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Abstract: Some counterexamples to the uniqueness of the set of natural numbers were given and the 

non-uniqueness of the set of natural numbers was proved on the basis of strict definition of the number of 

elements of any set. It was proved that the number of elements in any infinite set is more than that in its 

proper subset and any one-to-one correspondence cannot be established between two sets with different 

number of elements according to the definition of bijection. As a result, an infinite set cannot correspond 

one-to-one to its proper subset. So, there is no infinite hotel paradox and Galilean paradox. The set of natural 

numbers that corresponds one-to-one to the rational numbers set Q is not the proper set of Q, but another 

set of natural numbers. The part does not equal the whole. The number of digits after the decimal point for 

infinite decimals may also be different for infinite decimals. When the number is the same, there is no one-

to-one correspondence between different dimensional spaces and there is no one-to-one correspondence 

between different length segments. The real numbers are countable. There is no uncountable set. Almost all 

of Cantor's counterintuitive theories are wrong in their logic, so the conflict between intuition and logic is 

not normal and intuitionism and logicism must be united. It is possible to reach limit but the infinite process 

can never be completed. There is no Zeno paradox. The fact that there are so many errors in the most 

rigorous mathematics and that they remain uncorrected for so long shows that human logical thinking ability 

needs to be greatly improved and no one can be sure that he is correct. Therefore, it is foolish to impose 

one's own views, including ideology and values, on others, even by force, to push mankind towards self-

destruction in nuclear and biological wars. 

Keywords: set of natural numbers; the number of elements of infinite set; one-to-one correspondence; 
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0 introduction  

The existence of a unique set of natural numbers is the basic belief of set theory, and 

also the root of almost all counterintuitive errors and paradoxes. Once the non-uniqueness of 

the set of natural numbers is recognized, all these errors and paradoxes are eliminated.  

When I say that the set of natural numbers is not unique, most people will be confused 

and even opposed except my friends who are familiar with my ideas. Indeed, from a static 

point of view, if the set of natural numbers is regarded as an infinite set that has been 

completed and will no longer change, it is easy to prove that the set of natural numbers is 

unique: if there are two sets of natural numbers that will no longer change, then the elements 

can only be natural numbers and will no longer change, so their extensions must be equal, 

and of course they are the same set. 

In mathematics, the set of natural numbers is usually defined as a set that already 

contains all natural numbers. This definition seems also clear enough to draw the conclusion 



 

 

that the set of natural numbers is unique: since all natural numbers are included, of course, 

these natural numbers can't be different. How can there be different sets of natural numbers? 

Everything seems clear. 

However, is it really that simple? 

1 Is the set of natural numbers unique？ 

Mathematics is rigorous and cannot introduce any assumptions that may be unreliable. 

Unfortunately, human thinking is far from rigorous enough to ensure that unreliable 

assumptions are not introduced. On the contrary, in many deductions, people often 

unconsciously introduce some specious assumptions, which leads to the unreliability of the 

conclusions. 

Take the above deduction as example. There is actually an unproven assumption that 

there is a complete set of unchanging natural numbers. For the purpose of discussion, this 

hypothesis is called natural number set's completion hypothesis, which is called completion 

hypothesis for short. 

It is not entirely correct to say that this hypothesis has not been proved. According to the 

viewpoint of real infinity, the infinite process can be completed, so as an infinite set, the 

formation of the set of natural numbers can also be completed. So the completion hypothesis 

can be proved by the viewpoint of real infinity. 

The problem is that the idea of real infinity itself is a hypothesis that no one can strictly 

prove, and there are many counterexamples. 

For example, no matter according to human mathematical practice since ancient times, 

or according to Peano's axiom or infinite axiom, natural numbers can be continuously 

increased by adding 1, that is, any natural number has successor. 

Some people may think that the reason why we can't list all natural numbers is because 

time and space are limited. It is implied that as long as time and space are infinite, we can list 

all natural numbers. This argument is illogical: even if people are given infinite time and space, 

the process of listing natural numbers will never be completed. This is because once this 

process is completed, it means that there are no successors. 

There should be no counterexample for any universally applicable viewpoint. Therefore, 

the view of real infinity is not universally correct, and the completion hypothesis can not be 

proved. 

On the other hand, any mathematical definition must first ensure the existence of the 

object it defines. 

For example, there is no regular decahedron in Euclidean space, so it is meaningless to 

define regular decahedron in Euclidean space. If we have to define it, it may form another 

non-Euclidean geometry that may have no practical significance. 

Likewise, the definition of the set of natural numbers must be based on the existence of 

the set. 

For example, if N is defined as a set that already contains all natural numbers, then the 

existence of the concept of "all natural numbers" must first be guaranteed. 

In mathematics, "all natural numbers" usually have two meanings. First, we can't exclude 

any kind of natural numbers. For example, there are no odd numbers in an even set, so 



 

 

although any even number is a natural number, we can't call an even set a natural number set 

because it excludes the odd numbers. From this perspective alone, the concept of "all natural 

numbers" is of course valid. However, another meaning is that we can't find any natural 

numbers outside of "all natural numbers". This concept is problematic. As mentioned above, 

natural numbers can be increased by adding successors. Unless this process can be terminated, 

that is, there are no successors, it is possible to form "all natural numbers". However, this is 

impossible, so it will never be possible to form "all natural numbers". 

