at interval ),0(  , mean value theorem at
interval [n, n+1] can be applied. Therefore as for natural number ngiven randomly
there exists )1,(  nnc to satisfy
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Meanwhile, as )2()1()(  kxkkxg , )(xg is increasing function at ),0(  , whereas
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 , it is expected that )()( ngcg  . So equation (10) holds good.

Remark.From lemma 5, we can make sure that for any natural number n , the
following inequality is obtained.
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Lemma 6.The following inequality is available.

11 )1(

11

2

1
1)(

)1)(1(

1
 


 kkkk nkn

k
nk

 (12)

Proof. From the expression




 


1 )(

11

3

1

2

1
1)(

p
kkkk pnn

k  ,

and (11), the following inequalities holds true.

.
)1)(1(

1

)1(

1

)(

1

1

1

)(

1

,
)1(

1

)(

1

)1(

1

1

1

)(

1

1
1

11
1

1
1

11
1































































k
p

kk
p

k

k
p

kk
p

k

nkpnpnkpn

nkpnpnkpn

Thus, (12) is proved.

Lemma 7.
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1 is expressed as korder polynomial in terms of n.

Proof.Since assuming 1)(  knnf , )(nf is korder polynomial with respect to n,

)}({ nf is korderarithmetic progression from lemma 3. Hence we can apply lemma 4

to )(nf . Thus since nmC n
m  ,0 .,we can obtain the following.
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As developing i
nC ,k is constant, this is iorder polynomial in terms of n.
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On the other hand
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So the lemma is proved.
Now we consider convergence of series (3).
Theorem 1.Series (3) is convergent.
Proof. We rewrite series (3) as follows;
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Therefore, series (3) converges iff series
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converges.
Since 11)1(   kk mm is 2k orderpolynomial in terms ofm, we get that
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with help of equation (12).
Let (ym)be the sequence defined by
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then 0my and the following is obtained.
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In the final expression, numerator is polynomial with respect to m.
Let’s find higher order knot coefficient of this polynomial.
2 1, 2 2k k  order coefficient is zero. And 2 3k  order coefficient is constant as
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Namely .,, 100  mm yymmm N

Hence from Leibniz test, series
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From the above discussion it is clear that series (3) is converges.

Now we find the sum of series (3).
Theorem 2. Sum of series (3) is as follows.
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Proof. Let S be the sumof series (3). Then from (13), we have that
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Using the result of lemma 7, we obtain
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Thus it follows that
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Now we calculate 2kQ .
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Now we prove the following.
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Calculating the first and second summations respectively, as we obtain
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So it follows that

    .0)21(2)1()21(2)1(
2

1
11

2

11 







 













k

i

i
ki

iki
k

ij

j
kj

jki
j

ij CQCQC

Summarizing the above results, we can get
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In a word the result is as follows.
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Our result in the case of k=3, is the same as that of (2).
The result obtained by Mathematica in case k=4 is identical with the above result.
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