A 8.4- σ ANOMALY IS FOUND FROM THE 189 FILTERED EARTHQUAKES WITH THE MAXIMAL HORIZONTAL SHAKING RATIO $10^{M_w}/R_{EPI}^2$ AROUND 371 CITIES AFTER THE YEAR 1959, OVER 393 CITIES HAVING ENOUGH SEISMIC DATA AND AMONG A TOTAL OF 1230 LARGEST CITIES.

ALEXIS ZAGANIDIS

ABSTRACT. A Specific Magnitude Budget for the Detection of 44 Nuclear Earthquakes near Large Urban Areas subject to a Natural Seismic Hazard was crucial for finding the typical parameters of the Nuclear Earthquakes : $5.9 - 7.9 M_w$, from 1st January 1960 to 15th September 2023, $R_i < 160 km$ with the index i spanning the 1230 largest cities and having a maximal horizontal shaking ratio $10^{M_w,i}/R_i^2$ for each specific city *i* satisfying these typical parameters. Therefore, it allows to build a filter \mathcal{F}_Z and to filter out a total of 189 earthquakes around 372 cities with a relatively low background of Natural Earthquakes with respect to the Nuclear ones. By including the 189 filtered earthquakes around these 372 cities, there is a total of 393 cities having enough seismic data, with respect to a sufficiently large background of the recent smaller earthquakes around these same cities ($M_w \ge M_{w,0} = 4.0$, 1980-2022, $R_i < R_{max} = 160 \ km$, Gutenberg-Richter law and $\Delta N_i \ge 10^{5.9-4.0} > 79 \ in$ the case of an absence of filtered earthquakes with the filter \mathcal{F}_Z), in order to derive the Probability Estimation of having a such maximal horizontal shaking ratio. Finally, there is a 8.4- σ anomaly from a statistical excess of the maximal horizontal shaking ratio of the filtered earthquakes with the filter \mathcal{F}_Z and with a Probability Estimation Cutoff of < 0.43 (There is an artifact close to 1 arising from an exponential behavior inside the Probability Estimation formula of having a such maximal horizontal shaking ratio). Of course, by taking some random positions for the 1230 largest cities, it vanishes completely that 8.4- σ anomaly.

A Specific Magnitude Budget for the Detection of 44 Nuclear Earthquakes near Large Urban Areas subject to a Natural Seismic Hazard was crucial for finding the typical parameters of the Nuclear Earthquakes : $5.9 - 7.9 \ M_w$, from 1st January 1960 to 15th September 2023, $R_i < 160 \ km$ with the index *i* spanning the 1230 largest cities and having a maximal horizontal shaking ratio $10^{M_w,i}/R_i^2$ for each specific city *i* satisfying these typical parameters. Therefore, it allows to build a filter \mathcal{F}_Z and to filter out a total of 189 earthquakes around 372 cities with a relatively low background of Natural Earthquakes with respect to the Nuclear ones. By including the 189 filtered earthquakes around these 372 cities, there is a total of 393 cities having enough seismic data, with respect to a sufficiently large background of the recent smaller earthquakes around these same cities ($M_w \ge M_{w,0} = 4.0$, 1980-2022, $R_i < R_{max} = 160 \ km$, Gutenberg-Richter law and $\Delta N_i \ge 10^{5.9-4.0} > 79$ in the case of an absence of filtered earthquakes with the filter \mathcal{F}_Z), in order to derive

Date: October 10, 2023.

the Probability Estimation of having a such maximal horizontal shaking ratio. Finally, there is a $8.4-\sigma$ anomaly from a statistical excess of the maximal horizontal shaking ratio of the filtered earthquakes with the filter \mathcal{F}_Z and with a Probability Estimation Cutoff of < 0.43 (There is an artifact close to 1 arising from an exponential behavior inside the Probability Estimation formula of having a such maximal horizontal shaking ratio). Of course, by taking some random positions for the 1230 largest cities, it vanishes completely that 8.4- σ anomaly.

The Probability Estimation of having a such maximal horizontal shaking ratio at a specific city i is the following :

$$dP_{i}\left(x > X_{i} = \frac{10^{M_{w,i}}}{R_{i}^{2}}\right)$$

$$= \frac{Log\left(10\right)}{10^{-M_{w}^{min}} - 10^{-M_{w}^{max}}} \int_{M_{w}^{min}}^{M_{w}^{max}} dm \ 10^{-m} \int_{0}^{Min\left(\sqrt{\frac{10^{m}}{X}}, R_{max}\right)} \frac{2\pi r dr}{\pi R_{max}^{2}}$$

$$\frac{\left(1 + \Delta N_{i}\right)}{\Delta T_{i}} \frac{10^{-M_{w}^{min}} - 10^{-M_{w}^{max}}}{10^{-M_{w,0}}} dt$$

$$(1) \quad 1/\tau_{i} = \Gamma_{i} = \frac{dP_{i}}{dt} \left(x > X_{i} = \frac{10^{M_{w}}}{R_{i}^{2}}\right)$$

$$(2) \quad = Log\left(10\right) 10^{M_{w,0}} \frac{1 + \Delta N_{i}}{\Delta T_{i}} \int_{M_{w}^{min}}^{M_{w}^{max}} dm \ 10^{-m} Min\left(10^{m-M_{w,i}} \frac{R_{i}^{2}}{R_{max}^{2}}, 1\right)$$

With the following values for the parameter of the filter \mathcal{F}_Z :

(

(3)
$$P_i = 1 - e^{-T/\tau_i}$$
 with $T = 63.7043$ years
 $M_w^{min} = 5.9$, $M_w^{max} = 7.9$, $M_{w,0} = 4.0$
 $R_{max} = 160 \ km$
 $\Delta T_i = 2023 - 1980$
 $-\Delta \tilde{T} (8 \ years \ exclusion \ encompassing \ the \ X'_i s \ after shock \ sequence)$
 $\Delta T_i = \| [1980, 2023] / [T_i, T_i + 8] \|$
(4)

Where ΔN_i is the background number of the recent smaller earthquakes around a specific city *i* with $M_w \ge M_{w,0}$, $R_i < R_{max} = 160 \ km$, from 1980 - 01 - 01T00: 00: 00.00 to 2023 - 01 - 01T00: 00: 00.00 with an exclusion period of 8 years encompassing the earthquake X_i 's aftershock sequence and starting just before it. X_i is the powerful earthquake making the maximal horizontal shaking ratio at the specific city i within the above mentioned filtering ranges from the filter \mathcal{F}_Z . 837 cities have zero filtered earthquakes and do NOT have enough seismic data with respect to a sufficiently large background of the recent smaller earthquakes around them $(\Delta N_i < 10^{(M_{w,min} - M_{w,0})} = 10^{5.9 - 4.0} < 80).$

The recent smaller earthquakes are less detected and are less reported than the stronger earthquakes. Therefore, an additional empirical factor is needed to be included in the above formula :

$$\begin{split} & \frac{1}{\left(10^{m1}-10^{m2}\right)\,R^2}\,10^{-m}\,\left(10^{m}\,\left(10^{m1}-10^{m2}\right)\,R^2\,\text{Boole}\left[10^{m1} \ge \frac{10^m\,R^2}{r^2} ~\mid~ \mid \frac{10^m\,R^2}{r^2} \le 1\right] + \\ & 10^{m1+m2}\,\left(m1-m2\right)\,r^2\,\text{Boole}\left[\frac{10^m\,R^2}{r^2} \ge 10^{m2}\right]\,\text{Log}\left[10\right] ~+ \\ & 10^{m1}\,\text{Boole}\left[\frac{10^{m1}}{R^2} < \frac{10^m}{r^2} < \frac{10^{m2}}{R^2}\right]\,\left(10^m\,R^2 + 10^{m2}\,r^2\,\left(-1 + m1\,\text{Log}\left[10\right] - \text{Log}\left[\frac{10^m\,R^2}{r^2}\right]\right)\right)\right) \end{split}$$

The Analytic Integral result from the Probability Estimation of having a such maximal horizontal shaking ratio is the following : $\frac{Log(10)}{10^{-m1}-10^{-m2}} \int_{m1}^{m2} dm' \ 10^{-m'} Min\left(10^{\left(m'-m\right)} \frac{r^2}{R^2}, 1\right)$ where $m1 = M_w^{min}$, $m2 = M_w^{max}$, $R = R_{max}$, $r = R_i$, $m = M_{w,i}$.

