On Fermat's Last Theorem
 C. Villacres - carlosvillacresjr@outlook.com

October 25, 2023

Abstract

Here we approach the problem of FLT using the Binomial Theorem and two cases: n even or odd.

1 Fermat's Last and the Binomial Theorem

$a, b, c \in R^{+}$
and $n \geq 2 \in Z^{+}$
$(a+b-c)^{n}=\sum_{j=0}^{n}\binom{n}{j}(-c)^{j}(a+b)^{n-j}$

1.1 n , even

Suppose n is even, we get that
$=c^{n}+\sum_{j=1}^{n-1}\binom{n}{j}(-c)^{j}(a+b)^{n-j}+(a+b)^{n}$

Now we expand the last term,
$(a+b)^{n}=a^{n}+\sum_{j=1}^{n-1}\binom{n}{j} a^{j} b^{n-j}+b^{n}$
So,
$(a+b-c)^{n}=c^{n}+\sum_{j=1}^{n-1}\binom{n}{j}(-c)^{j}(a+b)^{n-j}+a^{n}+\sum_{j=1}^{n-1}\binom{n}{j} a^{j} b^{n-j}+b^{n}$
$a^{n}+b^{n}=c^{n} \Longrightarrow$

$$
\begin{gather*}
(a+b-c)^{n}=2 c^{n}+\sum_{j=1}^{n-1}\binom{n}{j}(-c)^{j}(a+b)^{n-j}+\sum_{j=1}^{n-1}\binom{n}{j} a^{j} b^{n-j} \\
=2 c^{n}+\sum_{j=1}^{n-1}\binom{n}{j}\left[(-c)^{j}(a+b)^{n-j}+a^{j} b^{n-j}\right] \tag{1}
\end{gather*}
$$

If we can show that this polynomial is divisible by $(c-a)$, then it must also be divisible by $(c-b)$ since a and b are interchangeable. To do this, we will look at the same polynomial, but expanded differently.

$$
\begin{aligned}
& (a+b-c)^{n}=(-1)^{n}(c-a-b)^{n}=(c-a-b)^{n} \Longrightarrow \\
& =b^{n}+\sum_{j=1}^{n-1}\binom{n}{j}(-b)^{j}(c-a)^{n-j}+a^{n}+\sum_{j=1}^{n-1}\binom{n}{j}(-a)^{j}(c)^{n-j}+c^{n} \\
& =2 c^{n}+\sum_{j=1}^{n-1}\binom{n}{j}\left[(-b)^{j}(c-a)^{n-j}+(-a)^{j} c^{n-j}\right]
\end{aligned}
$$

This shows that if $(c-a)$ is a factor of the polynomial, we only need to look at the second part of the sum along with the leading coefficient to check.

We must show that
$(c-a) \left\lvert\, 2 c^{n}+\sum_{j=1}^{n-1}\binom{n}{j}(-a)^{j} c^{n-j}\right.$.
If we plug in $c=a$ and get this equal to 0 , then the original polynomial has a factor of $(c-a)$ (as well as $(c-b)$) for all n.

We get that $c=a \Longrightarrow$
$2 a^{n}+\sum_{j=1}^{n-1}\binom{n}{j}(-a)^{j} a^{n-j}=2 a^{n}+\sum_{j=1}^{n-1}\binom{n}{j}(-1)^{j} a^{j} a^{n} a^{-j}=2 a^{n}+a^{n} \sum_{j=1}^{n-1}\binom{n}{j}(-1)^{j}$

If we look at Pascals Triangle, we can clearly see why this alternating sum would be $=-2$. Let's look at the 5th and 6th row of Pascals's Triangle as an example when $n=6$.

