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Abstract

In this short paper we prove that for n ≥ 2953652287 it exists some prime number between n
and n+ log(n), improving the best known proved bounds for the maximum interval between any
number and the nearest prime number, as well as the maximum difference between two consecutive
prime numbers (prime gap). We note that this result proves some open conjectures on prime gaps
and maximum intervals between any number and the nearest prime number.
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1 Introduction

The purpose of this paper is establishing a new maximum interval between any positive real number
and the nearest prime number, as well as improving the best bounds known on the distance between
two consecutive prime numbers (prime gaps).

Some of the most recent results on the subject can be found, for instance, in a recent paper of Axler
[2], where there are cited some of the best known explicit bounds for the nth prime number pn. For
this paper, we will use one of the best explicit bounds for the prime counting function π(x), which
counts the number of prime numbers not exceeding x, published in a paper of Dussart [4]. Concretely,
we have that, for x ≥ 2953652287,

x

log x

(
1 +

1

log x
+

2

log2 x

)
≤ π(x) ≤ x

log x

(
1 +

1

log x
+

2.334

log2 x

)
(1)

As corollaries of the Main Theorem proved on Section 2 of this paper, they can be proved some of
the most known open conjectures on prime gaps and maximum intervals between any number and the
nearest prime number. At Section 3 it is provided a non-exhaustive list of the most representative and
generalist conjectures on the existence of prime numbers in bounded intervals, as well as a representa-
tive and strong open conjecture on the maximum difference between two consecutive prime numbers,
all of which can be proved using the Main Theorem.

2 Proof of the Main Theorem

From (1), we have that, for x ≥ 2953652287,

x

log x
(f ′(x)) < π(x) <

x

log x
(g′(x)) (2)

Where
1 < f ′(x) < g′(x)

are positive decreasing functions, such that limn→∞
g′(x)
f ′(x) = 1 and h′(x) = g′(x) − f ′(x) is a positive

decreasing function.
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The main theorem proved in this paper is the following:

Theorem. π(n+ log n)− π(n) > 1 for n ≥ 2953652287

Proof.

For convenience, along the proof it is used the fact that log(n) = 2 log(
√
n), and both terms of

this equality are used interchangeably.

Applying (2), we have that

√
n

log
√
n
(f ′(

√
n)) < π(

√
n) <

√
n

log
√
n
(g′(

√
n)) (3)

Also, applying (2), we have that

π(n+ 2 log(
√
n) >

n+ 2 log(
√
n

log(n+ 2 log(
√
n)

f ′(n+ 2 log(
√
n))

As we have that

n+ 2 log(
√
n

log(n+ 2 log(
√
n)

f ′(n+ 2 log(
√
n)) =

√
n
(√

n+ 2 log(
√
n)√

n

)
log

(√
n
(√

n+ 2 log(
√
n)√

n

))f ′ (n+ 2 log(
√
n)
)

Then we have that

π(n+ 2 log(
√
n) >

√
n
(√

n+ 2 log(
√
n)√

n

)
log

(√
n
(√

n+ 2 log(
√
n)√

n

))f ′ (n+ 2 log(
√
n)
)

(4)

Substituting with (3), we have that

√
n
(√

n+ 2 log(
√
n)√

n

)
log

(√
n
(√

n+ 2 log(
√
n)√

n

))f ′ (n+ 2 log(
√
n)
)
=

π(
√
n)

(√
n+

2 log(
√
n)√

n

)(
1

2

)(
log(n)

log(n+ log(n))

)(
f ′ (n+ 2 log(

√
n))

f ′ (
√
n))

)

And thus, at the end we have that

π(n+ log n) > π(
√
n)

(√
n+

2 log(
√
n)√

n

)(
1

2

)(
log(n)

log(n+ log(n))

)(
f ′ (n+ 2 log(

√
n))

f ′ (
√
n))

)
(5)

Other hand, we have applying (2) that

π(n) <
n

log n
(g′(n)) (6)

As we have that
n

log n
(g′(n)) =

(
√
n)
√
n

log((
√
n)
√
n)

(g′(n))

Then we have that

π(n) <
(
√
n)
√
n

log((
√
n)
√
n)

(g′(n)) (7)

2



Substituting with (3), we have that

(
√
n)
√
n

log((
√
n)
√
n)

(g′(n)) = π(
√
n)(

√
n)

(
1

2

)(
g′(n)

g′(
√
n)

)
(8)

And thus, we have that

π(n) < π(
√
n)(

√
n)

(
1

2

)(
g′(n)

g′(
√
n)

)
(9)

Substracting (9) to (5), we have that

π(n+ log n)− π(n) > π(
√
n)

(√
n+

2 log(
√
n)√

n

)(
1

2

)(
log(n)

log(n+ log(n))

)(
f ′ (n+ 2 log(

√
n))

f ′ (
√
n))

)
−

π(
√
n)(

√
n)

(
1

2

)(
g′(n)

g′(
√
n)

)

Operating, we have that

π(n+ log n)− π(n) >

(
π(
√
n)(

√
n)