(5)
$$1/\tau_{i} = \Gamma_{i} = \frac{dP_{i}}{dt} \left(x > X_{i} = \frac{10^{M_{w,i}}}{R_{i}^{2}} \right)$$
$$= Log (10) 10^{M_{w,0}} \frac{\alpha \left(M_{w,0}, M_{w}^{min}, M_{w}^{max} \right) (1 + \Delta N_{i})}{\Delta T_{i}}$$

(6)
$$\int_{M_{w}^{min}}^{M_{w}^{max}} dm \ 10^{-m} Min\left(10^{m-M_{w,i}} \frac{R_{i}^{2}}{R_{max}^{2}}, 1\right)$$

(7)
$$\alpha$$
 (4.0, 5.9, 7.9) = 1.68

By taking some random positions for the 1230 largest cities, with the latitude ranging between 25° and 55°, we can find precisely the empirical detection factor $\alpha \left(M_{w,0}, M_w^{min}, M_w^{max} \right) = 1.68$ with the constraint of a flat distribution for the Probability Estimation of having a such maximal horizontal shaking ratio.

The standard parameters of the 1230 largest cities are automatically imported with Mathematica. The 1st largest city is Shanghai with 24 870 895 inhabitants and the 1230th largest city is Skopje with 506 926. The 1977 Vrancea earthquake is 156.928 km away of Bucharest in Romania. The number of independent variables is not the 1230 largest cities since a single very powerful earthquake around a cluster of cities can make a maximal horizontal shaking for multiple cities. Moreover, a vast majority of cities (837 over 1230) do not have enough seismic data with respect to a sufficiently large background of the recent smaller earthquakes around the 1230 cities or do not have any filtered earthquakes with the filter \mathcal{F}_Z .

In the case of no earthquakes X_i is found for the maximal horizontal shaking ratio with the above mentioned filtering ranges from the the filter \mathcal{F}_Z and in the case of a NOT sufficiently large background number of the recent smaller earthquakes $(N_i < 10^{(M_w^{min}-4.0)} < 80)$, the seismic data are not enough and the median value of 1/2 is chosen for the Probability Estimation of having a such maximal horizontal shaking ratio. 837 cities over the 1230 cities are in that case.

In the case of no earthquakes X_i is found for the maximal horizontal shaking with the above mentioned filtering ranges from the filter \mathcal{F}_Z and in the case of a sufficiently large background number of the recent smaller earthquakes $(N_i \geq 10^{(M_w^{min}-M_w^0)} = 10^{5.9-4.0} > 79)$, we can derive a lower bound for the Probability Estimation of having a such maximal horizontal shaking ratio at that specific city *i* (21 cities over a total of 1230 in that combined case). Therefore, in that combined case, the corresponding average Probability Estimation is the following :

(8)
$$\frac{1}{\tau_i^{min}} = \Gamma_i^{max} = \frac{dP_i^{max}}{dt} \left(x > X_i = \frac{10^{M_{w,i}}}{R_i^2} \right)$$
$$= \frac{10^{-M_w^{min}} - 10^{-M_w^{max}}}{10^{-M_{w,0}}} \frac{\alpha \left(M_{w,0}, M_w^{min}, M_w^{max} \right) \left(1 + \Delta N_i \right)}{\Delta T_i}$$

(9)
$$\bar{P}_i = \frac{1 - e^{-T/\tau_i} + 1}{2} = 1 - \frac{e^{-T/\tau_i}}{2}$$

 $\alpha (4.0, 5.9, 7.9) = 1.68$

Only 21 cities over the 1230 cities are in that previous above case.

There is a 8.4- σ anomaly from a statistical excess of the maximal horizontal shaking ratio of the filtered earthquakes with the filter \mathcal{F}_Z and with a Probability Estimation Cutoff of < 0.43. Among the 1230 largest cities, that statistical excess give the following interval range for the total number of Nuclear Earthquakes around the 93 large cities having enough seismic data AND satisfying the Probability Estimation Cutoff of < 0.43 (393 cities involved without that Probability Estimation Cutoff) : [24, 73] with a median value of 48.

If we significantly relax the criteria for having enough seismic data with respect to a sufficiently large background of the recent smaller earthquakes ($N_i \ge 0.5 \times$ $10^{\left(M_w^{min}-4.0\right)} > 39$), there is a small anomaly reduction down to 6.5- σ from a statistical excess of the maximal horizontal shaking ratio of the filtered earthquakes with the filter \mathcal{F}_Z and with a Probability Estimation Cutoff of < 0.43. In that case, with the same filter \mathcal{F}_Z , we can still filter out a total of 189 earthquakes around 372 cities with a relatively low background of Nuclear Earthquakes. Including these 189 filtered earthquakes around the 372 corresponding cities, there is a total of 421 cities having enough seismic data (instead of a previous total of 393 cities) with respect to a sufficiently large background of the recent smaller earthquakes around these same cities $(M_w \ge M_{w,0} = 4.0, 1980\text{-}2022, R_i < R_{max} = 160 \text{ km}$, Gutenberg-Richter law and $\Delta N_i \ge 0.5 \times 10^{5.9-4.0} > 39$ in the case of an absence of filtered earthquakes with the filter \mathcal{F}_{Z}). Finally, by taking some random positions for the 1230 largest cities, with the latitude ranging between 25° and 55° , and with the empirical detection factor $\alpha \left(M_{w,0}, M_w^{min}, M_w^{max} \right) = 1.68$, we still have a flat distribution for the probability Estimation but there is an unwanted anomaly enlargement up to $1.6-\sigma$.

The largest cities of the following six former USSR countries in central Asia have experienced only 3 maximal horizontal shaking ratios despite there are a lot of seismic faults and a lot of mountain formations due to the Himalaya's neighborhood : Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan and Mongolia. Moreover, the 3 maximal horizontal shaking ratios are all below the 63th position over a total of 189.

The abscissa of the two histograms is the Probability Estimation of having a such maximal horizontal shaking ratio for the 393 cities (the ones having enough seismic data for the Probability Estimation of having a such maximal horizontal shaking ratio or having a filtered earthquake with the filter \mathcal{F}_Z), among the 1230 largest cities. It is derived from the 179 independent filtered earthquakes with the filter \mathcal{F}_Z and from the absence of the filtered earthquakes at 21 specific cities with respect to a sufficiently large background of the recent smaller earthquakes around these same cities ($M_w \ge M_{w,0} = 4.0, 1980-2022, R_i < R_{max} = 160 \ km$ and Gutenberg-Richter law). The artifact close to 1 arises from an exponential behavior inside the Probability Estimation formula of having a such maximal horizontal shaking ratio. The second histogram is made by taking random positions for the 1230 largest cities for comparison. The empirical detection factor is $\alpha\left(M_{w,0}, M_w^{min}, M_w^{max}\right) = 1.68.$

The abscissa of the two histograms is the Probability Estimation of having a such maximal horizontal shaking ratio for the 393 cities (the ones having enough seismic data for the Probability Estimation of the the maximal horizontal shaking ratio or having a filtered earthquake with the filter \mathcal{F}_Z), among the 1230 largest cities. It is derived from the 179 independent filtered earthquakes with the filter \mathcal{F}_Z and from the absence of the filtered earthquakes at 21 specific cities with respect to a sufficiently large background of the recent smaller earthquakes around these same cities ($M_w \ge M_{w,0} = 4.0$, 1980-2022, $R_i < R_{max} = 160 \ km$ and Gutenberg-Richter law). The artifact close to 1 arises from an exponential behavior inside the Probability Estimation formula of having a such maximal horizontal shaking ratio. The empirical detection factor are α ($M_{w,0}, M_w^{min}, M_w^{max}$) = 1.00, 1.17, 1.34, 1.51. Note, the first bar of the first histogram has a height of 31.

Cuba has experienced zero maximal horizontal shaking ratio while Haiti has experienced two maximal horizontal shaking ratio among the top ones.

The Korean peninsula has experienced zero maximal horizontal shaking ratio while Japan, near the Korean peninsula, has experienced 28 maximal horizontal shaking ratios among the top ones. For comparison, the Italian Peninsula has experienced 3 maximal horizontal shaking ratios while it is very far from the Ring of Fire unlike the Korean peninsula.

Despite it is the largest country of the world, Russia has experienced only 3 maximal horizontal shaking ratios among the smallest ones except for a relatively large one (48th position over a total of 189) in the Russian Republic of Dagestan, the most populated by Muslims in Russia.