For $n=6$, the terms of the polynomial would be

$$
2 a^{6}+a^{6}(-6+15-20+15-6)
$$

This can be rewritten with the 5 th line of pascals coefficients:
$2 a^{6}+a^{6}(-(1+5)+(5+10)-(10+10)+(10+5)-(5+1))$.
So we can see that no matter what even n'th row we are in (without the 1's) we can use the ($n-1$)th row to rewrite the sum and show all middle coefficients cancel except the leading and last 1 , so we get that
$\sum_{j=1}^{n-1}\binom{n}{j}(-1)^{j}=-2$ for all even n.
This $\Longrightarrow 2 a^{n}+a^{n} \sum_{j=1}^{n-1}\binom{n}{j}(-1)^{j}=0$ for all n, even.
This shows us that $(c-a)$ and $(c-b)$ are factors of the original equation. Finally, we get that for n, even:
$(a+b-c)^{n}=(c-a)(c-b) g_{1}(n)$ where
$g_{1}(n)=\frac{2 c^{n}+\sum_{j=1}^{n-1}\binom{n}{j}\left[(-c)^{j}(a+b)^{n-j}+a^{j} b^{n-j}\right]}{(c-a)(c-b)}$.
We note here that $c-a$ and $c-b$ divide this polynomial just once each for any n. In other words, g_{1} is not a rational equation and each terms has integer coefficients.

1.2 n, odd

For n odd, we do something similar. We get that
$(a+b-c)^{n}=-c^{n}+\sum_{j=1}^{n-1}\binom{n}{j}(-c)^{j}(a+b)^{n-j}+a^{n}+\sum_{j=1}^{n-1}\binom{n}{j} a^{j} b^{n-j}+b^{n}$

And $a^{n}+b^{n}=c^{n} \Longrightarrow$
$(a+b-c)^{n}=\sum_{j=1}^{n-1}\binom{n}{j}\left[(-c)^{j}(a+b)^{n-j}+a^{j} b^{n-j}\right]$

$$
\begin{equation*}
=(a+b) \sum_{j=1}^{n-1}\binom{n}{j}\left[(-c)^{j}(a+b)^{n-j-1}+\frac{a^{j} b^{n-j}}{(a+b)}\right] \tag{2}
\end{equation*}
$$

We can show that $(a+b) \left\lvert\, \sum_{j=1}^{n-1}\binom{n}{j} a^{j} b^{n-j}\right.$ by plugging in $\mathrm{a}=-\mathrm{b}$. If the result is zero, then $(\mathrm{a}+\mathrm{b})$ is a factor.
$\sum_{j=1}^{n-1}\binom{n}{j}(-b)^{j} b^{n-j}=b^{n} \sum_{j=1}^{n-1}\binom{n}{j}(-1)^{j}=b^{n} \cdot 0=0$
This is, again, because the odd rows of Pascal's Triangle would cancel each other out as each term would have it's negative in the same row.

Let's define $g(n)$ s.t.

$$
g(n)= \begin{cases}(c-a)(c-b) g_{1}(n), & \text { if } n \text { is even } \\ (a+b) g_{2}(n), & \text { if } n \text { is odd }\end{cases}
$$

Where $g_{1}(n)=$
$\frac{2 c^{n}+\sum_{j=1}^{n-1}\binom{n}{j}\left[(-c)^{j}(a+b)^{n-j}+a^{j} b^{n-j}\right]}{(c-a)(c-b)}$.
and $g_{2}(n)=$
$\sum_{j=1}^{n-1}\binom{n}{j}\left[(-c)^{j}(a+b)^{n-j-1}+\frac{a^{j} b^{n-j}}{(a+b)}\right]$.

1.3 Fermat's Last Theorem, proof

We have that

$$
(a+b-c)^{n}=g(n) .
$$

If a, b, c are integers, then $a+b-c=k$ and k^{n} should also be integers. Since $g(n)$ can be factored, this means that this integer would have to be a multiple of $(c-a)$ and $(c-b)$ for n, even. And for n, odd it would have to be a multiple of $(a+b)$.

Let \hat{k} be some integer s.t. for n even,
$k=(c-a) \hat{k} \Longrightarrow k^{n}=(c-a)^{n} \hat{k}^{n}=g(n)$
$\Longrightarrow \hat{k}^{n}=g(n) /(c-a)^{n}$.

We'll show this works for all factors of $g(2)$, where the factor of ' 2 ' will be a general case.

For $n=2$, we get that $g(2)=2(c-a)(c-b)$ and
$k^{2}=2^{2} \hat{k}^{2} \Longrightarrow \hat{k}^{2}=(c-a)(c-b) / 2$

We can let
$a=(c-b)+g(2)^{1 / 2}$,
$b=(c-a)+g(2)^{1 / 2}$, and
$c=(a+b)-g(2)^{1 / 2}$
and define r,s such that
$r=(c-a)^{1 / 2}, s=[2(c-b)]^{1 / 2}$.
So we get
$a=s^{2} / 2+r s$
$b=r^{2}+r s$
$c=s^{2} / 2+r^{2}+r s$

Finally we get
$\hat{k}^{2}=(c-a)(c-b) / 2=\left(r^{2}\right)\left(s^{2} / 2\right) / 2=(r s / 2)^{2}$.
We let s is be the even integers (since s is integer factors of $\sqrt{2}$), we get that \hat{k} is always an integer.