(
1

2

))((
log(n)

log(n+ log(n))

)(
f ′ (n+ 2 log(

√
n))

f ′ (
√
n))

)
−

(
g′(n)

g′(
√
n)

))
+

π(
√
n)

(
2 log(

√
n)√

n

)(
1

2

)(
log(n)

log(n+ log(n))

)(
f ′ (n+ 2 log(

√
n))

f ′ (
√
n))

)
(10)

Focusing on the first summand of the RHS of (10), we notice that((
log(n)

log(n+ log(n))

)(
f ′ (n+ 2 log(

√
n))

f ′ (
√
n))

)
−

(
g′(n)

g′(
√
n)

))
> 0 ∀n ≥ 2953652287

As a result, the product of terms (which are all positive) forming this summand is always positive.

Focusing on the second summand of the RHS of (10), we can substitute with (3) and cancel terms, to
obtain that

π(
√
n)

(
2 log(

√
n)√

n

)(
1

2

)(
log(n)

log(n+ log(n))

)(
f ′ (n+ 2 log(

√
n))

f ′ (
√
n))

)
=

( √
n

log
√
n
(f ′(

√
n))

)(
2 log(

√
n)√

n

)(
1

2

)(
log(n)

log(n+ log(n))

)(
f ′ (n+ 2 log(

√
n))

f ′ (
√
n))

)
=

(
log(n)

log(n+ log(n))

)
f ′ (n+ 2 log(

√
n)
)

Therefore, at the end, we have that

π(n+ log n)− π(n) >

(
log(n)

log(n+ log(n))

)
f ′ (n+ log n)

As
(

log(n)
log(n+log(n))

)
f ′ (n+ log n) > 1 ∀n ≥ 2953652287, we finally get that π(n+ log n)− π(n) > 1 for

n ≥ 2953652287, concluding the proof.

3



3 Non-exhaustive list of open conjectures that can be proved
using the Main Theorem

It follows a list of some relevant open conjectures that can be proved using the Main Theorem, ordered
by the tightness of the bounds proposed. Each subsequent conjecture implies that the precedent con-
jecture listed holds.

Note that each of them can be proved just checking that they hold for n < 2953652287 and after-
wards applying the Main Theorem for n ≥ 2953652287.

3.1 Legendre’s Conjecture

Legendre’s Conjecture [7] states that for every natural number n, it exists at least a prime number p
such that n2 < p < (n+ 1)2.

3.2 Brocard’s Conjecture

Brocard’s Conjecture [6] states that, if pn and pn+1 are two consecutive prime numbers greater than
two, then between p2n and p2n+1 exist at least four prime numbers.

3.3 Andrica’s Conjecture

Andrica’s Conjecture [1] states that for every pair of consecutive prime numbers pn and pn+1, we have
that

√
pn+1 −

√
pn < 1

3.4 Oppermann’s Conjecture

Oppermann’s Conjecture [5] states that for every positive integer n, we have that

n2 − n < pπ(n2−n)+1 < n2 < pπ(n2)+1 < n2 + n

3.5 Cramér’s Conjecture

Cramér’s Conjecture [3] states that pn+1 − pn = O((log pn)
2).

4 Final Remarks and acknowledgements

The Main Theorem sets the strongest possible boundary for intervals between any number and the
nearest prime number. Maybe slight refinements can be made, but the order of magnitude is the ”best
possible” that can be attained. This can be easily checked, for instance, evaluating the two summands
on the RHS of (10) and noting that the first summand tends to 0 and the second summand tends to
1 when n tends to infinity.

I want to specially thank my caring wife Elena for supporting me throughout this marvellous journey
of free-time researching and learning during this last eight years. And ”I praise you, Father, Lord of
Heaven and Earth, because you have hidden these things from the wise and learned, and revealed them
to little children” (Matthew 11, 25).

4



References

[1] D. Andrica. Note on a conjecture in prime number theory. Studia Univ. Babes–Bolyai Math. 31
(4), pages 44–48, 1986.

[2] C. Axler. New estimates for the n-th prime number. 2018.

[3] H. Cramér. On the order of magnitude of the difference between consecutive prime numbers. Acta
Arithmetica, pages 23–46, 1936.

[4] P. Dussart. Estimates of some functions over primes without r.h. 2010.

[5] L. Oppermann. Om vor kundskab om primtallenes mængde mellem givne grændser. Oversigt over
det Kongelige Danske Videnskabernes Selskabs Forhandlinger og dets Medlemmers Arbejder, pages
169–179, 1882.

[6] E. W. Weisstein. Brocard’s conjecture. Mathworld.

[7] E. W. Weisstein. Legendre’s conjecture. Mathworld.

5


	Introduction
	Proof of the Main Theorem
	Non-exhaustive list of open conjectures that can be proved using the Main Theorem
	Legendre’s Conjecture
	Brocard’s Conjecture
	Andrica’s Conjecture 
	Oppermann's Conjecture
	Cramér's Conjecture

	Final Remarks and acknowledgements

