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Abstract

It is explicitly shown how the Schwarzschild Black Hole Entropy (in
all dimensions) emerges from truly point mass sources at r = 0 due to a
non-vanishing scalar curvature involving the Dirac delta distribution. It
is the density and anisotropic pressure components associated with the
point mass delta function source at the origin r = 0 which furnish the
Schwarzschild black hole entropy in all dimensions D ≥ 4 after evalu-
ating the Euclidean Einstein-Hilbert action. As usual, it is required to
take the inverse Hawking temperature βH as the length of the circle S1

β

obtained from a compactification of the Euclidean time in thermal field
theory which results after a Wick rotation, it = τ , to imaginary time.
The appealing and salient result is that there is no need to introduce the
Gibbons-Hawking-York boundary term in order to arrive at the black hole
entropy because in our case one has that R ̸= 0. Furthermore, there is no
need to introduce a complex integration contour to avoid the singularity
as shown by Gibbons and Hawking. On the contrary, the source of the
black hole entropy stems entirely from the scalar curvature singularity
at the origin r = 0. We conclude by explaining how to generalize our con-
struction to the Kerr-Newman metric by exploiting the Newman-Janis
algorithm. The physical implications of this finding warrants further in-
vestigation since it suggests a profound connection between the notion of
gravitational entropy and spacetime singularities.
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The static spherically symmetric (SSS) vacuum solution of Einstein’s field
equations [1] (in Lorentzian signature) was originally found by Schwarzschild
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[3], but is historically more widely known in terms of the solution provided by
Hilbert [2] as

ds2 = − (1− 2GM

r
) (dt)2 + (1− 2GM

r
)−1 (dr)2 + r2 (dΩ)2 (1)

where the solid angle infinitesimal element is (dΩ)2 = (dθ)2 + sin2(θ)(dϕ)2. We
shall use throughout this work the units of h̄ = c = kB = 1.

The higher-dimensional extension of the metric (1) was found by Tangherlini
[4] and can be obtained by simply replacing (dΩ)2 → (dΩD−2)

2 (the D− 2-dim
solid angle) and 1− 2GM

r → 1−( rhr )D−3 where rh is the horizon radius expressed
in terms of M and the gravitational coupling GD in D dimensions whose units
are (length)D−2. The higher dimensional metric is given by

ds2 = − f(r) (dt)2 +
(dr)2

f(r)
+ r2 (dΩD−2)

2, f(r) = 1 − 16πGDM

(D − 2)ΩD−2rD−3

(2a)
where GD is the D-dim Newton’s constant, M the black hole mass. The solid

angle of a D − 2-dim hypersphere is ΩD−2 = 2π
D−1

2 /Γ(D−1
2 ). The horizon

radius is determined from the condition f(rh) = 0 giving

rh =

(
16πGDM

(D − 2) ΩD−2

) 1
D−3

(2b)

such that the metric (2a) can be rewritten as

ds2 = − [ 1− (
rh
r
)D−3 ] (dt)2 + [ 1− (

rh
r
)D−3 ]−1 (dr)2 + r2 (dΩD−2)

2 (3)

The Schwarzschild metric leads to a vanishing Ricci tensor and scalar cur-
vature R = 0, hence in order to arrive at a key delta function singularity at the
origin one has to replace r for |r| in the metric (1). More precisely, one needs
to make the replacement

1− 2GM

r
→ 1− 2GM

|r|
= 1− 2GM

r

r

|r|
= 1− 2GMsgn(r)

r
, r = |r|sgn(r) (4)

where sgn(r) is the sign function. The sign function is defined by sgn(r) = 1,
for r > 0; sgn(r) = −1, for r < 0; and sgn(r = 0) = 0, the arithmetic mean
of 1,−1, and it will be instrumental in deriving the non-zero scalar curvature.
The derivative of the sign function is d

dr sgn(r) = 2δ(r) 1. It is the derivatives
of the sign unction appearing in eq-(4) which will generate the key δ(r) terms
in the scalar curvature. If one wishes to be mathematically rigorous in using

1The factor of 2 is due to the jump of 2 from −1 to +1
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distributions in nonlinear theories like general relativity one needs to recur to the
Colombeau’s theory of distributions [7] instead of the Dirac delta distributions.

