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1. Introduction

We study the ratios of exponential functions as a model of dependence of
proportions on some other independent variables. The origin of such propor-
tions may range from categorical data as relative frequencies when absolute
frequencies are known on the one hand to chemical composition on the other
hand. Other examples on compositional data may be had in Aitchison (1986)
or Pawlowsky-Glahn (2015).

Ratios of exponential functions are also known as logistic functions, Agresti
(1990). We refer to the paper by Bukac (2023) Unfortunately, linear models
have a serious disadvantage in taking on negative values or values greater than
one. One way or another, this is one of the reasons why a logistic regression
is used to eliminate this drawback. However and despite the disadvantages of
the linear model, the ease of computation of regression coefficients in restricted
linear regression makes it useful for obtaining the values and derivatives as a
basis for obtaining good starting values for iterative processes.

First of all we derive explicit formulas for inverse matrices without which we
could not move on. Only then do we form equations in which the values and
derivatives of the ratios of exponential functions are set equal to preassigned
values. It turns out that explicit solutions can be found.

We also discuss that the coefficients of the systems of equations form singular
matrices and why the Gauss-Newton method does not work. Several approaches
may be used to arrive at the minimal solution.

2. Helpful matrix results, explicit inverse

Our interpolation problems lead to certain types of matrices. Some matrices
have the same rows, other times the matrices have the same columns.

Definition 2.1. A matrix in which all the rows are the same is a matrix with
repeated rows.
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If a matrix A with repeated rows is given, we study A− I, that is,

A =


a1 a2 . . . an
a1 a2 . . . an
...

...
. . .

...
a1 a2 . . . an

 , A− I =


a1 − 1 a2 . . . an
a1 a2 − 1 . . . an
...

...
. . .

...
a1 a2 . . . an − 1

 (1)

Definition 2.2. A matrix A in which all the columns are the same is a matrix
with repeated columns,

A =


a1 a1 . . . a1
a2 a2 . . . a2
...

...
. . .

...
an an . . . an


The following theorem 2.1 includes a statement regarding the singularity or

non-singularity of the matrix A-I. It is easy to verify that tr(A) 6= 1 which
implies non-singularity allowing us to apply an explicite formula for the inverse.

Theorem 2.1. If n > 0, tr(A) 6= 1, and A is a square matrix with n repeated
rows (a1, a2, . . . , an) or a square matrix with n repeated columns (a1, a2, . . . , an)′

then (A− I)−1 = A
/(
tr(A)− 1

)
− I. If tr(A) = 1, then A− I is singular.

Proof. Let A be a matrix with repeated rows such as the one in (1). We
consider the matrix AA (it is not A′A), an ij-th element of which is aj

∑n
k=1 ak,

therefore AA = (
∑n

k=1 ak)A = tr(A)A. Now we calculate(
A + (1− tr(A))I

)(
A− I

)
= AA + (1− tr(A))A−A− (1− tr(A))I =

tr(A)A + A− tr(A)A−A− (1− tr(A))I = (tr(A)− 1)I.

This proves the first part of the theorem when tr(A) 6= 1 and A has repeated
rows. To prove the second part, we add the elements in each of the rows of
A − I in (1) to check that their sum is zero. It follows that the sum of all the
n columns in A− I is a zero vector which means they are linearly dependent.

If the matrix A has repeated columns, then its transpose A′ has repeated
rows. If tr(A) = 1, then A′ − I is singular and so is A− I.

If tr(A) 6= 1, then (A′ − I)−1 = A′
/(
tr(A) − 1

)
− I and (A − I)−1 =(

(A′ − I)−1
)′

=
(
A′
/(
tr(A)− 1

)
− I
)′

= A
/(
tr(A)− 1

)
− I.

Theorem 2.2. Let j = (1, 1, . . . , 1)′ be a column vector consisting of n ones. If
A is a square matrix with repeated rows (a1, a2, . . . , an) and tr(A) 6= 1 then

(A− I)−1j =
j

tr(A)− 1
.

Proof.

(A−I)−1j =
Aj

tr(A)− 1
−Ij =

tr(A)

tr(A)− 1
j−j =

tr(A)− tr(A) + 1

tr(A)− 1
j =

j

tr(A)− 1
.
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3. Calculation of values and derivatives

Iterative minimization requires good starting parameters that may be based
on the values and derivatives of functions at some specific point. The methods
of obtaining these values and derivatives may vary. Our criterion is the overall
sum of squares of deviations, our options depend on the type of data. It is
obvious that the use of restricted linear regression is easy to implement to all
situations. It is described in the appendix.