Using the axiom of infinity or Peano's axiom only proves that any natural number can be 

formed from 0 by means of +1 continually, but it does not prove that the +1 process can be 

ended to form all natural numbers. It should be noted here that “any" and "all" are not 

necessarily the same: the fact that “any" natural number can be formed by +1 continuously 

does not mean that the process of formation can be ended to form "all" natural numbers: as 

long as the process is still in progress, new natural numbers are constantly produced and "all" 

natural numbers can never be formed. 

Mathematical logic's confusion of the obviously different "any" and "all" is the root cause 

of a large number of errors in set theory. "any" can be used to describe any mathematical 

object in the process of growing, for example, to describe any natural number in the sequence 

of natural numbers formed by adding 1, but "all" can only describe the mathematical objects 

after the process of growth has ended, such as the natural number in so-called “all natural 

numbers”. If the process of adding 1 can never be finished, there can never be the “all natural 

numbers”.  

Of course, it is normal to produce a lot of paradoxes from this rough logic's rule, such as 

the vase paradox. 

2 Some counter examples to the uniqueness of the set of 

natural numbers 

Any theory, if it is correct, will absolutely not produce any contradiction in the concrete 

application, otherwise it directly proves that the theory is wrong. For example, if the 

uniqueness of the set of natural numbers leads to any error or absurdity in its application, it 

proves that the set of natural numbers is not unique.  

For example, when we use the natural number set, the numbers often have specific units. 

Under this circumstance, the set of natural numbers corresponding to different units is usually 

different. For example, if there are infinite dollars, expressed by a set of natural numbers, it 

can be expressed as {1 cent, 2 cents, 3 cents ...} or {$1, $2, $3 ... } . If the set of natural numbers 

is unique, it will lead to the absurd conclusion that 1 cent equals 1 dollar. 

Another non unique example of natural number set is an infinite school composed of 

two infinite classes: suppose that for every student admitted to Class A, Class B must admit 

two students, and the enrollment of the two classes will never stop.  

 The result of arranging students in a class is called to be the class number, so if they are 

also arranged in schools, there are also school numbers. The class numbers of Class A and 

Class B and school numbers can be expressed as three sets of natural numbers. Obviously， 

Class B has twice as many people as class A, and the school has three times as many people 



 

 

as class A, therefore，the three sets of natural numbers  cannot be the same set, otherwise, 

we won't be able to distinguish between class A, class B and the school. 

Not only is it enough to overthrow the proposition that the set of natural numbers is 

unique with any counter example, but it can also be strictly proved that the set of natural 

numbers is not unique by deduction. 

3 The formation of the set of natural numbers and the 

number of its elements 

3.1 The formation of the set of natural numbers 

Science is nothing more than a system of concepts to describe facts.  

For example, when we want to define and study the set of natural numbers, we must 

first study how the set of natural numbers is formed. If we skip this crucial step and go straight 

to the set of natural numbers, it is possible that the set being studied may never be formed, 

and therefore certainly does not exist. It is scientifically meaningless to study something that 

does not exist. 

It is an obvious fact that any natural number is obtained by starting from 1 and adding 

some ones. As an element of the set of natural numbers is certainly no exception. It is not 

difficult to see that as soon as this process to obtain the elements stops, it can only stop at a 

certain natural number n*, and then can only form a finite set of elements with the number 

n*. Therefore, in order to form an infinite set containing infinite elements, the above process 

can never stop, and the number of elements of the set must also be greater than any given 

natural number n*. 

That is to say, only when the process of forming natural numbers by the +1 method may 

never be stopped, can an infinite set of natural numbers whose number of elements is greater 

than any pre-specified n* be formed. 

From this we can see that the above facts can only be described by establishing the 

following theory:  

(1) The infinite set of natural numbers is the set of natural numbers whose number of 

elements is greater than any given n*;  

(2) The process of forming the infinite set of natural numbers can never be stopped, that 

is, it can never be completed, so there is only the infinite set of natural numbers in the process 

of being formed, and no set of natural numbers that has been completed;  

(3) The set of infinite natural numbers in the process of formation can be different when 

it is in different stages of formation, for example, when the number of elements of the set of 

natural numbers A is just greater than some n*, the number of elements of the set of natural 

numbers B may already be greater than 2n*. Obviously, A and B cannot be the same set. 

Because no set of natural numbers that has been completed, therefore, there cannot be a 

unique set that already contains all the natural numbers. 

In order to ensure the rigor of derivation, the concept of the number of elements should 

be defined first. 



 

 

3.2 The number of elements of the set 

Definition 1 A variable whose value starts from 1 and keep on increasing by +1 is called 

an increasing natural number variable. If there is no upper bound for this variable, the variable 

is called an unbounded increasing natural number variable or unbounded increasing variable 

for short.          

Property of Definition 1: 

Property 1: The value of unbounded increasing variable can be greater than any given 

natural number n*. 

Proof: If the values of unbounded increasing variable always≤n*, then there is an upper 

bound n*+1, contradicting its definition.  

Definition 2 An unbounded increasing variable with a value greater than any given 

natural number n* is called an infinite variable and is represented by n∞ (or simply by∞). 

3.3 Differences and similarities of symbol ∞ between  

mathematical analysis and this paper 

It can be seen by Definition 2 that Infinite variables are not different from the definition 

of the abnormal limit Lim n→∞n=∞ for sequence {n}: 1,2,3… in mathematical analysis because 

the latter actuarily also only states that Lim n→∞n=∞ is also greater than any given natural 

number n*. This is why the variable is referred to in this paper as an infinite variable and is 

represented by ∞. 

This concept clearly guarantees that any infinite phenomena related to natural numbers 

can be described in terms of infinite variable.  