City	Population	GCS	Country	<pre>{r, Mw, 10^Mw/r^2, Probability, Inv Rate, Depth Renorm.}</pre>	{Date, GCS, Depth, Mw}
Agadir	600 000	{30.42, -9.61}	Morocco	(2.05554, 5.91, 192374., 0.000282067, 225816., 0.350944)	(1960-02-29T23:40:19.840Z, 30.434, -9.624, 10, 5.91)
Kumamoto	738 407	(32.8, 130.71)	Japan	(1.44027, 6.2, 764032., 0.00221412, 28739.9, 0.0845674)	(2016-04-14T12:26:35.730Z, 32.788, 130.704, 9, 6.2)
Dashiqiao	725 000	(40.64, 122.5)	China	{6.75099, 7, 219414., 0.000666092, 95607.1, 0.774472}	(1975-02-04T11:36:07.500Z, 40.641, 122.58, 33, 7)
Dujiangyan	610 000	{30.9, 103.5}	China	(20.4149, 7.9, 190593., 0.00267842, 23752.4, 0.420876)	{2008-05-12T06:28:01.570Z, 31.002, 103.322, 19, 7.9}
Tangshan	7536521	(39.62, 118.19)	China	{18.9967, 7.5, 87628.6, 0.00224971, 28284.8, 0.626353}	{1976-07-27T19:42:54.600Z, 39.57, 117.978, 23, 7.5}
Yuxi	2143600	(24.35, 102.533)	China	(18.3733, 7.1, 37292.8, 0.010255, 6180.09, 0.281293)	(1970-01-04T17:00:41.090Z, 24.185, 102.543, 11.3, 7.1)
Gaziantep	1556 381	{37.07, 37.39}	Turkey	{37.5254, 7.8, 44807.3, 0.0155228, 4071.98, 0.419336}	{2023-02-06T01:17:34.342Z, 37.2256, 37.0143, 10, 7.8}
Carrefour	511 345	{18.53, -72.42}	Haiti	(18.6322, 7, 28805.2, 0.0189149, 3335.98, 0.417046)	(2010-01-12T21:53:10.060Z, 18.443, -72.571, 13, 7)
Heyuan	3489800	{23.7333, 114.683}	China	{10.6406, 6, 8832.26, 0.00663448, 9570.11, 0.441609}	(1962-03-18T20:18:55.770Z, 23.82, 114.639, 15, 6)
Baku	2122300	(40.39, 49.86)	Azerbaijan	{17.6953, 6.8, 20150.5, 0.0397229, 1571.65, 0.712181}	{2000-11-25T18:09:11.420Z, 40.245, 49.946, 50.4, 6.8}
Rasht	622 209	{37.3, 49.63}	Iran	(42.8778, 7.4, 13662.7, 0.0296455, 2116.86, 0.387489)	(1990-06-20T21:00:09.980Z, 36.957, 49.409, 18.5, 7.4)
Kobe	1536499	{34.68, 135.17}	Japan	{17.5995, 6.9, 25644.8, 0.0631339, 976.836, 0.0729146}	{1995-01-16T20:46:52.120Z, 34.583, 135.018, 21.9, 6.9}
Managua	1042641	(12.15, -86.27)	Nicaragua	<pre>{6.35552, 6.31, 50547.3, 0.151623, 387.424, 0.0840371)</pre>	(1972-12-23T06:29:44.430Z, 12.184, -86.223, 10, 6.31)
Xinji	619 000	{37.91, 115.19}	China	<pre>{42.1419, 6.8, 3552.8, 0.0139048, 4549.54, 0.467946}</pre>	{1966-03-22T08:19:36.300Z, 37.545, 115.061, 20, 6.8}
Mexicali	689 775	(32.65, -115.47)	Mexico	(10.5532, 6.4, 22554.6, 0.099279, 609.263, 0.951184)	{1979-10-15T23:16:53.910Z, 32.6673, -115.359, 15, 6.4}
Kathmandu	1442 271	(27.71, 85.31)	Nepal	<pre>(81.1072, 7.8, 9591.39, 0.0448932, 1386.92, 0.1262)</pre>	{2015-04-25T06:11:25.950Z, 28.2305, 84.7314, 8.22, 7.8}
Adana	1636 229	{37., 35.32}	Turkey	{13.6149, 6.3, 10764., 0.0600633, 1028.44, 1.05878}	<pre>(1998-06-27T13:55:52.080Z, 36.878, 35.307, 33, 6.3)</pre>
San Jose	1013240	{37.2969, -121.819}	United States	(12.5059, 6.2, 10133.8, 0.0621353, 993.058, 0.488244)	{1984-04-24T21:15:18.760Z, 37.3097, -121.679, 8.193, 6.2
Maracay	955 362	{10.33, -67.47}	Venezuela	{29.7115, 6.6, 4509.74, 0.0286633, 2190.5, 0.892106}	{1967-07-30T00:00:04.220Z, 10.559, -67.33, 25, 6.6}
Xingtai	7104103	{37.07, 114.49}	China	$\left\{35.4527, 6.5, 2515.94, 0.0177362, 3559.83, \frac{1}{2}\right\}$	{1966-03-07T21:29:19.070Z, 37.156, 114.875, 25, 6.5}
Ürümqi	2411900	<pre>{43.8, 87.58}</pre>	China	{18.9418, 6.5, 8813.73, 0.0683619, 899.641, 0.871287}	{1965-11-13T04:33:53.500Z, 43.759, 87.809, 45, 6.5}
Quito	2671191	{-0.220169, -78.5121}	Ecuador	(9.24444, 6, 11701.4, 0.0924528, 656.68, 0.965174)	(1967-03-02T02:47:33.450Z, -0.214, -78.595, 118.9, 6)
Rajkot	1286 678	{22.31, 70.79}	India	(135.92, 7.7, 2712.88, 0.0301985, 2077.51, 0.57172)	{2001-01-26T03:16:40.500Z, 23.419, 70.232, 16, 7.7}
Mudanjiang	2798723	(44.58, 129.6)	China	$\left\{37.9869, 6.4, 1740.73, 0.0214356, 2939.92, \frac{1}{2}\right\}$	{2002-09-15T08:39:32.700Z, 44.833, 129.923, 586.3, 6.4}
Acapulco	687 608	{16.85, -99.92}	Mexico	{20.7565, 7, 23210.9, 0.289846, 186.121, 0.432349}	{2021-09-08T01:47:47.437Z, 16.9465, -99.753, 20, 7}
	Rajkot Mudanjiang Acapulco	Rajkot 1286 678 Mudanjiang 2798 723 Acapulco 687 608	Rajkot 1286 678 (22.31, 70.79) Mudanjiang 2798 723 (44.58, 129.6) Acapulco 687 608 (16.85, -99.92)	Rajkot 1286678 (22.631, 70.79) India Mudanjiang 2798723 (44.58, 129.6) China Acapulco 687608 (16.85, -99.92) Mexico	Kajkot 1286678 (22.31, 70.79) India (135.94, 7.7, 2712.84, 0.0301985, 2077.51, 0.57172) Mudanjiang 2798723 (44.58, 129.6) China [37.9869, 6.4, 1740.73, 0.0214356, 2939.92, $\frac{1}{2}$] Acapulco 687608 (16.85, -99.92) Mexico (20.7565, 7, 23210.9, 0.289846, 186.121, 0.432349)