We may also consider other approaches. If we have T observations on each
of M variables zt1, . . . , ztM for each t = 1, . . . , T and K variables xt1, . . . , xtK .
We define the T ×M regressand matrix Z as Z = (z1, . . . , zm, . . . , zM). We may
use the M classical regression models and minimize the sum of squares

T∑
t=1

(
K∑

k=1

xtkbkm − ztm

)2

for each m = 1, 2, . . . ,M. If, for all m = 1, 2, . . . ,M we have
∑K

k=1 xkbkm > 0
for xk, k = 1, 2, . . . ,K in some common domain of definition. But, when we
want to approximate the proportions, we can form the ratios∑K

k=1 xkbkm∑M
d=1

∑K
k=1 xkbkm

.

When the functions are defined this way, the sum of proportions is one.
This approach may become inconvenient because such functions may become

negative. Another serious trouble is that the sample sizes may vary making this
model useless. This type of model is of no use when the proportions only are
known. Proportions of chemical substances fall in this category.

We could also form the ratios of exponential functions and use the parame-
ters as the starting values. Such a model has the same drawbacks as the ratios of
linear functions except that the exponential functions are always positive. Ex-
ponential functions are nonlinear in parameters but we could, of course, linearise
them by taking logarithms.

4. Joint logistic functions

It turns out to be useful to introduce a parameter am to represent the con-
stant term rather than saying that xt1 = 1 for t = 1, 2, . . . , T.

Definition 4.1. Let M > 1,m = 1 . . .M. We define joint logistic functions as

Fm(a,B,x) =
exp(am + x1b1m + . . .+ xKbKm)∑M
d=1 exp(ad + x1b1d + . . .+ xKbKd)

=
exp(am + x′bm)∑M
d=1 exp(ad + x′bd)

where x = (x1, x2, . . . , xK)′ are independent variables, a = (a1, a2, . . . aM)′ and
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B =


b11 b12 . . . b1M
b21 b22 . . . b2M
...

...
. . .

...
bK1 bK2 . . . bKM


are a vector and matrix of parameters respectively.

The m-th column bm of the matrix B appears in the numerator as x′bm to
comply with the usual notation in regression analysis.

These functions are positive for any argument as opposed to linear models.
The sum of such functions is

∑M
m=1 Fm(a,B,x) = 1 which is the property in-

trinsically included in the definition of these functions unlike the linear models.
It is obvious that for M = 1 we get the usual logistic function.

We may limit ourselves to the simpler exponential functions of am + bmx
instead of the general terms am +

∑K
k=1 xkbkm. The results we obtain may be

easily generalized for the latter general case.
We may now represent the individual functions, for m = 1, 2, . . . ,M, in a

simpler form as

Fm(x) =
exp(am + bmx)∑M
d=1 exp(ad + bdx)

.

We can easily see that Fm(x) > 0 and
∑M

d=1 Fm(x) = 1 for any x. We

obtain the derivative of this sum as
∑M

d=1 F
′
m(x) = 0 because it is a derivative

of a constant. All the higher derivatives of
∑M

d=1 Fm(x) are equal to zero as
well.

If both the numerator and denominator are multiplied by the same non-zero
real number the value of the fraction stays the same. We see that a function of
this type may be represented by distinct parameters

Theorem 4.1. Let α be a real number. Let a1, a2, . . . , aM , b1, b2, . . . , bM repre-
sent the functions of x,

exp(am + bmx)∑M
d=1 exp(ad + bdx)

for m = 1, 2, . . . ,M.

Then α+ a1, α+ a2, . . . , α+ aM , b1, b2, . . . , bM represent the same functions.

Proof.

exp(α+ am + bmx)∑M
d=1 exp(α+ ad + bdx)

=
exp(α) exp(am + bmx)∑M
d=1 exp(α) exp(ad + bdx)

=
exp(am + bmx)∑M
d=1 exp(ad + bdx)

.

Theorem 4.2. Let a1, a2, . . . , aM , b1, b2, . . . , bM be the parameters of the func-
tions of x

exp(am + bmx)∑M
d=1 exp(ad + bdx)

for m = 1, 2, . . . ,M.
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Let C be a real number. Then there is an α such that
∑M

d=1 exp(α+ad+bdC) = 1
and α+ a1, α+ a2, . . . , α+ aM , b1, b2, . . . , bM represent the same functions of x.

Proof. Let C be fixed. For any α we may write
∑M

d=1 exp(α + ad + bdC) =

exp(α)
∑M

d=1 exp(ad + bdC). The equality is satisfied if we pick an α such that

1/ exp(α) =

M∑
d=1

exp(ad + bdC).