But in this paper, the precise mathematical meaning of ∞ is given: an arbitrarily large 

value of an unbounded increment variable, so that it can be studied more scientifically.  

For example，although the value of ∞ can be greater than any given natural number n*, 

this follows from the definition of the variable (see the proof of Property 1) and does not 

change the fact that ∞ is a variable only: variables whose values without an upper bound are 

also variables. Since ∞ is simply a variable, according to Aristotle's deductive syllogism, 

formulas that can be applied to any variable x, such as x+1>x, x+x=2x>x, and x/2<x, 2x>x and 

so on can also be applied to ∞. That is, ∞+1 >∞, ∞+∞= 2∞>∞, ∞>∞/2, 2
∞

>∞ and so on 

are also true. Then，we have 

Properties of Definition 2: 

Property 1 Infinite variable ∞ can participate in any kind of mathematical operation just 

like any other mathematical variable. 

Since infinite variable ∞ is nothing more than a variable taking on natural numbers, 

therefore 

Property 2: Infinite variable ∞ can be studied by mathematical induction. 

Properties 1 and 2 of Definition 2 build an ingenious bridge between finite natural 

numbers and ∞, and the infinite problems that have puzzled mankind for thousands of years 



 

 

will become very simpler: The so-called infinite is only a finite value that is always increasing 

without end. 

Obviously, these properties are  very important: before this paper, no one knows these 

properties of symbol ∞, its application is also very confusing.  

However, it should be noted here that in mathematical analysis, any abnormal limit of 

any divergent sequence is represented by ∞. This representation is too rough to find the 

distinguish between different divergent sequences. But in this paper, ∞ refers to the 

abnormal limit of the sequence {n} only, and infinity in other cases is often represented by 

f(∞) according to Properties 1,2, so as to clarify the relationship between the various infinities.  

Definition 3: For the sequence {n}={1,2,3….n-1,n,n+1…..} and {m}={1,2,3….m-1, 

m,m+1…..} , when there is a function, called relational function, m=f(n) so that for any n > n*, 

m=f(n)>f(n*) , {m} is called to be an associative infinite sequence of {n} .  

Theorem 1: The abnormal limit of sequence {m} in  Definition 3 is f(∞). 

Proof：Apply Definition 2 to infinity variables n and m respectively, we have  

 Lim n→∞ n=∞  and Lim m→∞ m=∞m, 

Since m=f(n) and for any n > n*, m=f(n)>f(n*), i.e., when m→∞, n→∞also, so ∞m =Lim 

m→∞ m= Lim n→∞f(n)= f(∞). The last “=” holds true according to Property 1 of Definition 2.  

Definition 3 and Theorem 1 studies various infinite relations quantitatively and strictly, 

which is also of great significance for the study of infinite problems in mathematics. 

For example, if the student number of class A in the previous examples represented by 

{n}={1,2,3….n-1,n,n+1…..} and the student number of class B is represented by 

{m}={1,2,3….2n-1,2n,2n+1…..} according to the admission rules. Since there is a function 

m=2n so that for any n > n*, m>2n*, it can be known from  Definition 3 that {m} is an associative 

infinite sequence of {n} with an abnormal  limit of ∞m=2∞n or obtain it directly from  

 

Lim n→∞ 2n=2Lim n→∞ n =2∞ 

 

For another example, if {n} is used to represent the number of decimals after decimal 

point  and {m} is the number of decimals, then for binary  system,  there is a function m=2n so 

that for any n > n*, m>2n*, it can be known from  Definition 3 that {m} is an associative infinite 

sequence of {n} with an abnormal  limit of ∞m=2
∞

 or obtain it directly from 

 

Lim n→∞(m)= Lim n→∞(2n)=2
∞ 

 

Note also here that m=f(n) does not necessarily determine the value of every element in 

{m}, but it does determine the relationship between ∞ and ∞m. 

Obviously, since the method can reveal the relationship between different infinities, it is 

possible to study the relationship between different infinities in more detail than 

mathematical analysis. 

The infinite variable can be used to represent the number of elements in an infinite set 

very clearly. 

Definition 4 The result of counting elements is called the number of elements. 

Because the counting process itself is an addition process of "adding 1 to the counting 

result for each counted element": 



 

 

 

counting result =1+1+1…… 

 

When we count the number of elements, all we get is an increasing variable. In this case, 

there are only two possibilities: 

1) If the counting process can end, then the increasing variable can end at a finite natural 

number n*,  

 

counting result =1+1+1……= n* 

 

and obviously the set being counted is a finite set; 

Properties of Definition 4: 

Property 1: The number of elements of a finite set can be represented by a natural 

number n*. 

 

 2) If the set being counted is not a finite set, then the counting process can never end, 

and only infinite variable whose value is larger than any given n* can be obtained. Therefore, 

we have: 

 

counting result =1+1+1……=∞ 

 

Property 2: The number of elements of a set can also be an infinite variable. 

Definition 5: A set whose number of elements is an infinite variable is called infinity set. 

Since there is no third possibility, for infinite sets, we can never get a fixed infinite value, 

but only an increasing variable, once the process of counting has ended, it can only end at a 

finite number of natural numbers, so there cannot be a fixed infinite value. 

Theorem 2: There is no fixed infinite number to describe the number of elements of 

the set of natural numbers. 

Proof: According to definition 5 and properties 1 and 2 of definition 4, the number of 

elements of an infinite set of natural numbers is ∞ and the number of elements of a finite set 

of natural numbers is n* and there is no third kind of the set of natural numbers, so, there is 

no fixed infinite numbers to describe the number of elements of any set of natural numbers. 

