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Abstract

In this paper, we present a proof for a generalization of the inequality from the
42nd International Mathematical Olympiad. The proved inequality relates to a sum
involving square roots of fractions. It has various applications in mathematical analysis,
optimization, or statistics. In the field of mathematical analysis, it can be used in
the study of convergence. In terms of optimization, it may help establish bounds or
relationships between the variables involved.

In this paper, we will present a proof for a generalization of the inequality from the 42nd
International Mathematical Olympiad [IMO]. The original inequality corresponds to the
case when n = 3. Specifically, we aim to prove√
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for all positive real numbers xi, i = 1, 2, . . . , n with n ≥ 2. For notational simplicity,
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We observe that every hi(x) is homogeneous. Therefore, without loss of generality, we
can assume that
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hi(x̃) = hi(x) as follows.
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which demonstrates that an arbitrary combination of xi can be transformed into x̃i such
that

∑n
i=1 x̃i = 1 without changing the value of the left-hand side.

Consider the function f(x) = 1√
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with x > 0. Taking the first and second derivatives,
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Since f(x) is decreasing and f((
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i )3) = f(1) = 1, proving that the last line is
greater than or equal to 1 is equivalent to showing the following inequality(
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After expanding the LHS and subtracting the terms containing x
3(n−1)

2
i from both sides,

there are n3 − n = n(n2 − 1) terms remaining on the LHS, which can be divided into n
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groups with each group containing n2 − 1 terms, as follows.
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where Gi = (1, 2, . . . , i− 1, i+1, . . . , n) denotes a cyclic ordered sequence, in which Gi,j = j
for 0 < j < i, Gi,j = j + 1 for i ≤ j < n, otherwise Gi,n = Gi,1. In (1), each summand of
the outermost summation consists of n2−1 terms, we apply the AM-GM inequality to these
n2 − 1 terms for the n summands on the LHS of (1). After simple algebraic operations,
we can finally get the right-hand side (RHS) of (1). For better presentation, we show the
derivation for the first group and the other n− 1 groups follow the same logic.
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which completes the proof.
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