An Truly Easy Proof: Pi is Irrational

Timothy Jones

October 30, 2023

Abstract

Using the derivative of an integer polynomial composed with Euler's formula we prove that π is irrational.

Proof

Proofs of the irrationality of π are numerous [1], but none are as easy and direct as the following.

Theorem 1. π *is irrational.*

Proof. Let P(z) and P'(z) be integer polynomials with roots other than -1. Then P(-1) and P'(-1) are non-zero integers. Consider that

$$P'(e^{iz}) = P'(e^{iz})ie^{iz}.$$
(1)

Now assume for a contradiction that $\pi = p/q$. Per Euler's formula $e^{ip/q} = -1$. We have then

$$P'(-1) = P'(-1)i(-1),$$

using (1). But this says P'(-1) is a complex number, a contradiction.

References

[1] Eymard, P., Lafon, J.-P. (2004). *The Number* π . Providence, RI: American Mathematical Society.