26	Los Angeles	3849297	(34.0194, -118.411)	United States	(24.4617, 6.7, 8375.8, 0.12483, 477.769, 1.20446)	{1994-01-17T12:30:55.390Z, 34.213, -118.537, 18.202, 6.7}
27	Niigata	801 298	(37.92, 139.04)	Japan	<pre>(57.5727, 7.6, 12010.6, 0.185835, 309.858, 0.146181)</pre>	(1964-06-16T04:01:43.570Z, 38.399, 139.29, 15, 7.6)
28	Djibouti	610 608	(11.56, 43.15)	Djibouti	(12.8395, 6.19, 9395.21, 0.146876, 401.034, 0.756904)	(1961-03-11T08:41:08.690Z, 11.64, 43.065, 15, 6.19)
29	Cangzhou	7134062	(38.32, 116.87)	China	$\left\{28.5402, 6.1, 1545.56, 0.0249045, 2525.96, \frac{1}{2}\right\}$	{1967-03-27T08:58:24.910Z, 38.474, 116.608, 29.7, 6.1}
30	Skopje	506 926	{42., 21.47}	North Macedonia	{10.3318, 6, 9368.03, 0.151376, 388.113, 0.652059}	{1963-07-26T04:17:17.770Z, 41.998, 21.345, 15, 6}
31	Istanbul	15569856	{41.1, 29.}	Turkey	{82.4691, 7.6, 5853.53, 0.0957202, 633.14, 0.69744}	{1999-08-17T00:01:39.130Z, 40.748, 29.864, 17, 7.6}
32	Chiba	975 669	(35.61, 140.11)	Japan	(5.39806, 5.9, 27260., 0.471888, 99.7802, 0.626212)	(2021-10-07T13:41:24.528Z, 35.5736, 140.071, 62, 5.9)
33	Taichung	1073635	{24.15, 120.68}	Taiwan	<pre>{52.0416, 7.7, 18505.4, 0.362993, 141.259, 0.646383}</pre>	(1999-09-20T17:47:18.490Z, 23.772, 120.982, 33, 7.7)
34	Bogor	1030720	<pre>(-6.58, 106.79)</pre>	Indonesia	<pre>(9.08081, 6, 12126.9, 0.25302, 218.378, 0.811492)</pre>	(1974-05-17T20:55:11.200Z, -6.513, 106.837, 131, 6)
35	Marrakech	928 850	{31.63, -8.}	Morocco	$\left\{73.8373, 6.8, 1157.31, 0.0249055, 2525.85, \frac{1}{2}\right\}$	{2023-09-08T22:11:01.432Z, 31.0549, -8.3887, 19, 6.8}
36	Hiroshima	1306 589	(34.39, 132.44)	Japan	{35.0403, 6.8, 5138.84, 0.126418, 471.349, 0.532586}	(2001-03-24T06:27:53.580Z, 34.083, 132.526, 50, 6.8)
37	Dali	616 000	(25.7, 100.15)	China	(14.5291, 6.1, 5963.81, 0.15316, 383.199, 0.183802)	(2021-05-21T13:48:37.193Z, 25.7274, 100.008, 9, 6.1)
38	Kupwara	875 564	(34.03, 74.26)	India	{83.7556, 7.6, 5675.08, 0.16567, 351.713, 0.432723}	{2005-10-08T03:50:40.800Z, 34.539, 73.588, 26, 7.6}
39	Padang	1000096	<pre>(-0.95, 100.35)</pre>	Indonesia	(59.4801, 7.6, 11252.7, 0.366966, 139.326, 1.00656)	(2009-09-30T10:16:09.250Z, -0.72, 99.867, 81, 7.6)
40	Bekasi	2663011	<pre>{-6.22, 106.97}</pre>	Indonesia	<pre>(63.8463, 7.5, 7757.62, 0.256598, 214.841, 1.43845)</pre>	{2007-08-08T17:05:04.920Z, -5.859, 107.419, 280, 7.5}
41	Trujillo	682 834	<pre>(-8.11, -79.03)</pre>	Peru	{123.581, 7.9, 5201.09, 0.174831, 331.505, 0.460508}	(1970-05-31T20:23:29.780Z, -9.183, -78.737, 45, 7.9)
42	Tuxtla Gutiérrez	598 710	(16.75, -93.12)	Mexico	(38.4759, 7.2, 10705.9, 0.377068, 134.591, 0.690864)	(1995-10-21T02:38:57.120Z, 16.84, -93.469, 159.3, 7.2)
43	Qinhuangdao	2897605	(39.93, 119.62)	China	(108.259, 7.4, 2143.24, 0.0783177, 781.124, 0.729036)	(1976-07-28T10:45:35.200Z, 39.664, 118.401, 26, 7.4)
44	Puebla	1539859	(19.05, -98.22)	Mexico	(62.388, 7.1, 3234.43, 0.118321, 505.88, 0.450481)	(2017-09-19T18:14:38.090Z, 18.5499, -98.4887, 48, 7.1)
45	Palembang	1708 402	<pre>(-2.99, 104.75)</pre>	Indonesia	{105.897, 7.3, 1779.22, 0.0730676, 839.599, 1.40716}	{2004-07-25T14:35:19.060Z, -2.427, 103.981, 582.1, 7.3}
46	Lincang	2396000	{23.8833, 100.083}	China	(130.889, 7.7, 2925.45, 0.121117, 493.438, 0.47688)	(1988-11-06T13:03:19.340Z, 22.789, 99.611, 17.8, 7.7)
47	Lima	9751717	{-12.0433, -77.0283}	Peru	{86.9064, 7.6, 5271.04, 0.240447, 231.631, 0.115666}	(1974-10-03T14:21:29.100Z, -12.265, -77.795, 13, 7.6)
48	Makhachkala	592 976	{42.98, 47.5}	Russia	<pre>{37.4856, 6.7, 3566.73, 0.202042, 282.253, 0.239923}</pre>	{1970-05-14T18:12:26.610Z, 43.191, 47.14, 15, 6.7}
49	Athens	664 046	(37.98, 23.73)	Greece	(14.7386, 6.2, 7296.04, 0.417553, 117.858, 3.00327)	(1964-07-17T02:34:27.670Z, 38.092, 23.64, 152.7, 6.2)
50	Simao	2496400	{22.78, 100.98}	China	$\{19.6417, 6.04, 2842.11, 0.189314, 303.535, 0.260777\}$	{1971-04-28T15:32:02.450Z, 22.917, 101.101, 10, 6.04}

The grid of filtered earthquake with the filter \mathcal{F}_Z having a relatively low background of Natural Earthquake with respect to the Nuclear ones. The grid has been sorted with respect to the ratio of the Probability Estimation of having a such maximal horizontal shaking ratio to the value of that maximal horizontal shaking ratio.

Azerbaijan under the Turkey influence has experienced a maximal horizontal shaking ratio 15x larger than the one experienced by the neighboring country Armenia under the Russia influence.

USSR has developed very much and very early : heavy machinery, automated guidance of satellites, nuclear submarines and gyrotron \rightarrow automated and autonomous guidance of Nuclear-Powered subterrenes carrying a dozen of nuclear warheads \rightarrow 44 Nuclear Earthquakes near Large Urban Areas subject to a Natural Seismic Hazard. These nuclear warheads should have an underground spatial configuration that minimizes the seismic P-waves with destructive interferences.

51	Yogyakarta	636 660	(-7.78, 110.37)	Indonesia	{21.7978, 6.3, 4199.28, 0.286377, 188.809, 0.0779212}	(2006-05-26T22:53:58.920Z, -7.961, 110.446, 12.5, 6.3)
52	San Salvador	567 698	(13.69, -89.19)	El Salvador	(45.1476, 7.29, 9566.01, 0.685394, 55.0869, 0.579666)	{1982-06-19T06:21:58.540Z, 13.332, -89.387, 73, 7.29}
53	Sulaymaniyah	656 100	(35.55, 45.45)	Iraq	(84.7883, 7.3, 2775.41, 0.20332, 280.262, 0.313066)	(2017-11-12T18:18:17.180Z, 34.9109, 45.9592, 19, 7.3)
54	Chiclayo	524 442	<pre>{-6.76, -79.84}</pre>	Peru	{119.043, 7.6, 2809.27, 0.209267, 271.319, 0.168204}	{1960-11-20T22:01:57.160Z, -6.775, -80.918, 15, 7.6}
55	Salta	535 303	<pre>{-24.79, -65.41}</pre>	Argentina	(21.4139, 6.3, 4351.2, 0.357956, 143.77, 0.0290183)	{2010-02-27T15:45:37.000Z, -24.872, -65.602, 10, 6.3}
56	Villavicencio	516 802	(4.15, -73.64)	Colombia	(22.3349, 6.1, 2523.67, 0.214062, 264.467, 0.120664)	(2023-08-17T17:04:48.717Z, 4.3451, -73.5921, 10, 6.1)
57	Villa Nueva	1500 000	(14.53, -90.59)	Guatemala	(14.4834, 6.2, 7555.41, 0.659756, 59.0898, 1.33316)	{2013-03-25T23:02:12.770Z, 14.487, -90.463, 189, 6.2}
58	Cebu City	922 611	{10.3111, 123.892}	Philippines	<pre>{53.9363, 7.1, 4327.5, 0.37815, 134.098, 0.11675}</pre>	{2013-10-15T00:12:32.050Z, 9.8796, 124.117, 19.04, 7.1}
59	Arequipa	1000 351	<pre>{-16.39, -71.53}</pre>	Peru	(22.867, 6.49, 5909.93, 0.549837, 79.8154, 0.733279)	{1964-01-26T09:09:35.250Z, -16.402, -71.744, 117.7, 6.49
68	Fukuoka	1567 189	(33.59, 130.41)	Japan	(35.3327, 6.6, 3188.94, 0.299134, 179.228, 0.142553)	(2005-03-20T01:53:41.830Z, 33.807, 130.131, 10, 6.6)
61	San Pedro Sula	719 063	(15.47, -88.03)	Honduras	(115.956, 7.5, 2351.88, 0.22524, 249.624, 0.129531)	(1976-02-04T09:01:43.400Z, 15.324, -89.101, 5, 7.5)
62	Malang	820 243	(-7.98, 112.62)	Indonesia	{32.9476, 6.6, 3667.34, 0.356531, 144.493, 0.908451}	{1998-09-28T13:34:30.490Z, -8.194, 112.413, 151.6, 6.6}
63	Bishkek	937 400	(42.87, 74.57)	Kyrgyzstan	(114.912, 7.3, 1511.01, 0.149188, 394.298, 0.78507)	(1992-08-19T02:04:37.410Z, 42.142, 73.575, 27.4, 7.3)
- 64	Seattle	737 015	{47.6205, -122.351}	United States	(37.2038, 6.7, 3620.98, 0.362933, 141.289, 13.7585)	(1965-04-29T15:28:45.750Z, 47.288, -122.406, 64.7, 6.7)
65	Cape Town	3740 026	{-33.93, 18.46}	South Africa	$\left\{113.02, 6.3, 156.204, 0.0160025, 3948.97, \frac{1}{2}\right\}$	{1969-09-29T20:03:30.590Z, -33.268, 19.386, 15, 6.3}
66	Sana	1937 451	{15.38, 44.21}	Yemen	$\left\{77.6513, 6.3, 330.904, 0.0350339, 1786.32, \frac{1}{2}\right\}$	{1982-12-13T09:12:48.050Z, 14.701, 44.379, 5, 6.3}
67	Dongying	1845 900	{37.5, 118.52}	China	$\left\{128.958, 6.9, 477.643, 0.0571851, 1081.84, \frac{1}{2}\right\}$	(1969-07-18T05:24:47.580Z, 38.31, 119.572, 10, 6.9)
68	San Jose del Monte	574 089	{14.8139, 121.045}	Philippines	(97.1509, 7.7, 5310.14, 0.66141, 58.824, 0.135615)	{1990-07-16T07:26:34.610Z, 15.679, 121.172, 25.1, 7.7}
69	Vladivostok	583 673	(43.13, 131.9)	Russia	{118.014, 7.3, 1432.61, 0.180259, 320.497, 0.44388}	(1994-07-21T18:36:31.740Z, 42.34, 132.865, 471.4, 7.3)
76	Kagoshima	596 319	{31.59, 130.56}	Japan	{88.1672, 7.54, 4460.53, 0.576317, 74.1808, 0.317698}	(1961-02-26T18:10:52.290Z, 31.739, 131.475, 35, 7.54)
71	Baotou	2195900	<pre>{40.6, 110.05}</pre>	China	{38.0806, 6, 689.593, 0.0906392, 670.477, 0.567628}	{1996-05-03T03:32:47.110Z, 40.774, 109.661, 26, 6}
72	Utsunomiya	519 025	{36.56, 139.89}	Japan	{113.568, 7.9, 6158.72, 0.840534, 34.6988, 0.365534}	(2011-03-11T06:15:40.280Z, 36.281, 141.111, 42.6, 7.9)
73	Santiago	1142 947	(19.48, -70.69)	Dominican Republic	{33.0728, 6.4, 2296.45, 0.337967, 154.457, 0.127849}	(2003-09-22T04:45:36.240Z, 19.777, -70.673, 10, 6.4)
74	Santiago	6685685	{-33.46, -70.64}	Chile	{103.803, 7.8, 5855.68, 0.885674, 29.3744, 0.714606}	{1971-07-09T03:03:20.680Z, -32.601, -71.076, 60.3, 7.8}
75	Algiers	2239613	{36.77, 3.04}	Algeria	(57.0751, 6.8, 1936.9, 0.317536, 166.745, 0.541484)	{2003-05-21T18:44:20.100Z, 36.964, 3.634, 12, 6.8}