 

The mathematical significance of Theorem 2 is obvious: Since here is no fixed infinite 

number to describe the number of elements of the set of natural numbers, there is also no 

infinite set with constant extension. All theories based on the fixed infinite numbers, such as 

the super finite number theory, are wrong. 

The misconception that there are fixed infinite numbers fundamentally confuses the 

distinction between finite and infinite sets because only for finite set, its number of elements 

can be a fixed number. 

Science is only used to study and describe facts, and any imagination that conflicts with 

facts is wrong and must be abandoned. On the contrary, to replace facts with subjective 

wishes and imagination, and to use non-existent things as the starting point of theories is 

completely cutting the foot to fit the shoe and putting the cart before the horse. 



 

 

In fact, in mathematics, the recognition of variables and various treatments of variables 

are already a very simple and mature matter, and the extension of set theory rejects variables 

and remains in the primitive stage of constant mathematics, which is really ironic. 

According to Property 1 of Definition 2 and Definition 5, we have the property of 

Definition 5: 

Property: The number of elements of infinite set is additive.  

For example, for sets infinite sets A and B, if their intersection set is empty, ∞AUB=∞A +

∞B 

Although the concept of the number of elements of an infinite set is in fact widely but 

imprecisely applied, this paper defines the concept strictly for the first time and gives its 

properties. 

Note that the cardinality concept of Cantor, which are usually not additive like ∞. For 

example, for the number of elements, ∞+∞=2∞, but for cardinals a+a=a. 

In addition, although we can't give a fixed value of the number of elements in any infinite 

set, we may give a fixed relative value according to the Properties. For example, if N0 = {0}UN, 

according to the Property of Definition 5, when there are no 0 elements in N, N0 has just one 

more element than N. That is, ∞N0=1+∞N 

The result can be understood as follows: N is a proper subset of N0, so every element 

that belongs to N also belongs to N0, so although the number of elements of N is increasing, 

the number of elements of N0 is increasing simultaneously. But the element 0 will always 

belong to N0 , not to N, that is, N0 will always have one more element 0 than N. 

Note that this fact, although very simple and clear, is very important, which can be 

expressed as: 

Theorem 3 The number of elements in any infinite set is more than its any proper 

subset. 

Proof：For any infinite set A, if it contains a proper subset B, then A=B U(A-B). According 

to Property 4 of definite 3, ∞A=∞B +∞A-B because the intersection of B and (A-B) is φ. Since 

A-B≠φ, that is, ∞A-B >0, thus ∞A=∞B+∞A-B﹥∞B. 

 

Theorem 4 Any one-to-one correspondence cannot be established between two sets 

with different numbers of elements. 

 

Proof: Let the number of elements of the set A and B be different and without loss of 

generality, let ∞A >∞B, then there are always elements ∞A -∞A in A, there is no preimage in 

B, that is, the injective between A and B is not surjective. 

 

For example, there are a set of rooms and a set of passengers with the same number of 

elements. if there's a new passenger, according to Property of Definition 5, the set of 

passengers has one more element than that of rooms, according to Theorem 4, there is no 

one-to-one correspondence between the two set. As a result, 

 

Corollary 1 There is no infinite hotel paradox. 

 

The comparison of Theorem3 and Theorem 4 clearly leads to Theorem 5: 



 

 

 

Theorem 5 An infinite set cannot correspond one-to-one to its proper subset. 

 

In the same way, 

 

Corollary 2 The set of natural numbers cannot correspond one-to-one to its even proper 

subset. 

 

Corollary 3 Rational numbers do not correspond one-to-one to its proper set of natural 

numbers. 

 

However, although the above derivation is very rigorous and clear and does not have any 

question, it is clearly in conflict with existing theories. For example, Cantor did establish a one-

to-one correspondence between the set of rational numbers and the set of natural numbers, 

and he seems also to have established a one-to-one correspondence between above N0 and 

N. 

Where is the problem? 

4 The theoretical basis of the non-uniqueness of the set of 

natural numbers 

With the exact concept of the number of elements, it is easy to prove the non-uniqueness 

of the set of natural numbers strictly. 

Theorem 6 The set of natural numbers is not unique. 

Proof 1: Assuming that the set N = {1, 2, 3,...} is unique, that is, there is no other set of 

natural numbers, add 1 to each element of N to get the set T = {2, 3, 4 ...}. Its elements can 

strictly one-to-one correspond to N, that is, ∞N=∞T, then N *= {1} U {2,3,4 ...} = {1, 2, 3... } is 

also a set of natural numbers, but according to the Property of Definition 5, ∞N* =∞N+1, that 

is, the extension of N*is different from that of N, so set of natural numbers N*≠N, which 

contradicts the assumption that N is the unique set of natural numbers.  

Proof 2: Assume set N={1,2,3 ... } is unique. Let A1={y|y=2x, x∈N}={2,4,6,....}, 

A2={y|y=2x-1|x∈N}={1,3,5,...}. Since both A1 and A2 one-to-one correspond strictly to N, i.e. 

according to Theorem 4, ∞A1=∞A2=∞N,. Therefore, according to Property of Definition 5, the 

set of natural numbers A3 = A1 UA2 has twice the number of elements of N, is not the set N, 

and contradicts the assumption that N is the unique set of natural numbers.  

Many mathematical problems can become very clear after strictly proving the non-

uniqueness of the set of natural numbers. 

For example, as what mentioned before, for N0={0}∪N ={0}∪{1,2,3,...} = {0,1,2,3,...}, ∞

N0=1+∞N, according to Theorem 5, N0 cannot correspond one-to-one to its proper subset N, 

but Cantor established the following so-called one-to-one correspondence of N→N0 

 



 

 

 

 N0  ：  0,  1,  2,  3,... 