We will show this also works for $k=(c-a) \hat{k}$ and $k=(c-b) \hat{k}$.
We get that
$k^{2}=(c-a)^{2} \hat{k}^{2} \Longrightarrow \hat{k}^{2}=2(c-b) /(c-a)=2\left(s^{2} / 2\right) / r^{2}=(s / r)^{2} . A n d$,
$\hat{k}^{2}=2(c-a) /(c-b)=(2 r / s)^{2}$
\hat{k} are integers if (s / r) and ($2 \mathrm{r} / \mathrm{s}$) are integers respectively.

For $n \geq 4, g_{1}(n) /(c-a)^{n-1}$ has only nonzero remainders, so we get a contradiction that \hat{k} is an integer so k is also not an integer.

For example, for $n=4$ we get that
$\hat{k}^{4}=(c-b) g_{1}(4) /(c-a)^{3}$
Where $g_{1}(4)=2(c-a)(c-b)+4\left(a^{2}+a b+b^{2}\right)$.
\hat{k} clearly will not be an integer if we are dividing by $(c-a)^{3}$.
We have shown that only when $n=2$ can we have integer solutions to $a^{n}+b^{n}=$ c^{n}.

The proof for n, odd is the same except we use the fact that for any odd n, $\mathrm{g}(\mathrm{n})$ can be factored by $(\mathrm{a}+\mathrm{b})$.

End proof.
Note: We could also show that for n odd, $\mathrm{g}(\mathrm{n})$ is also factorable by ($\mathrm{c}-\mathrm{a}$) (cb) for all n odd (and thus all n). This would generalize the proof further. However, for n odd, given that it was divisible by $(\mathrm{a}+\mathrm{b})$ was easier to show and enough.

$2 n=2$

$$
\begin{equation*}
(a+b-c)^{2}=g(2)=2(c-a)(c-b) \tag{3}
\end{equation*}
$$

2.1 Pythagorean Triples and $\sqrt{2}$

$(a+b-c)^{2}=g(2)=2(c-a)(c-b) \Longrightarrow$
We have the Pythagorean Triple generator where s is any even integer, r any integer using the substitution from before:
$a=\frac{s^{2}}{2}+r s$
$b=r^{2}+r s$
$c=\frac{s^{2}}{2}+r^{2}+r s$

Because of the relevance of right triangles, we get trigonometry.
$a=k(\cos \theta)$,
$b=k(\sin \theta)$,
$c=k$
\Longrightarrow
$(\cos \theta)+\sin \theta-1)^{2}=2(1-\cos \theta)(1-\sin \theta)$

Figure 1: This shows the identity as a function of theta. Notice the identity is ≥ 0. It also has an interesting rhythm to it.

Figure 2: The derivative resembles the rhythm of a heartbeat.

A special case if $r=s$:
This gives us,
$a=3 \frac{s^{2}}{2}$
$b=4 \frac{s^{2}}{2}$
$c=5 \frac{s^{2}}{2}$
Which is the famous $3,4,5$ triple and its multiples.
We can see this when we let $s=\sqrt{2 k_{1}}$ where $k_{1}=(c-b)$.
Finally, we also get a form of $\sqrt{2}$ and a form of $\sqrt[3]{3}$.

$$
\begin{gathered}
\sqrt{2}=\frac{a+b-c}{\sqrt{(c-a)(c-b)}} \\
\sqrt[3]{3}=\frac{(a+b-c)}{\sqrt[3]{(a+b)(c-a)(c-b)}}
\end{gathered}
$$

Which could also be written in an infinite power form since $2=\frac{(a+b-c)^{2}}{(c-a)(c-b)}$ and $2^{-1}=\frac{(c-a)(c-b)}{(a+b-c)^{2}}$

Let $A=a+b-c$ and $B=(c-a)(c-b)$
$\sqrt{2}=\frac{A}{B^{2-1}}=\frac{A}{B^{\frac{B}{A^{2}}}}=\ldots$

References

None

2020 Mathematics Subject Classification: 11D41