One direct application of this theorem 4.2 is in the minimization of the sum
of squares of differences. Even though a local minimum is calculated and its
value is unique, the parameters are not unique. If we allow the parameters
a1, a2, . . . , aM to be arbitrarily large, we may get an overflow if the argument
of the exponential function is too large. This problem may be taken care of
by checking the size of the argument beforehand and making it smaller with a
convenient choice of α.

We may also use the above theorem 4.2 and make the denominator equal to
one at some fixed point C1. We are mentioning this special choice of α at this
moment but it will be used shortly.

5. Joint logistic interpolation

Depending on the type of data at hand we may use the restricted linear
regression or ratios of linear regressions to obtain estimates of values Vm > 0,∑
Vm = 1, and derivatives Dm, where

∑
Dm = 0, at some center point C

at which all the values Vm are positive. The values and derivatives may be
obtained in other ways but it is this context for which the restricted regression
has been presented.

We assume that b1, b2, . . . , bM are known and fixed. To find out what the
values of a1, a2, . . . , aM look like is easy.

Theorem 5.1. Let M > 1. Let Vm > 0, for m = 1, 2, . . . ,M,
∑M

m=1 Vm = 1.
Let b1, b2, . . . , bM be fixed. Then the equations exp(am+bmC) = Vm are satisfied
if am = lnVm − bmC and

∑
exp(am + bmC) = 1.

Proof. We solve for am in exp(am + bmC) = Vm, which is trivial. Also∑
Vm = 1 implies that

∑
exp(am + bmC) = 1.

We denote the derivatives with respect to x of Fm(x), defined in the definition
4.1, as F ′m(x) and calculate them as

F ′m(x) =
exp(am + bmx)

(
bm
∑M

d=1 exp(ad + bdx)−
∑M

d=1 bd exp(ad + bdx)
)(∑M

d=1 exp(ad + bdx)
)2
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Due to theorem 4.2, without losing generality, we may assume
∑M

d=1 exp(ad +
bdC) = 1 and obtain Fm(C) = exp(am + bmC) for m = 1, 2, . . . ,M, and use the
notation exp(am + bmC) = Vm for m = 1, 2, . . . ,M.

The derivatives are F ′m(C) = exp(am + bmC)
(
bm −

∑M
d=1 bd exp(ad + bdC)

)
yielding equalities Vm

(
bm −

∑M
d=1 bdVd

)
= Dm, where Dm = F ′m(C), for m =

1, 2, . . . ,M. Because Vm > 0 for each m = 1, 2, . . . ,M, these equalities are
equivalent to

M∑
d=1

bdVd − bm = −Dm/Vm for m = 1, 2, . . . ,M.

Now the question arises whether for any given Vm > 0 and Dm, m =
1, 2, . . . ,M, there are parameters a1, a2, . . . , aM , b1, b2, . . . , bM that represent
functions in accordance with definition 4.1.

Theorem 5.2. Let M > 1. Let Vm > 0, for m = 1, 2, . . . ,M,
∑M

m=1 Vm = 1,
and Dm are given then the system of linear equations for x1, x2, . . . , xM ,

M∑
d=1

xdVd − xm = −Dm

Vm
for m = 1, 2, . . . ,M,

is of rank M − 1.

Proof. It is easy to see that the sum of columns of the matrix of this system
of equations is equal to a zero column because

∑
Vm = 1 showing the matrix

of the system has rank less than M . We consider the submatrix consisting of
the first M − 1 rows and M − 1 columns. From

∑M
m=1 Vm = 1 and VM > 0 it

follows that
∑M−1

m=1 Vm 6= 1 and we may use theorem 2.1 to show this submatrix
has an inverse.

Definition 5.1 Let M > 1. Let Vm > 0, for m = 1, 2, . . . ,M,
∑M

m=1 Vm = 1,
and Dm are given. Consider the system of M linear equations for x1, x2, . . . , xM ,

M∑
d=1

xdVd − xm = −Dm

Vm
for m = 1, 2, . . . ,M.

The system of the first M − 1 equations will be called a reduced system. The
matrix of the reduced system will be denoted by W of type (M − 1)×M.

Theorem 5.3. Let M > 1. Let the values Vm > 0, for m = 1, 2, . . . ,M,∑M
m=1 Vm = 1, and derivatives Dm at some point C be given. Then Vm and

Dm may be interpolated with joint logistic functions,

Fm(x) =
exp(am + bmx)∑M
d=1 exp(ad + bdx)

for m = 1, 2, . . . ,M,
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by solving the system of linear equations for b1, b2, . . . , bM ,

M∑
d=1

bdVd − bm = −Dm

Vm
for m = 1, 2, . . . ,M,

if and only if
∑M

d=1Dd = 0.