In doing so one finds that the scalar curvature is no longer zero R ̸= 0 but
has a delta function singularity at r = 0 2

R = 4GM

(
δ′(r)

r
+ 2

δ(r)

r2

)
= 4GM

δ(r)

r2
, (5)

where the identities involving the derivatives of the delta functions have been
used

δ′(r) = −δ(r)

r
, δ(n) = (−1)n n!

δ(r)

rn
(6)

Because now one has that R ≠ 0, the Euclidean Einstein-Hilbert action is no
longer zero. The inverse Hawking temperature βH = 8πGM is the length of
the circle S1

β obtained from a compactification of the Euclidean time in thermal
field theory and resulting after a Wick rotation, it = τ , to imaginary time. The
non-trivial Euclidean Einstein-Hilbert action is given by the integral

I = − i

16πG

∫ βH

0

dτ

∫ ∞

0

R 4πr2 dr (7)

Note the presence of an −i factor in the Euclidean action I which results from
the measure

√
−g piece since the determinant g = det(gµν) > 0 is now positive

due to the Euclidean signature. The minus sign −i is chosen so that exp(iSg) =
exp(−I) in the gravitational path integral (I = −iSg).

3 Furthermore, because
the radial integral (7) is symmetric in r due to δ(−r) = δ(r), one has to extend
the radial domain of integration as follows∫ ∞

0

δ(r) dr =
1

2

∫ ∞

−∞
δ(r) dr =

1

2
(8)

in order to fully integrate the delta function. Given βH = 8πGM , R =
4GMδ(r)/r2, and eq-(8), the magnitude of the integral (7) becomes

|I| = 1

2
M βH = 4πGM2 =

4π(2GM)2

4G
=

4πr2h
4G

=
Area

4L2
P

(9)

Therefore, the (magnitude of the) Euclidean Einstein-Hilbert action SE associ-
ated with the delta function point mass source yields precisely the Schwarzschild
black hole entropy and given by one quarter of the horizon’s area in Planck
units. Note that it was not necessary to introduce the Gibbons-Hawking-York
boundary term [5], [6] in order to evaluate the entropy and involving the extrin-
sic curvature K

2The Kretschmann invariant RµνρτRµνρτ ∼ ( 2GM
r3

)2 is singular at r = 0 for the
Schwarzschild metric

3The scalar curvature R remains unaffected due to the fact that the change of sign in gtt
and Rtt cancels out when one evaluates the trace of the Ricci tensor component gttRtt
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S =
1

16πG

∫
M

√
|g| R d4x +

1

8πG

∫
∂M

√
|h| K d3x (10)

h is the determinant of the induced metric on the boundary ∂M . The bulk
Einstein-Hilbert action for the metric (1) vanishes (due to the vanishing of
R = 0), consequently, the contribution to the entropy stems entirely from the
extrinsic curvature K of the boundary term. Gibbons and Hawking argued that
in order to obtain an action which depends on the first derivatives of the metric,
as is required by the composition property of the path-integral approach, the
second derivatives appearing in the curvature scalar R had to be removed by an
integration by parts resulting in the need to introduce the boundary term. In the
case of asymptotically flat metrics the boundary region can be chosen to be the
product of the Euclidean time axis (a circle of size βH) with a sphere S2 of large
radius. Gibbons and Hawking evaluated the action for the gravitational field
on a section of the complexified spacetime which avoids the singularity. The
boundary integral in the limit that the sphere’s radius goes to infinity yielded
an action I given by i4πGM2, and which agrees with the black hole entropy
(up to an i factor).