        

 N  ：   1,   2,  3,  4,... 

 

Of course, the so-called one-to-one correspondence above is wrong according to 

Theorem 4 and 5.  

According to Theorem 4, the real one-to-one correspondence should be 

 

N0  ：   0,  1,  2,  3,... 

        

N1  ：   1,  2,  3,  4,... 

 

Here， N1 is another set of natural numbers with ∞N1=∞N0=1+∞N according to Theorem 

4. 

Clearly, Cantor's mistake was to mistake N1 for N, so the fact that N1 corresponds to N0 is 

mistaken for the idea that N0  corresponds to its proper subset N. The root cause of his error 

was his failure to recognize the non-uniqueness of the set of natural numbers: although both 

N and N1 can be written as {1,2,3... }, are sets of natural numbers, but they can be different 

sets of natural numbers with different numbers of elements. 

Here are some of the more important applications. 

5 The Applications of the non-uniqueness of the set of 

natural numbers 

5.1 The complete digestion of Galileo's paradox 

 Galileo's paradox, although it has a history of nearly 400 years, has had a great influence 

on the history of mathematics, which refers to the number of even numbers in the natural 

numbers, of course, only half of the natural numbers, but even numbers can establish a one-

to-one correspondence with the natural numbers (see set A1), which shows that the number 

of even numbers and natural numbers N are exactly the same, and then the paradox appeared:

∞/2=∞? 

In order to "eliminate" this paradox, Cantor had to avoid the intuitive and accurate 

concept of the number of elements and establish the so-called cardinal number theory, 

openly confusing half of the elements with all of the elements，that is, they have the same 

cardinal number！ 

It seems that when I really can't tell the difference between ∞ and ∞/2, I say ∞=∞/2, 

and then I don't have to say the difference between ∞ and ∞/2. 

Is this scientific research? Or just a joke? 

Galileo paradox can very easily be explained by the non-uniqueness of the set of natural 

numbers: since the set of natural numbers is not unique, the set of even numbers can certainly 

not be unique. Therefore, if let E denote the even proper subset of N, E≠A1 is entirely possible. 

On the other hand, ∞E≠∞A1 is perfectly normal when E≠A1. so:  



 

 

 

There is no Galilean paradox. 

 

Mistaking A1 for the proper subset of N is the root of errors. 

A1 is not the proper subset of N: A1 and N have the same number of elements, and a 

proper subset of N must have fewer elements than that of N according to Theorem 3, so how 

can A1 be a proper subset of N? This is the crux of the problem, and neither Galileo nor Hilbert 

nor Cantor got it correctly.  

In addition, there is also no one-to-one correspondence between set N and E according 

to Theorem 5: set E can only form an injection with half the elements in set N, so this injection 

is not surjective because the other half of elements in set N cannot find preimage in set E. 

Therefore, the conclusion that "any infinite set can correspond to its proper subset" just is a 

misinterpretation of Galileo's paradox and is completely wrong, as shown in Theorem 4 and 

Theorem 5. 

 

5.2 Dispel the fog over N and Q 

 

Cantor established a one-to-one correspondence between the set of rational numbers Q 

and the proper set N. This fact also seems puzzling and obviously counterintuitive: every 

natural number is rational number, but not every rational number is a natural number, and so 

the number of natural numbers must be much smaller than that of rational numbers. But 

according to Theorem 4, two sets in strict one-to-one correspondence must have exactly the 

same number of elements, which is obviously contradictory. Moreover, according to Theorem 

5, N is no more than a proper subset of Q, and it is impossible to establish a one-to-one 

correspondence between them. 

Before author, no one had been able to explain exactly what was going on. However, 

according to the non-uniqueness of the set of natural numbers, this problem is also very easily 

solved: the set of natural numbers corresponding to Q cannot be its proper subset according 

to Theorem 5, but can be another set (denoted by N2) of natural numbers according to the 

non-uniqueness of the set of natural numbers.  

 

The set of natural numbers that one-to-one corresponds to the rational numbers set Q 

is not the proper set of Q, but another set of natural numbers N2. 

 

Cantor's mistake was to mistake N2 for N, so the fact that N2 corresponds to Q is mistaken 

for the idea that Q corresponds to its proper subset N. The root cause of his error was also his 

failure to recognize the non-uniqueness of the set of natural numbers. 

 

If, on the contrary, we insist that Q can correspond to N one-to-one, we will fall into the 

counterintuitive paradox that part can be equal to the whole. It's wrong, thus  

    

The part does not equal the whole. 

 



 

 

5.3 One-to-one correspondence between different length line segments and between 

different dimensional spaces 

 

Because the set of natural numbers is not unique, the set formed by the number of 

decimal places (the number of digits after the decimal point) for infinite decimals that can 

correspond to the set of natural numbers one-to-one is also not unique.  

 

The number of decimal places for infinite decimals is not unique. 

 

Therefore, it is impossible to discuss the relevant problem precisely without making clear 

the number of decimal places. 

For example, for two concentric circles to correspond one to one, the number of points 

on the circles must be the same. 

The number of points on the unit length is called the linear density. Clearly, the smaller 

the radius is, the greater the linear density is for the concentric circles. When the ratio of the 

radius of the two concentric circles is X, the ratio of their linear density is 1/X in order to 

ensure that the number of points on the two circles is the same.  Let the number of decimal 

places of the points on the two concentric circles of A and B are ∞A, ∞B respectively, then, 

for binary decimals, the linear density is equal to 2
∞A and 2

∞B respectively, ratio of the linear 

density is X=2
∞A -∞B. When X =2, ∞A -∞B=1, that is, the number of decimal places differs by 1. 