76	Valencia	1408 400	(10.23, -67.98)	Venezuela	<pre>(53.5766, 6.4, 875.085, 0.163904, 355.867, 0.415765)</pre>	{2009-09-12T20:06:25.470Z, 10.709, -67.927, 14, 6.4}
77	Sendari	1086 012	(38.26, 140.89)	Japan	{99.7106, 7.7, 5041., 0.969725, 18.2147, 0.477037}	(1978-06-12T08:14:26.400Z, 38.19, 142.028, 44, 7.7)
78	Kerman	515 114	{30.3, 57.08}	Iran	{75.7024, 7.1, 2196.75, 0.444287, 108.432, 0.926991}	(1981-07-28T17:22:24.620Z, 30.013, 57.794, 33, 7.1)
79	Sholapur	951 558	{17.67, 75.89}	India	$\left\{73.9176, 6.2, 290.071, 0.0632499, 974.986, \frac{1}{2}\right\}$	{1993-09-29T22:25:48.620Z, 18.066, 76.451, 6.8, 6.2}
80	Shizuoka	696 291	{34.98, 138.39}	Japan	{15.6014, 5.97, 3834.18, 0.849934, 33.5873, 0.291903}	{1965-04-19T23:42:00.970Z, 34.848, 138.332, 35, 5.97}
81	Zagreb	792 875	<pre>(45.8, 15.97)</pre>	Croatia	{47.3673, 6.4, 1119.55, 0.249985, 221.455, 0.434596}	(2020-12-29T11:19:54.762Z, 45.4244, 16.2573, 10, 6.4)
82	Zhaotong	5610400	(27.32, 103.72)	China	{34.0497, 6.2, 1367.01, 0.361524, 141.984, 0.222883}	(2014-08-03T08:30:13.570Z, 27.1891, 103.409, 12, 6.2)
83	Bucaramanga	521 857	(7.13, -73.13)	Colombia	(43.9399, 6.78, 3120.92, 0.894648, 28.3073, 0.537566)	(1967-07-29T10:24:25.750Z, 6.747, -73.032, 161.2, 6.78)
84	Izmir	2847691	(38.43, 27.15)	Turkey	<pre>{67.3317, 7, 2205.77, 0.638017, 62.6914, 0.851832}</pre>	(2020-10-30T11:51:27.348Z, 37.8973, 26.7838, 21, 7)
85	Bukavu	870 954	<pre>(-2.51, 28.84)</pre>	Democratic Republic of the Congo	{24.7117, 5.9, 1300.75, 0.393763, 127.285, 0.440964}	{2008-02-03T07:34:12.180Z, -2.296, 28.9, 10, 5.9}
86	Yerevan	1060138	(40.17, 44.52)	Armenia	(123.986, 7.3, 1297.95, 0.407413, 121.746, 1.07618)	(1976-11-24T12:22:18.800Z, 39.121, 44.029, 36, 7.3)
87	Perth	2039 200	{-31.96, 115.84}	Australia	$\left\{124.351, 6.5, 204.505, 0.0654632, 940.92, \frac{1}{2}\right\}$	{1968-10-14T02:58:52.950Z, -31.566, 117.071, 15, 6.5}
88	Xalapa	525 147	{19.53, -96.92}	Mexico	{138.294, 7, 522.866, 0.176366, 328.323, 1.12184}	{1999-06-15T20:42:05.930Z, 18.386, -97.436, 70, 7}
89	Davao	1632991	{7.07306, 125.613}	Philippines	{108.402, 7.5, 2691.07, 0.972378, 17.7492, 0.212059}	(2001-01-01T06:57:04.170Z, 6.898, 126.579, 33, 7.5)
90	Cagayan de Oro	553 966	{8.48222, 124.647}	Philippines	(104.285, 7.3, 1834.65, 0.703619, 52.3837, 3.54757)	(1984-03-05T03:33:50.990Z, 8.147, 123.762, 649.1, 7.3)
91	Dehra Dun	578 420	(30.34, 78.05)	India	{84.8481, 6.8, 876.427, 0.342315, 152.028, 0.181925}	{1991-10-19T21:23:14.300Z, 30.78, 78.774, 10.3, 6.8}
92	Guayaquil	2644891	<pre>{-2.21, -79.9}</pre>	Ecuador	{63.9833, 6.8, 1541.23, 0.658056, 59.3643, 0.626811}	{2023-03-18T17:12:52.481Z, -2.7834, -79.8518, 68, 6.8}
93	Bucharest	2106144	{44.44, 26.1}	Romania	{156.928, 7.5, 1284.1, 0.600616, 69.4074, 0.391661}	(1977-03-04T19:21:54.100Z, 45.772, 26.761, 94, 7.5)
94	Tabriz	1494 998	(38.08, 46.3)	Iran	<pre>{53.6559, 6.4, 872.498, 0.419551, 117.114, 0.223275}</pre>	(2012-08-11T12:23:18.190Z, 38.329, 46.826, 11, 6.4)
95	Naples	967 868	(40.85, 14.27)	Italy	(92.4136, 6.9, 930.096, 0.466172, 101.491, 0.0323955)	(1980-11-23T18:34:53.800Z, 40.914, 15.366, 10, 6.9)
96	Cali	2445281	(3.44, -76.52)	Colombia	{77.6162, 6.8, 1047.36, 0.546152, 80.639, 0.0671484}	(1994-06-06T20:47:40.530Z, 2.917, -76.057, 12.1, 6.8)
97	Lilongwe	674 448	(-13.97, 33.8)	Malawi	{73.2735, 6.2, 295.193, 0.154456, 379.7, 0.721772}	{1989-03-10T21:49:45.860Z, -13.702, 34.42, 30.3, 6.2}
98	Barcelona	620 555	{10.13, -64.72}	Venezuela	(144.657, 7, 477.885, 0.271222, 201.35, 0.793837)	{1997-07-09T19:24:13.170Z, 10.598, -63.486, 19.9, 7}
99	Qom	959 116	(34.65, 50.95)	Iran	(150.467, 7, 441.69, 0.256837, 214.608, 0.392226)	(1962-09-01T19:20:41.480Z, 35.656, 49.843, 15, 7)
100) Hailakandi	659 260	(24.67, 92.57)	India	(32.5993, 6, 940.986, 0.558056, 78.0144, 0.248874)	(1984-12-30T23:33:37.720Z, 24.641, 92.891, 22.6, 6)

The grid of filtered earthquake with the filter \mathcal{F}_Z having a relatively low background of Natural Earthquake with respect to the Nuclear ones. The grid has been sorted with respect to the ratio of the Probability Estimation of having a such maximal horizontal shaking ratio to the value of that maximal horizontal shaking ratio.