Proof. The left hand side of the reduced system may be writen as A − I
of type ((M − 1) × (M − 1)) where A is a matrix with repeated rows. Since∑M

m=1 Vm = 1 and Vm > 0 for each m, we have
∑M−1

m=1 Vm 6= 1. It means that

A− I has an inverse, (A− I)−1 = A/(
∑M−1

K=1 ak − 1)− I, due to theorem 2.1.
We may pick any bM and calculate an explicite solution for b1, b2, . . . , bM−1

by left multiplying the matrix W by (A − I)−1 = A/(
∑M−1

K=1 ak − 1) − I. we
also left multiply the column consisting of the (M − 1) components forming the
right hand side of the system of equations.

Now we consider the function

FM (x) =
exp(aM + bMx)∑M
d=1 exp(ad + bdx)

and its derivative with respect to x. Since
∑M

m=1 Fm(x) = 1 for all x, The sum

of derivatives is zero,
∑M

m=1 F
′
m(C) = 0. It means the values and derivatives of

FM (x) at C satisfy the M -th equation. If, on the other hand,
∑M

m=1Dm 6= 0,
the values and derivatives of FM (x) do not satisfy the system of all M equations.
This finishes the proof for any bM we pick.

The following theorem is more specific and may give a better understanding.

Theorem 5.4. Let M > 1. Let Vm > 0, for m = 1, 2, . . . ,M,
∑M

m=1 Vm = 1,

and Dm satisfy
∑M

m=1Dm = 0. We form the system of linear equations

Vm

M∑
d=1

xdVd − xmVm = −Dm for m = 1, 2, . . . ,M.

If b1, b2, . . . , bM satisfy the first M − 1 equations, then the M -th eqation is
satisfied as well.

Proof. We form the sum of the first M − 1 equations as

M−1∑
m=1

Vm

M∑
d=1

bdVd −
M−1∑
m=1

bmVm = −
M−1∑
m=1

Dm.

We use the following formulas:

1 =

M∑
m=1

Vm = VM +

M−1∑
m=1

iff

M−1∑
m−1

Vm = 1− VM ,
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M∑
m=1

bmVm = bMVM +

M−1∑
m=1

bmVm iff

M−1∑
m=1

bmVm =

M∑
m=1

bmVm − bMVM ,

0 =

M∑
m=1

Dm = DM +

M−1∑
m=1

iff DM = −
M−1∑
m=1

Dm.

Now the sum of the first M − 1 equations may be rewritten as

(1− VM )

M∑
d=1

bdVd + bMVM −
M∑

m=1

bmVm = DM ,

M∑
d=1

bdVd − VM
M∑
d=1

bdVd + bMVM −
M∑

m=1

bmVm = DM .

Since
∑M

d=1 bdVd and
∑M

m=1 bmVm are the same number, we write

−VM
M∑
d=1

bdVd + bMVM = DM

or

VM

M∑
d=1

bdVd − bMVM = −DM ,

which is the required M -th equation.

Theorem 5.5. Let M > 1. Let the values Vm > 0, for m = 1, 2, . . . ,M,∑M
m=1 Vm = 1, and derivatives Dm be given and

∑M
d=1Dd = 0. We define

sm =
Dm

Vm
− DM

VM
,

for m = 1, 2, . . .M. Then the solution for which the sum of squares
∑M

m=1 b
2
m is

minimal is given by bm = sm − s̄ where s̄ =
∑M

m=1 sm/M.

Proof. The M -th column of the reduced matrix W may be written as VM j
where VM is the value repeated M − 1 times in the M -th column of W and
j is a column vector, j = (1, 1, . . . , 1)′, consisting of M − 1 ones. Let A be a
(M−1)×(M−1) submatrix consisting of the first M−1 columns of the reduced
matrix W. From theorem 2.2 it follows that (A− I)−1VM j = VM j.

We can also show how to multiply the right hand side of the reduced sys-
tem of equations, that is, the column vector consisting of M − 1 components,
(−D1/V1,−D2/V2, . . . ,−DM−1/VM−1)′, by the inverse (A− I)−1 of the square
matrix A− I consisting of the first M − 1 columns of W[V1 V2 . . . VM−1

...
...

. . .
...

V1 V2 . . . VM−1

 1∑M−1
d=1 Vd − 1

− I

] −D1/V1
...

−DM−1/VM−1

 =
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 D1/V1 −DM/VM
...