Let’s proceed with the evaluation of the higher dimensional Schwarzschild
black hole entropy. Once more, by replacing r → |r| in the metric (2a, 3) it
gives

ds2 = − f(|r|) (dt)2 +
(dr)2

f(|r|)
+ |r|2 (dΩD−2)

2 =

− (1− (
rh
|r|

)D−3) (dt)2 + (1− (
rh
|r|

)D−3)−1 (dr)2 + |r|2 (dΩD−2)
2 (11)

After a very lengthy and laborious calculation one learns that the scalar curva-
ture associated with the metric (11) is

R =
d2f

dr2
+

2(D − 2)

r

df

dr
− (D − 2)(D − 3)

r2
(1− f) (12)

Taking into account that d|r|
dr = sgn(r) 4 where sgn(r) is the sign function it

leads to the following results

d

dr
sgn(r) = 2 δ(r),

df

dr
= (D − 3) rD−3

h

sgn(r)

|r|D−2
,

d2f

dr2
= − (D − 2) (D − 3) rD−3

h

1

|r|D−1
+ 2(D − 3) rD−3

h

δ(r)

|r|D−2
(13)

Inserting the results of eq-(13) into eq-(12) and taking into account the identity
r = |r|sgn(r) which leads to key exact cancellations, the scalar curvature in
eq-(12) turns out to be

4The derivative of |r| is discontinuous at r = 0, but because it jumps from −1 to +1, one
may take their arithmetic mean which is 0 and which agrees with the value of sgn(r = 0) = 0
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RD = 2
16πGDM

(D − 2)ΩD−2
(D − 3)

δ(r)

|r|D−2
= 2 rD−3

h (D − 3)
δ(r)

|r|D−2
(14)

The use of |r| in f(|r|) in eq-(11) was instrumental in generating the delta
function in (14). Had one used f(r) one would have obtained R = 0. In the
case when D = 4 one recovers the same result as in eq-(5) for R.

The Hawking temperature of the D-dim Schwarzschild black hole is TD =
(D−3)/4πrh ⇒ βD = 4πrh/(D−3). The non-trivial Euclidean Einstein-Hilbert
action in D-dim is given by the integral

I = − i

16πGD

∫ βD

0

dτ

∫ ∞

0

RD ΩD−2 rD−2 dr (15)

In the region where r ≥ 0 one can replace |r|D−2 for rD−2, hence after taking
into account eq-(8), setting βD = 4πrh/(D − 3), and inserting the expression
(14) for RD into (15), one arrives finally at

|I| =
ΩD−2 rD−2

h

4GD
=

ΩD−2

4GD

(
16πGDM

(D − 2) ΩD−2

)D−2
D−3

(16)

which is the Schwarzschild black hole entropy in D-dimensions.
Next we shall find the expressions for the density and pressure of the point-

matter source leading to a non-vanishing scalar curvature and which furnishes
the higher dimensional black hole entropy. Given the trace of the stress energy
tensor TD = Tµ

µ , the trace of the Einstein tensor Gµν = Rµν − 1
2gµνR obeys

the following relation stemming from the field equations

− RD
(D − 2)

2
= 8πGD TD = − (8πGD)

(
2 (D − 3)

M

ΩD−2

δ(r)

|r|D−2

)
(17)

since the spherically symmetric energy-mass density ρ in D-dim for a point mass
source is given by 5

ρ =
2M

ΩD−2 |r|D−2
δ(r) ⇒

∫ ∞

0

ρ ΩD−2 rD−2 dr = 2M

∫ ∞

0

δ(r) dr = M

(18)
one finds that the trace of the stress energy tensor is

TD = − (D − 3) [
2M

ΩD−2 |r|D−2
δ(r) ] = − (D − 3) ρ (19)

Due to the (hyper) spherical symmetry, the D − 2 transverse pressure compo-
nents p⊥ to the radial direction are all equal, then the expression in (19) leads
to