The problem of concentric circles has been solved in this paper for the first time. 

Without talking about the number of decimal places, it is meaningless to discuss one-to-

one correspondence. 

Cantor simply did not pay attention to these details, so his theory was too loose and 

careless. 

The problem of concentric circles has puzzled mankind since the Middle Ages. Galileo 

therefore saw no point in discussing infinite problems. Instead of solving the problem, Cantor 

amplified and generalized the errors, such as arguing that not only could points of different 

lengths correspond one-to-one with each other, but also points of finite lengths could 

correspond one-to-one to infinite lengths, and thus, if there were more than one universe, 

there are as many points on a single nanometer as there are on a line spanning several 

universes! 

According to the analysis in this paper, since there is no mention of decimal places, these 

are not strict and unmeaning. 

Cantor's discussion of the one-to-one correspondence between different dimensional 

spaces was more loose and more absurd. 

Let the number of decimal places of binary system is  ∞A, then the number of decimals 

on the unit length is 2
∞A, the number of decimals on the unit square is  22∞A, it can be seen 

that if the decimal places are same, the number of decimal points in one-dimensional space 

and two-dimensional space is different, according to Theorem 4, there is no one-to-one 

correspondence between one dimensional space and two dimensional space. But Cantor did 

establish a one-to-one correspondence between one dimensional space and two-dimensional 

space, so what's going on here? 



 

 

In fact, it is very simple. We just look at the line segment with the number of decimal 

places ∞B and let 2
∞B =22∞A ,i.e., let ∞B=2∞A, we can establish a one-to-one correspondence 

between the points on line segment with ∞B decimal places and the points on the plane with 

∞A=0.5∞B decimal places. In other words, when the number of decimal places in a line 

segment is twice the number of decimal places in a plane, a one-to-one correspondence 

between oen-dimensional line segment and two-dimensional plane can be established. This 

is exactly what Cantor did: he took the odd or even decimal places of the points on the line as 

that on the plane, and obviously the number of decimal places on the plane is exactly half of 

that on the line. 

It's just that he didn't know anything about the non-uniqueness of number of decimal 

places, so no one including himself could explain his theory before author. And without 

mentioning the number of decimal places, these theories make no universal sense.  

The above discussion can be summarized as follows. 

 

When the number of decimal places for infinite decimals is the same, there is no one-

to-one correspondence between different dimensional spaces and there is no one-to-one 

correspondence between different length segments. 

 

5.4 Is there are noncountable sets  

 

The introduction of the non-uniqueness of the set of natural numbers not only exposes 

the logical errors of the above counterintuitive statements, but also exposes the logical errors 

of other counterintuitive statements. 

For example, if we don't know that countable and uncountable sets exist at all, there is 

no reason to think that the things that exist cannot be listed one-to-one. Therefore, if we have 

an infinite number of infinite decimals, of course we can list them one-to-one. 

 

a1:0.a11a12a13.... 

a2:0.a21a22a23....                                                                           (1) 

a3:0.a31a32a33.... 

....... 

 

... 

Where, the subscript j (j = 1,2,3 ... .... )of aij denotes the number of decimal places , 

subscript i (i = 1,2,3 ... ....) denotes the number of decimals themselves.  

Since subscripts can only be represented by natural numbers, any set of subscripts can 

only be a set of natural numbers. But in both finite and infinite cases, the number of decimals 

is always much greater than the number of decimal places, taking binary system as an example, 

in the finite case, the number of decimals m is equal to 2n, here, n is the number of decimal 

places, in infinite case, both the number of decimal places and that of decimals can be 

represented as sets of natural numbers, represented by N and N3 respectively.  

According to Theorem 1, we can obtain ∞N3=2
∞

N , this means 

 
          N ≠ N3                                                              (2) 



 

 

 

exactly in line with Theorem 6. 

 

However, In Diagonal Argument, Cantor let. 

 

b=0.b1b2b3...，                                                      (3) 

 

here, 

 

bk≠akk, (k=1,2,3,...)                                                (4) 

 

From (3)(4), b seems different from any of the decimals in (1), and thus seems to 

contradict that (1) has already listed all the decimals. 

According to Cantor, contradictions arise from the countability hypothesis. If his 

deduction had been just the only countability hypothesis all along, it would have been fine.       

However, what Cantor did not see was that both the subscripts of ak and the first 

subscript in akk belong to the set N3, while the second subscript in akk belongs to the set N, 

since all three subscripts are always represented by the same k, this means that the eq(4) 

holds only under the false assumption that N3 = N，that  is, ∞N3=∞N
          

 Clearly the introduction another false assumption in the deduction makes it impossible 

to determine which hypothesis is responsible for the contradiction. So, the Diagonal 

Argument does not prove that the real numbers are uncountable. 

Strict proof by contradiction should have only one assumption, and no other assumption 

should be introduced. 

However, once we admit (2), that is, remove the false assumption of N=N3, we find that 

the contradiction no longer exists. 

In fact, the contradiction only occurs when N3 = N. At this assumption, the row subscripts 

set and the column subscripts set have exactly the same number of elements, forming an  

infinite ∞N*∞N square matrix, b is obviously not in this square matrix. However, since the 

existence of real number b proves that ∞N3≥1+∞N only, clearly, there actually is no 

contradiction with (2) because  ∞N3=2
∞N≥1+∞N. 