DM−1/VM−1 −DM/VM


Now it is much clearer how the affine subspace of solutions is formed. If we

define sm = Dm/Vm −DM/VM , then sM = DM/VM −DM/VM = 0. We may
pick any parameter t and set bM = t. Since sM = 0, we may write bM = t+ sM .
For m = 1, 2, . . . ,M − 1, we get bm = t+ sm.

We may introduce one more condition, such as the minimization of the
distance of a solution, b1, b2, . . . , bM , from the origin, the only purpose of such
an approach being to obtain reasonable starting values for the iteration process.
We minimize

M∑
m=1

b2m =

M∑
m=1

(t+ sm)2

with respect to t and obtain the minimizing tmin as tmin = −
∑M

m=1 sm/M = −s̄
and then the minimizing bm = sm − s̄.

If we introduce a parameter t to replace xM to avoid confusion and set the
M -th column of the reduced matrix W equal to tVM j where tVM is the value
repeated M − 1 times in the M -th column of W and j is a column vector,
j = (1, 1, . . . , 1)′, consisting of M − 1 ones. From theorem 2.2 it follows that
(A− I)−1tVM j = tVM j. Geometrically it means that the lines representing the
solution of the system of equations are all parallel to each other independently
of what fixed values of C were chosen to calculate the values and derivatives of
the functions.

Note. We may generalize this approach to functions of more than one variable
by considering partial derivatives. The left hand side of the equations is the
same but the right hand side depends on with respect to which parameter we
calculate the partial derivatives. The parameters a1, a2, . . . , aM are calculated
afterwards. In the case of more than one variables it is easy to generalize theorem
5.1 as

Theorem 5.6. Let M > 1. Let B be fixed. Let c = (c1, c2, . . . cK)′ be a center

point at which all the values Vm > 0 and
∑M

m=1 Vm = 1. Then the equations

exp(am +
∑K

i=1 bimci) = Vm are satisfied by am = lnVm −
∑K

i=1 bimci and∑
exp(am +

∑K
i=1 bimci) = 1.

Proof. We solve for am in exp(am +
∑K

i=1 bimci) = Vm, which is trivial. Also∑
Vm = 1 implies that

∑
exp(am +

∑K
i=1 bimci) = 1.

6. Numerical example

Our approach was originally designed to study concentrations of certain
substances. Since this example would not be obvious, we took the data about
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the cause of death in the US. The number of inhabitants may be different each
year but the proportions may follow some other pattern.

http://www.cdc.gov/nchs/nvss/mortality/lcwk9.htm
is the address from which only a small part of data was used.

The most prominent causes of death are a heart disease and cancer, other
specific causes have frequency less than six percent. The data are presented
in the table below. Coefficients of the restricted linear regression follow. We
indicate that we used the year minus 2000. Interpolation at the mean, C =
2004− 2000 = 4, of the independent variable allows us to calculate the starting
values for the iteration process.

The calculated values are displayed next followed by the parameters obtained
by the numerical minimization of the overall sum of squares. It is interesting to
see that the overall sum of squares decreases by 4.5 percent when we minimize
the overall sum of squares to calculate the coefficients of the logistic regression.

Original data Restricted linear regression

Year Heart Cancer Other Coeff Heart Cancer Other

1999 0.30327 0.22987 0.46686 a 0.29627 0.22894 0.47479

2000 0.29578 0.23009 0.47412 b -0.005830 0.0002348 0.005595

2001 0.28969 0.22911 0.48120 y=a+b(Year-2000)

2002 0.28526 0.22802 0.48672 Overall sum of squares 7.038E-05

2003 0.27984 0.22746 0.49270

2004 0.27214 0.23099 0.49688 Terms exp(a+b(Year-2000))

2005 0.26638 0.22848 0.50515 obtained by interpolation

2006 0.26037 0.23075 0.50888 Coeff Heart Cancer Other

2007 0.25423 0.23221 0.51356 a -1.2251 -1.4864 -0.75595

2008 0.24957 0.22878 0.52165 b -0.018331 0.0040491 0.014282

2009 0.24591 0.23293 0.52116 Overall sum of squares 6.947E-05

We can see that interpolation alone even happens to yield an overall sum of
squares of differences which is smaller than the one obtained with the restricted
linear regression.

7. Least squares method, case study

Interpolation gives us reasonable starting values for the purpose of mini-
mization of the sum of squares of differences. Unfortunately, the matrix that is
calculated, if we want to use the Gauss-Newton method, is singular. It means
we cannot calculate the solution of the system of equation to improve the ex-
isting values of parameters. Now it is time to stop writing the paper. It will be
continued later.
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