5Note the key extra factor of 2 in eq-(18) that is required to evaluate the integral of δ(r)
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TD = − ρ + pr + (D − 2) p⊥ = − (D − 3) ρ (20)

One must supplement eq-(20) with the Einstein field equations in order to de-
termine ρ, pr and the D − 2 transverse pressure components p⊥ = pθi , i =
1, 2, · · · , D − 2,

Rt
t −

1

2
δtt R = 8πGDT t

t = − 8πGD ρ, Rr
r − 1

2
δrr R = 8πGDT r

r = 8πGD pr

(21)

R⊥
⊥ − 1

2
δ⊥⊥ R = 8πGDT⊥

⊥ = 8πGD p⊥ (22)

After a lengthy but straightforward algebra one finds that the density and pres-
sure components are

ρ =
2M

ΩD−2 |r|D−2
δ(r), pr = − 2(D − 3)

(D − 2)
ρ,

p⊥ =

(
(4−D)(D − 2) + 2(D − 3)

(D − 2)2

)
ρ ⇒ −ρ + pr + (D−2)p⊥ = −(D−3)ρ

(23)
The solutions (23) satisfy the strong energy conditions ρ +

∑
pi ≥ 0 but not

the weak energy conditions ρ+ pi ≥ 0 for all i = 1, 2, · · · , D − 1.
One may object to the above expressions (23) because the angular coordi-

nates are not well defined at r = 0. This is not a problem because one can
simply perform a coordinate change of the stress energy tensor Tµν to Cartesian
coordinates which are well defined at r = 0 6. The solutions (23) are consistent
with the conservation equation of the stress energy tensor ∇µT

µν = 0. It can
be more easily verified in D = 4 where one arrives at

ρ = − pr =
2M

4πr2
δ(r), p⊥ =

1

2
ρ =

M

4πr2
δ(r) (24)

One can check that the expressions (24) are consistent with the conservation
equation

∇µT
µν = 0 ⇒ p⊥ + ρ +

r

2

dρ

dr
= 0 (25)

and which can be verified explicitly after using the identities r d
dr (δ(r)) = −δ(r);

rn dn

drn (δ(r)) = (−1)nn!δ(r). Similar results as those found in eq-(24) were ob-

tained in [11] by choosing a mass density given by a GaussianM(σ)−3/2exp(−r2/σ)
where the Gaussian width

√
σ was related to the noncommutativity parameter

associated with the noncommutative spacetime coordinates [x̂µ, x̂ν ] = iΘµν1
after equating the norm to σ :

√
ΘµνΘµν = σ. As the width of the Gaussian

goes to zero one recovers the product of three delta functions

6In Cartesian coordinates the stress energy tensor will have off-diagonal components
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limσ→0

(
M (σ)−3/2exp(−r2/σ)

)
→ ρ = M δ(x) δ(y) δ(z) (26)

Our mass density does not involve the product of three delta functions but in-

volves the term δ(r)
r2 instead. Because the authors [11] used a Gaussian mass

density to smear the point mass source and introduce “fuzziness” of the space-
time points into the picture, their value of R was finite at r = 0. Their physical
model could be viewed as a self-gravitating anisotropic fluid droplet. Our ef-
fective mass function in eq-(4) is M(r) = Msgn(r), whereas the mass function
M(r) in [11] was given by an incomplete gamma function as a result of inte-
grating the Gaussian mass density across a spherical region of radius r.

The importance of using the modulus |r| can also be seen when one evaluates
the Laplacian : ∇2(1/r) = 0 but ∇2(1/|r|) ∼ δ(r)/r2. In 3D the radius is

defined as r = ±
√
x2 + y2 + z2. In general, one must include both ± signs

so an analytical extension from r → −r is possible by using |r| in the metric
solutions and without having to switch the signs M → −M .