Russia may have hundreds of nuclear-powered underground nuclear missiles with fully automatic and autonomous guidance (measuring wheel, artificial horizon and compass for 3D guidance). These underground missiles may take between 2 and 15 years to reach their planned underground destination with the following speed :

(10)
$$v = \eta_G \frac{4P_{reactor}}{\pi R^2 H_{vap}} \cong 0.5 \times \frac{4 \times 190 \times 10^6}{\pi \times (15/4)^2 \times 25 \times 10^9} \times 3600 \cong 1.24 \ m/hour$$

The underground version of a nuclear submarine would be much longer because of a large heat dissipation constraint and would be significantly thinner to avoid an unnecessary energy consuming vaporization of rocks and to avoid a very energy

101	Yokohama	3732616	{35.47, 139.62}	Japan	{55.1514, 6.7, 1647.73, 0.999925, 6.70637, 0.637489}	(1987-12-17T02:08:19.920Z, 35.362, 140.214, 62.9, 6.7)
102	San Francisco	873965	(37.7599, -122.437	} United States	{94.3482, 6.9, 892.345, 0.559663, 77.6678, 1.22429}	(1989-10-18T00:04:15.190Z, 37.0362, -121.88, 17.214, 6.9
103	Santo Domingo	1111838	{18.48, -69.91}	Dominican Republic	{81.7992, 6.9, 1187.14, 0.803796, 39.116, 0.143609}	{1984-06-24T11:17:11.920Z, 17.984, -69.338, 23.9, 6.9}
104	Almaty	1797431	<pre>{43.32, 76.92}</pre>	Kazakhstan	{147.001, 7.1, 582.588, 0.394656, 126.912, 0.71283}	{1978-03-24T21:05:48.200Z, 42.839, 78.606, 33, 7.1}
105	Veracruz	552156	{19.19, -96.14}	Mexico	{113.399, 6.8, 490.662, 0.338002, 154.437, 0.861987}	(1973-08-28T09:50:40.000Z, 18.267, -96.598, 84, 6.8)
106	Siliguri	513264	{26.73, 88.42}	India	{114.238, 6.9, 608.661, 0.425644, 114.885, 0.709703}	{2011-09-18T12:40:51.830Z, 27.73, 88.155, 50, 6.9}
107	Diyarbakır	930266	{37.92, 40.23}	Turkey	{75.1713, 6.7, 886.942, 0.620979, 65.6634, 1.34675}	{1975-09-06T09:20:10.900Z, 38.474, 40.723, 26, 6.7}
108	Quetta	1172 000	(30.21, 67.02)	Pakistan	(67.8844, 6.7, 1087.58, 0.805139, 38.9517, 0.231393)	(1975-10-03T05:14:23.300Z, 30.251, 66.315, 11, 6.7)
109	Yibin	5 349 299	{28.77, 104.57}	China	{79.8425, 6.8, 989.763, 0.738077, 47.551, 0.287824}	{1974-05-10T19:25:15.000Z, 28.243, 104.015, 11, 6.8}
110	Tbilisi	1118035	{41.72, 44.79}	Georgia	<pre>{95.88, 6.8, 686.347, 0.517569, 87.3958, 0.128537}</pre>	{1988-12-07T07:41:24.200Z, 40.987, 44.185, 5.4, 6.8}
111	Kabul	3678034	(34.53, 69.17)	Afghanistan	(34.9985, 6, 816.396, 0.675383, 56.6206, 0.366645)	(1999-02-11T14:08:51.680Z, 34.259, 69.364, 33, 6)
112	Cochabamba	632013	{-17.38, -66.17}	Bolivia	{61.6264, 6.3, 525.372, 0.447241, 107.458, 1.8594}	{2019-03-15T05:03:50.060Z, -17.8744, -65.9072, 359, 6.3}
113	Fresno	542107	(36.7827, -119.794) United States	(76.7668, 6.7, 850.459, 0.770489, 43.2832, 0.75939)	(1983-05-02T23:42:38.060Z, 36.2317, -120.312, 9.578, 6.7
114	Medan	2210625	{3.59, 98.67}	Indonesia	{50.5491, 6.3, 780.861, 0.736153, 47.8122, 0.989378}	{2006-12-01T03:58:21.650Z, 3.39, 99.079, 204, 6.3}
115	Sapporo	1951523	{43.06, 141.34}	Japan	(63.5249, 6.6, 986.534, 0.981702, 15.9223, 0.198738)	{2018-09-05T18:07:59.150Z, 42.6861, 141.929, 35, 6.6}
116	Palermo	673735	(38.12, 13.36)	Italy	{41.5804, 6, 578.393, 0.579257, 73.5843, 0.0210651}	{2002-09-06T01:21:28.600Z, 38.381, 13.701, 5, 6}
117	Bacolod City	561875	{10.6667, 122.95}	Philippines	{79.3467, 6.7, 796.053, 0.815941, 37.6392, 0.137057}	{2012-02-06T03:49:12.520Z, 9.999, 123.206, 11, 6.7}
118	Mandalay	1 2 2 5 1 3 3	(21.98, 96.09)	Myanmar	(115.903, 6.8, 469.692, 0.51054, 89.1653, 0.103007)	{2012-11-11T01:12:38.870Z, 23.005, 95.885, 13.7, 6.8}
119	Hachioji	576768	{35.66, 139.33}	Japan	{37.7299, 6.1, 884.357, 0.999991, 5.48702, 0.532597}	{1968-07-01T10:45:12.550Z, 35.999, 139.348, 60.6, 6.1}
120	Longnan	2567718	(33.4, 104.917)	China	(101.003, 6.9, 778.63, 0.888614, 29.0258, 0.603218)	(1976-08-16114:06:45.900Z, 32.752, 104.157, 16, 6.9)
121	Barquisimeto	1995770	(10.05, -69.3)	Venezuela	(49.8304, 6.1, 507.003, 0.589414, 71.5642, 1.02254)	{1975-04-05T09:34:36.600Z, 10.04, -69.755, 33, 6.1}
122	Hamamatsu	793904	{34.72, 137.73}	Japan	{138.586, 7.2, 825.205, 0.998182, 10.0955, 1.67294}	{1984-01-01109:03:38.8502, 33.683, 136.894, 368.1, 7.2}
123	Dar es Salaam	4715000	{-6.82, 39.28}	Tanzanta	(81.8783, 6, 149.164, 0.190189, 301.981, 0.70149)	(2020-08-12T17:13:16.180Z, -7.3327, 39.8126, 17.55, 6)
124	Denizli	511751	(37.78, 29.08)	Turkey	{152.638, 7.23, 728.913, 0.931356, 23.7807, 0.745804}	{1970-03-28T21:02:26.710Z, 39.098, 29.57, 25, 7.23}
125	Irkutsk	578073	(52.33, 104.24)	Russia	(80.5894, 6.3, 307.216, 0.394494, 126.979, 0.550529)	(2008-08-27T01:35:32.150Z, 51.607, 104.158, 16, 6.3)
- 126	Pimpri	1729 320	{18.62, 73.8}	India	{134.621, 6.54, 191.325, 0.246533, 225.048, 0.295643}	(1967-12-10T22:51:23.470Z, 17.412, 73.885, 15, 6.54)
127	Guangyuan	3127300	(32.43, 105.87)	China	(44.3444, 6.1, 640.209, 0.851628, 33.3874, 0.732127)	(2008-05-25108:21:49.9902, 32.56, 105.423, 18, 6.1)
128	Wahran	645984	{35.7, -0.62}	Algeria	(50.5935, 5.9, 310.321, 0.414586, 118.977, 0.407349)	{1994-08-18T01:13:05.780Z, 35.52, -0.106, 8.7, 5.9}
129	Jand	1883556	(33.43, 72.02)	Pakistan	{65.5226, 6.3, 464.748, 0.687594, 54.7546, 0.323546}	{1992-05-20112:20:32.850Z, 33.377, 71.317, 16.3, 6.3}
130	Panzhihua	1115 800	{26.58, 101.68}	China	(43.0597, 6, 539.333, 0.819691, 37.1869, 0.226909)	(2008-08-30T08:30:53.010Z, 26.241, 101.889, 11, 6)
131	Nagoya	2331078	{35.15, 136.91}	Japan	{105.824, 6.8, 563.42, 0.982001, 15.8569, 0.0384461}	{1961-08-19105:33:35.6302, 36.088, 136.712, 15, 6.8}
132	Bandar Lampung	879651	{-5.44, 105.27}	Indonesta	(119.399, 6.9, 557.184, 0.988021, 14.3977, 0.166524)	(1994-02-1511/:07:43.8002, -4.967, 104.302, 23.1, 6.9)
133	Jiangyou	887000	{31.77, 104.76}	Cn1na To documento	(97.0441, 6.7, 532.184, 0.999229, 8.88705, 1.24978)	{1976-08-23103:30:07.6002, 32.492, 104.181, 33, 6.7}
134	Surabaya	3457409	{-7.24, 112.74}	Indonesia	{153.655, 7, 423.555, 0.818994, 37.2708, 1.21203}	{2023-04-14109:55:45.2202, -6.0413, 112.048, 597, 7}
135	Asngabat	1031992	(37.95, 58.38)	Turkmenistan	(100.925, 6.5, 310.46, 0.630586, 63.9705, 0.28877)	{1997-02-04110:37:47.140Z, 37.661, 57.291, 10, 6.5}
130	snache	851374	{38.42, 11.25}	China	{154.454, 7.04, 459.622, 0.934194, 23.4118, 0.473885}	{1961-04-13116:34:44.5902, 39.762, 77.712, 35, 7.04}
137	Hermosillo	884 342	{29.07, -110.97}	Mexico	(150.607, 6.6, 175.513, 0.368672, 138.509, 0.687567)	{2006-01-04108:32:32.4002, 28.164, -112.117, 14, 6.6}
138	San Cristobal	645925	{7.77, -72.25}	Venezueta	{46.2499, 6, 467.497, 0.999992, 5.40149, 0.0395085}	{1994-05-31117:41:55.5802, 7.414, -72.033, 11.6, 6}
139	Bogota	8034649	{4.63, -74.09}	Colombia	{49.1811, 5.9, 328.4, 0.791092, 40.6833, 0.0933564}	{2008-05-24119:20:42.4902, 4.33, -73.764, 8.9, 5.9}
140	Malaga	560631	{36.72, -4.42}	spann	{82.7436, 6.3, 291.428, 0.735123, 47.9525, 10.4517}	(2010-04-11122:08:12.7902, 36.965, -3.542, 609.8, 6.3)
141	Shinezi	635 666	{44.3,80.03}	China	{58.7222, 6, 289.998, 0.753272, 45.5203, 0.307046}	{2016-12-08105:15:04.0002, 43.8229, 86.3451, 17.55, 6}
142	Shiraz	1565572	(29.63, 52.57)	Iran	(59.5523, 6.1, 354.979, 0.994456, 12.2626, 0.316327)	{1994-03-01103:49:00.830Z, 29.096, 52.617, 12.9, 6.1}
145	Leshan	3 2 3 5 7 5 9	{29.57, 103.74}	China	{116.0/5, 6.6, 295.4/8, 0.8/4619, 50.6802, 0.559684}	{2013-04-20100:02:47.5402, 30.308, 102.888, 14, 6.6}
144	There	1 303 700	(32.33, -117.02)	nex1co	(112.001, 0.0, 517.024, 0.96098, 19.6395, 0.662309)	(1900-04-09102:20:30.3902, 33.1/98, -110.103, 10, 0.6)
145	Znangye	1 303 700	{30.50, 100.45}	China	{142./15, 0.0, 195.400, 0.015805, 00.5833, 0.326469}	{ZUZZ-U1-U1111145:50.6092, 37.8283, 101.29, 13, 6.6}
146	rangsnañ	01430/	{33.63, 115.96}	China	(100.013, 0.3, 81.3501, 0.280825, 133.248, 0.353801)	(1910-11-19113:53:00.0002, 39.444, 117.688, 15, 6.3)
147	Taixing	1 197 000	{32.17, 120.}	China	$\{152.886, 6, 42.7825, 0.137125, 431.936, \frac{1}{2}\}$	{1984-05-21T15:38:58.730Z, 32.688, 121.509, 18.2, 6}
148	Rome	2873494	<pre>{41.89, 12.5}</pre>	Italy	{118.664, 6.6, 282.725, 0.966691, 18.726, 0.307324}	{2016-10-30T06:40:18.670Z, 42.8621, 13.0961, 8, 6.6}
149	Konya	1220795	(37.88, 32.48)	Turkey	{130.728, 6.5, 185.038, 0.655783, 59.7331, 0.0886322}	{2002-02-03T07:11:28.410Z, 38.573, 31.271, 5, 6.5}
150	Semarang	1555984	{-6.97, 110.42}	Indonesia	{131.867, 6.6, 228.944, 0.847477, 33.8773, 1.20315}	{1994-09-28T16:39:51.670Z, -5.786, 110.352, 637.5, 6.6}