Therefore, the so-called contradiction arises only from the artificial false assumption that 

N3 = N, that is, the Diagonal Argument only proves (2), and has nothing to do with whether N3 

is countable. In fact, N3 itself is a set of natural numbers, so how can it be uncountable? 

Since (1) does not actually cause any contradiction, and N3 is itself a set of natural 

numbers, (1) directly proves that 

 

The real numbers are countable. 

 

In fact, many people at home and abroad have doubts about the Diagonal Argument. 

Imagine, a clear and rigorous theorem, like the Pythagorean theorem, would anyone question 

it? 

If we apply Cantor's theorem to the set of natural numbers, as is well known, the power 

set P(N) of N can correspond to binary decimals, and therefore P(N) corresponds to the set of 



 

 

natural numbers N3, so long as it is recognized that there are different sets of natural numbers, 

neither the Diagonal Argument nor Cantor's theorem proves that the real numbers are 

uncountable.  

 Cantor's initial method of proving that the real numbers are uncountable is the closed 

interval method. The idea is also to assume that the real numbers are countable first and list 

them one-to-one [see (1)], if one can find a real number 

  

≠ai (i=1,2,3...)                                                (5) 

  

He thinks he has proved that real numbers are uncountable. To do this, Cantor divided the 

interval into 

  

I1  I2  I3 …                              （6） 

 

and try to make (5) holds true. 

There are also two different sets of natural numbers: in addition to the N3 set, which 

corresponds to the decimal one-to-one[see (1)], there is also a set of natural numbers, which 

is formed by the subscripts in (6) and noted by N4. It is clear that (5) holds true only when  

 

∞N3<=∞N4                                                     (7) 

 

This is because the method can only guarantee that the subscript of the common point 

is not in N4 only, thus, if ∞N3>∞N4, it cannot guarantee the point not in N3.  

However, Cantor did not prove (7), so the method does not prove that the real numbers 

are uncountable. 

In fact, when we divide the intervals into three parts, the end points of the intervals are 

rational numbers only, so ∞N4 <∞N3 . 

On the basis of proving that the set of natural numbers is not unique, it is not difficult to 

prove that  

 

Theorem 7 There is no uncountable set. 

 

Proof: Every element in any infinite set is distinct from each other, therefore, each of 

these elements can certainly have an increasing numeric subscript, and the subscripts can 

certainly form a set of natural numbers. The proof of Cantor's theorem shows that there are 

infinite sets that do not correspond one-to-one with each other, and therefore there must be 

relevant sets of natural numbers that do not correspond one-to-one with each other, which, 

according to Theorem 6, does not lead to any contradiction (The so-called contradiction, as 

mentioned earlier, encountered by Cantor in his Diagonal Argument is only due to his 

carelessness in confusing the row and column subscripts, the root cause is the confusion of 

different sets of natural numbers. The contradiction in fact do not exist), that is, there is no 

uncountable set.  

It should be noted that the proof citers only to the proof of Cantor's theorem, but not to 

Cantor's theorem itself. This is because the expression of Cantor's theorem itself uses the 



 

 

concept of cardinal numbers, but we do not use the concept of cardinal numbers, which is 

easy to conflict with the precise and clear concept of the number of elements proposed in 

this paper. Only the conclusion that there are infinite sets that cannot correspond one by one 

with each other is needed in this proof.  

For example, as mentioned earlier, the set of rational numbers Q corresponds one-to-

one to a set of natural numbers (but not the set of natural numbers contained in set Q), and 

the set of real numbers R corresponds one-to-one to another set of natural numbers N3[See 

eq.(1)]. Even if the power set of the power set of N, i.e. P(P(N)), can also corresponds one-to-

one to a set of natural numbers...... 

Since there is no uncountable set, therefore, the so-called Continuum Hypothesis and 

the theory of large cardinal numbers have no meaning. 

 

The history of mathematics has taken a big detour. 

6 Discussion 

This paper has discovered the non-uniqueness of the natural numbers and therefore 

explained a lot of problems.  

This paper at least discusses five different sets of natural numbers: N, N1~N4, all of which 

can be written as {1,2,3... }, but the number of elements varies. Cantor confused these  

different sets of natural numbers and  produced a large number of paradoxes and errors. For 

example, he failed to see that N1 has one more element than N, so he mistakenly assumed 

that N0 could correspond to N one by one, and mistakenly concluded that the infinite hotel 

paradox and the infinite set could correspond to its proper subset one by one, leading to the 

partial equals all paradox; For example, he did not see the difference between N2 and N, and 

thus mistakenly believed that N could correspond to Q(QN), a set of rational numbers much 

larger than N, and he did not see the difference between N3 and N, and thus mistakenly 

believed that the real numbers were uncountable... 

But people who like to explore the truth may still wonder, since the elements of the set 

of natural numbers are natural numbers only, what causes them to be different? 

The answer  is that the process of forming the sets of natural numbers never ends, so 

there is no  common end point. Since the sets of natural numbers are always in the process 

of formation, it cannot  be guaranteed that the sets of natural numbers in all forms must be 

the same. That's why the set of natural numbers may be different.     

Taking the infinite school as an example again, for every additional student in class A, 

there are two additional students in class B, and the resulting sets cannot be the same at any 

time including infinite time. 

Therefore, the crux of the problem is the infinite view in this paper that infinity cannot 

have an end, i.e., cannot be completed. 

Whether infinity can be completed is not a problem that can be solved by guessing 

puzzles or taking sides, but a scientific problem of what the objective facts are. 