After this discussion one concludes that the expressions (23) are the density
and anisotropic pressure components associated with the point mass delta func-
tion source at the origin r = 0 and which furnish the Schwarzschild black hole
entropy (up to a factor of −i) in all dimensions D ≥ 4 by a direct evaluation
of the Euclidean Einstein-Hilbert action. As usual, it was required to take the
inverse Hawking temperature βH as the length of the circle S1

β obtained from
a compactification of the Euclidean time in thermal field theory which results
after a Wick rotation, it = τ , to imaginary time. The appealing result is that
there was no need to introduce the Gibbons-Hawking-York boundary term in
order to arrive at the black hole entropy because in our case one has that R ≠ 0.
And, furthermore, there was no need to introduce a complex integration con-
tour to avoid the singularity as done in [6]. On the contrary, we found that
the source of the black hole entropy stems entirely from the scalar curvature
singularity at the origin r = 0. The physical implications of this finding war-
rants further investigation since it suggests a profound connection between the
notion of gravitational entropy and spacetime singularities.

A plausible explanation why the interior region of the black hole inside the
horizon played no role in our derivations is because there is a procedure to
remove the interior. In [8] we argued how the action of active diffeomorphisms
(diffs) r → f(r) on the Schwarzschild metric leads to metrics which are also
static spherically symmetric solutions of the Einstein vacuum field equations.
It was shown how in a limiting case it allows to introduce a deformation of
the manifold such that f(r = 0) = 0, and f(r = 0+) = 2GM corresponding,
respectively, to the spacelike singularity and horizon of the Schwarzschild metric.
In doing so, one ends up with a spherical void surrounding the singularity at r =
0. In order to explore the “interior” region of this void, we introduced complex
radial coordinates whose imaginary components have a direct link to the inverse
Hawking temperature, and which furnish a path that provides access to interior
region. The black hole entropy admitted a geometrical interpretation as the
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area of a rectangular strip in the complex radial-coordinate plane associated to
this path.

Note that this proposal was very different form the one undertaken by some
authors who have proposed in the past to “avoid”, “remove”, the black hole
interior via an antipodal identification of the points on a sphere of radius 2GM,
and associated with the topology of a RP 3 projective space [9]. Closely related
to the aforementioned picture of a spherical void is that ’t Hooft has referred to
the empty region in the “interior” of a black hole as a vacuole [10]. He proposed
a procedure for a better understanding of the evolution laws of black holes in
terms of pure quantum states. In his most recent work [19], ’t Hooft came up
with a simpler proposal such that all the states defined in the external region II
are exact quantum clones of those in the other external region I. He argued that
not only does this make all physical states observable, but, most surprisingly,
this suffices to restore unitarity as well.

It remains to explore if the procedure proposed in this work also works for
the Reissner-Nordstrom and the more general Kerr-Newman metric solutions.
In the latter case, when M ̸= 0, a = J

M ̸= 0, one has a true ring singularity
of radius a located in the z = 0 plane, so one would expect a scalar curvature
delta function singularity with support on the ring [12]. The clue how to proceed
is to recall how Newman and Janis [13] showed that the Kerr metric could be
obtained from the Schwarzschild metric by means of a coordinate transformation
and allowing the radial coordinate to take on complex values. The Newman-
Janis shift was r → r − ia. Originally, no clear reason for why the algorithm
works was known and many physicists considered it to be an ad hoc procedure or
a “fluke” not worthy of further investigation until Drake and Szekeres [14] gave a
detailed explanation of the success of the algorithm and proved the uniqueness
of certain solutions. In particular, the Kerr–Newman metric associated to a
charged-rotating black hole can be obtained from the Reissner-Nordstrom metric
by means of a coordinate transformation and allowing the radial coordinate to
take on complex values. Therefore, all we have to do is to modify the Newman-
Janis shift by writing |r − ia|. In this way one would generate δ(r − ia) terms
corresponding to a ring singularity of imaginary radius r = ia.
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