consuming vaporization of rocks. The nuclear-powered rear propeller of the underground version of a nuclear submarine would be replaced by a nuclear-powered forward gyrotron powered by 3 to 8 nuclear reactors about.

To conclude, a reduction of the empirical detection factor $\alpha \left(M_{w,0}, M_w^{min}, M_w^{max} \right) \rightarrow 1$ creates an anomaly enlargement up to 14.5- σ from a statistical excess of the maximal horizontal shaking ratio of the filtered earthquakes with the filter \mathcal{F}_Z and with a Probability Estimation Cutoff of < 0.43. Since, the network of seismic stations is much more dense around cities, the earthquakes are better detected around cities than around random positions. Therefore, a realistic anomaly is between 8.4- σ and 14.5- σ from a statistical excess of the maximal horizontal shaking ratio of the filtered earthquakes with the filter \mathcal{F}_Z and with a Probability Estimation Cutoff of < 0.43. In the worst case, if we significantly relax the criteria for having enough seismic data with respect to a sufficiently large background of the recent smaller earthquakes $(N_i \geq 0.5 \times 10^{\left(M_w^{min}-4.0\right)} > 39)$, there is a small anomaly reduction down to 6.5- σ from a statistical excess of the maximal horizontal shaking ratio of the filtered earthquakes with the filter \mathcal{F}_Z and with a Probability Estimation Cutoff of the filtered earthquakes with the filter \mathcal{F}_Z and with a Probability Estimation Cutoff of down to 6.5- σ from a statistical excess of the maximal horizontal shaking ratio of the filtered earthquakes with the filter \mathcal{F}_Z and with a Probability Estimation Cutoff of the filtered earthquakes with the filter \mathcal{F}_Z and with a Probability Estimation Cutoff of the filtered earthquakes with the filter \mathcal{F}_Z and with a Probability Estimation Cutoff of the filtered earthquakes with the filter \mathcal{F}_Z and with a Probability Estimation Cutoff of the filtered earthquakes with the filter \mathcal{F}_Z and with a Probability Estimation Cutoff of the filtered earthquakes with the filter \mathcal{F}_Z and with a Probability Estimation Cutoff of the filtered earthquakes with the filter \mathcal{F}_Z and with a Probability Estimation Cutoff of the filtered earthquakes with the latitude ranging between 25° and 55