Pay particular attention to the relationship between the completability of the problem 

relating to infinity and the in-completability of infinity itself. A typical example is the limit of a 



 

 

convergent sequences: the limit value of the sequences itself is deterministic, but the terms 

of the sequences are infinite. 

As is generally known, the limits of convergent sequences are invariant, for example, 

when n→∞, Lim(1/n)=0, where limit zero is a invariant value. Since the sequence limit is a 

concept related to infinity, the invariance property of the limit is easily misunderstood as the 

completability of infinity itself. Cantor, for example, who was seriously lacking in rigor because 

his thinking was too arbitrary and free, understood it in this way, and thus emphasized the 

idea of the real infinity view that believe that infinity can be completable. In fact, he got it all 

wrong: the certainty of limits is based on the in-completability of Infinity. Still take the above 

sequences limit as an example, if the infinite process n→∞ can be terminated or completed, 

according to the definition of sequences limit, it can only be terminated or completed at a 

finite value n*, then the value obtained is a finite value 1/n* greater than 0, that is, only when 

infinite process n→∞ has no end, that is, it cannot be completed, the value of the sequences 

item can tend to an invariable 0. Or the in-completability of Infinity is a necessary condition 

for the limit value to be fixed. 

Note that the above discussion has nothing to do with time. For example, when n→∞, 

it can be specified that n increases by 1 every second, or it can be specified that n increases 

by 1 every zero second, but regardless of the stipulation, the conclusion that infinity cannot 

be completed remains unchanged. 

Obviously in the former case, it takes an infinite amount of time to reach the limit, and 

in the latter case, limit zero is reached when time is greater than zero. It follows that the limit 

is not necessarily unreachable, but the infinity can never be completed. 

Another example is 0.3+0.03+0.003+... The limit is 1/3, and the necessary condition for 

reaching the limit is that the number of terms of addition is infinite, which cannot be 

terminated or completed: if it can be terminated or completed, then the sum <1/3. 

In fact, the endless debate on infinity stems from a failure to correctly understand the in-

completability of infinity. For example, if the in-completability of infinity is regarded as the 

unreachability of limits, various paradoxes such as Zeno's paradox will arise, and denying in-

completability of Infinity will result in various paradoxes of set theory, such as those based on 

the uniqueness of the set of natural numbers discussed in this paper. 

In Zeno's paradox, If the relative distance between the fast runner and the turtle is 1/3 

meter, the relative speed is 0.3 meters/second and the limit of 1/3 cannot be reached, the 

fast runner will never catch up with the turtle, which is inconsistent with the fact. The fact is 

that both fast runners and turtles walk on their feet only and has nothing to do with how the 

distance is divided in the mind and whether this division requires time, so we can let zero 

second to divide 1/3 to infinite distances, and of course the limit can be reached. So, the 

essence of Zeno's paradox is simply to confuse what's actually happening with what's going 

on in people's mind.  

Since the infinite part of the traditional set theory rests on the basis that one can obtain 

the fixed extension set that already contains all of the natural numbers, the basis is wrong and 

the result must be wrong. Before the foundation is not solid, it is suggested that the education 

department temporarily cancel the teaching related to infinite sets, so as not to mislead 

students. 



 

 

This paper also finds that almost all of Cantor's counterintuitive theories are wrong in 

their logic. 

        In the history of mathematics, there was a debate between intuitionism and logicism. 

Once, logicism prevailed, and intuition was considered unreliable. Cantor's theory is widely 

accepted on this philosophical basis. The mathematics teaching material of our country still 

stays at this level when introducing this period of history. 

        But according to Zou Xiaohui of Tsinghua University, recently， intuitionism has gradually 

developed more rapidly. 

        In fact, with the increasing expansion and refinement of people's observation range， 

wrong intuition is usually easy to find and correct. On the contrary, some hidden logical errors 

are often not easy to find and correct. The evidence is the existence of a large number of 

paradoxes. Therefore, if there is a contradiction difficult to solve between intuition and logic 

for a long term, most likely the logic is wrong. 

        In the process of scientific development, the theory that only emphasizes one side can 

only exist in a certain stage of development, and in the relatively mature natural sciences， 

we should not have a theory that only emphasizes one side for a long-term. 

        To my way of thinking, this is the reasons why intuitionism and logicism must be united. 

        Since people don't have very high logical thinking skills, when logic and intuition conflict, 

people must first carefully check the errors in logic, and should not fantasize that "logic is 

reliable and intuition is unreliable" and then let the possible errors continue. 

       For example, intuition tells us that anything that does exist can be listed one by one, and 

anything that can be listed one by one can be numbered by natural numbers, that is, any set, 

no matter how big or small it is，always can correspond one-to-one to one of sets of natural 

numbers. Since the set of natural numbers is not unique, the above operation should not lead 

to any contradiction. However, Cantor's careless confusion of different subscripts artificially 

leads to contradictions that do not exist in the first place, and thus "proves" the existence of 

uncountable sets. 

This paper found that Cantor's thought, although imaginative and creative, seriously 

lacks rigor and meticulousness: many details and many obvious contradictions were not seen 

by him. Lack of strict logical thinking ability, but also superstitious logic, is the reason why his 

theory is full of errors. 

 The fact that there are so many errors in the most rigorous mathematics and that they 

remain uncorrected for so long shows that human logical thinking ability needs to be greatly 

improved and no one can be sure that he is correct. Therefore, it is foolish to impose one's 

own views, including ideology and values, on others, even by force, to push mankind towards 

self-destruction in nuclear and biological wars. 

 