101	Yokohama	3732616	(35.47, 139.62)	Japan	{55.1514, 6.7, 1647.73, 0.999925, 6.70637, 0.637489}	(1987-12-17T02:08:19.920Z, 35.362, 140.214, 62.9, 6.7)
102	San Francisco	873965	{37.7599, -122.437}	United States	{94.3482, 6.9, 892.345, 0.559663, 77.6678, 1.22429}	{1989-10-18T00:04:15.190Z, 37.0362, -121.88, 17.214, 6.9}
103	Santo Domingo	1111838	{18.48, -69.91}	Dominican Republic	{81.7992, 6.9, 1187.14, 0.803796, 39.116, 0.143609}	{1984-06-24T11:17:11.920Z, 17.984, -69.338, 23.9, 6.9}
104	Almaty	1797431	<pre>{43.32, 76.92}</pre>	Kazakhstan	{147.001, 7.1, 582.588, 0.394656, 126.912, 0.71283}	{1978-03-24T21:05:48.200Z, 42.839, 78.606, 33, 7.1}
105	Veracruz	552156	{19.19, -96.14}	Mexico	{113.399, 6.8, 490.662, 0.338002, 154.437, 0.861987}	(1973-08-28T09:50:40.000Z, 18.267, -96.598, 84, 6.8)
106	Siliguri	513264	{26.73, 88.42}	India	{114.238, 6.9, 608.661, 0.425644, 114.885, 0.709703}	{2011-09-18T12:40:51.830Z, 27.73, 88.155, 50, 6.9}
107	Diyarbakır	930266	{37.92, 40.23}	Turkey	{75.1713, 6.7, 886.942, 0.620979, 65.6634, 1.34675}	{1975-09-06T09:20:10.900Z, 38.474, 40.723, 26, 6.7}
108	Quetta	1172000	(30.21, 67.02)	Pakistan	{67.8844, 6.7, 1087.58, 0.805139, 38.9517, 0.231393}	<pre>{1975-10-03T05:14:23.300Z, 30.251, 66.315, 11, 6.7}</pre>
109	Yibin	5 349 299	{28.77, 104.57}	China	{79.8425, 6.8, 989.763, 0.738077, 47.551, 0.287824}	{1974-05-10T19:25:15.000Z, 28.243, 104.015, 11, 6.8}
110	Tbilisi	1118035	{41.72, 44.79}	Georgia	<pre>{95.88, 6.8, 686.347, 0.517569, 87.3958, 0.128537}</pre>	{1988-12-07T07:41:24.200Z, 40.987, 44.185, 5.4, 6.8}
111	Kabul	3678034	{34.53, 69.17}	Afghanistan	{34.9985, 6, 816.396, 0.675383, 56.6206, 0.366645}	<pre>(1999-02-11T14:08:51.680Z, 34.259, 69.364, 33, 6)</pre>
112	Cochabamba	632013	$\{-17.38, -66.17\}$	Bolivia	<pre>{61.6264, 6.3, 525.372, 0.447241, 107.458, 1.8594}</pre>	{2019-03-15T05:03:50.060Z, -17.8744, -65.9072, 359, 6.3}
113	Fresno	542107	(36.7827, -119.794)	United States	<pre>(76.7668, 6.7, 850.459, 0.770489, 43.2832, 0.75939)</pre>	{1983-05-02T23:42:38.060Z, 36.2317, -120.312, 9.578, 6.7}
114	Medan	2210625	{3.59, 98.67}	Indonesia	{50.5491, 6.3, 780.861, 0.736153, 47.8122, 0.989378}	{2006-12-01T03:58:21.650Z, 3.39, 99.079, 204, 6.3}
115	Sapporo	1951523	{43.06, 141.34}	Japan	{63.5249, 6.6, 986.534, 0.981702, 15.9223, 0.198738}	{2018-09-05T18:07:59.150Z, 42.6861, 141.929, 35, 6.6}
116	Palermo	673735	{38.12, 13.36}	Italy	{41.5804, 6, 578.393, 0.579257, 73.5843, 0.0210651}	{2002-09-06T01:21:28.600Z, 38.381, 13.701, 5, 6}
117	Bacolod City	561875	{10.6667, 122.95}	Philippines	{79.3467, 6.7, 796.053, 0.815941, 37.6392, 0.137057}	{2012-02-06T03:49:12.520Z, 9.999, 123.206, 11, 6.7}
118	Mandalay	1225133	{21.98, 96.09}	Myanmar	{115.903, 6.8, 469.692, 0.51054, 89.1653, 0.103007}	{2012-11-11T01:12:38.870Z, 23.005, 95.885, 13.7, 6.8}
119	Hachiōji	576768	{35.66, 139.33}	Japan	{37.7299, 6.1, 884.357, 0.999991, 5.48702, 0.532597}	(1968-07-01T10:45:12.550Z, 35.999, 139.348, 60.6, 6.1)
120	Longnan	2567718	{33.4, 104.917}	China	{101.003, 6.9, 778.63, 0.888614, 29.0258, 0.603218}	(1976-08-16T14:06:45.900Z, 32.752, 104.157, 16, 6.9)
121	Barquisimeto	1995770	{10.05, -69.3}	Venezuela	<pre>{49.8304, 6.1, 507.003, 0.589414, 71.5642, 1.02254}</pre>	{1975-04-05T09:34:36.600Z, 10.04, -69.755, 33, 6.1}
122	Hamamatsu	793904	{34.72, 137.73}	Japan	{138.586, 7.2, 825.205, 0.998182, 10.0955, 1.67294}	{1984-01-01T09:03:38.850Z, 33.683, 136.894, 368.1, 7.2}
123	Dar es Salaam	4715 000	<pre>{-6.82, 39.28}</pre>	Tanzania	{81.8783, 6, 149.164, 0.190189, 301.981, 0.70149}	(2020-08-12T17:13:16.180Z, -7.3327, 39.8126, 17.55, 6)
124	Denizli	511751	{37.78, 29.08}	Turkey	{152.638, 7.23, 728.913, 0.931356, 23.7807, 0.745804}	{1970-03-28T21:02:26.710Z, 39.098, 29.57, 25, 7.23}
125	Irkutsk	578073	{52.33, 104.24}	Russia	{80.5894, 6.3, 307.216, 0.394494, 126.979, 0.550529}	(2008-08-27T01:35:32.150Z, 51.607, 104.158, 16, 6.3)
- 126	Pimpri	1729 320	{18.62, 73.8}	India	{134.621, 6.54, 191.325, 0.246533, 225.048, 0.295643}	{1967-12-10T22:51:23.470Z, 17.412, 73.885, 15, 6.54}
127	Guangyuan	3 127 300	{32.43, 105.87}	China	{44.3444, 6.1, 640.209, 0.851628, 33.3874, 0.732127}	{2008-05-25T08:21:49.990Z, 32.56, 105.423, 18, 6.1}
128	Wahran	645984	{35.7, -0.62}	Algeria	{50.5935, 5.9, 310.321, 0.414586, 118.977, 0.407349}	{1994-08-18T01:13:05.780Z, 35.52, -0.106, 8.7, 5.9}
129	Jand	1883556	{33.43, 72.02}	Pakistan	{65.5226, 6.3, 464.748, 0.687594, 54.7546, 0.323546}	{1992-05-20T12:20:32.850Z, 33.377, 71.317, 16.3, 6.3}
130	Panzhihua	1115 800	{26.58, 101.68}	China	<pre>{43.0597, 6, 539.333, 0.819691, 37.1869, 0.226909}</pre>	{2008-08-30T08:30:53.010Z, 26.241, 101.889, 11, 6}
131	Nagoya	2331078	{35.15, 136.91}	Japan	{105.824, 6.8, 563.42, 0.982001, 15.8569, 0.0384461}	{1961-08-19T05:33:35.630Z, 36.088, 136.712, 15, 6.8}
132	Bandar Lampung	879651	{-5.44, 105.27}	Indonesia	{119.399, 6.9, 557.184, 0.988021, 14.3977, 0.166524}	{1994-02-15T17:07:43.800Z, -4.967, 104.302, 23.1, 6.9}
133	Jiangyou	887000	{31.77, 104.76}	China	<pre>{97.0441, 6.7, 532.184, 0.999229, 8.88705, 1.24978}</pre>	{1976-08-23T03:30:07.600Z, 32.492, 104.181, 33, 6.7}
134	Surabaya	3 457 409	<pre>{-7.24, 112.74}</pre>	Indonesia	{153.655, 7, 423.555, 0.818994, 37.2708, 1.21203}	{2023-04-14T09:55:45.220Z, -6.0413, 112.048, 597, 7}
135	Ashgabat	1031992	{37.95, 58.38}	Turkmenistan	{100.925, 6.5, 310.46, 0.630586, 63.9705, 0.28877}	{1997-02-04T10:37:47.140Z, 37.661, 57.291, 10, 6.5}
136	Shache	851374	{38.42, 77.25}	China	{154.454, 7.04, 459.622, 0.934194, 23.4118, 0.473885}	{1961-04-13T16:34:44.590Z, 39.762, 77.712, 35, 7.04}
137	Hermosillo	884342	{29.07, -110.97}	Mexico	{150.607, 6.6, 175.513, 0.368672, 138.509, 0.687567}	{2006-01-04T08:32:32.400Z, 28.164, -112.117, 14, 6.6}
138	San Cristobal	645925	{ 7.77 , - 72.25 }	Venezuela	{46.2499, 6, 467.497, 0.999992, 5.40149, 0.0395085}	{1994-05-31T17:41:55.580Z, 7.414, -72.033, 11.6, 6}
139	Bogotá	8 0 3 4 6 4 9	{ 4.63 , -74.09}	Colombia	<pre>{49.1811, 5.9, 328.4, 0.791092, 40.6833, 0.0933564}</pre>	{2008-05-24T19:20:42.490Z, 4.33, -73.764, 8.9, 5.9}
140	Málaga	560631	{36.72, -4.42}	Spain	<pre>{82.7436, 6.3, 291.428, 0.735123, 47.9525, 10.4517}</pre>	(2010-04-11T22:08:12.790Z, 36.965, -3.542, 609.8, 6.3)
141	Shihezi	635 000	{44.3, 86.03}	China	{58.7222, 6, 289.998, 0.753272, 45.5203, 0.307046}	{2016-12-08T05:15:04.600Z, 43.8229, 86.3451, 17.55, 6}
142	Shiraz	1565572	(29.63, 52.57)	Iran	{59.5523, 6.1, 354.979, 0.994456, 12.2626, 0.316327}	{1994-03-01T03:49:00.830Z, 29.096, 52.617, 12.9, 6.1}
143	Leshan	3 235 759	{29.57, 103.74}	China	{116.075, 6.6, 295.478, 0.874619, 30.6802, 0.339684}	{2013-04-20T00:02:47.540Z, 30.308, 102.888, 14, 6.6}
144	Tijuana	1696923	{32.53, -117.02}	Mexico	{112.061, 6.6, 317.024, 0.96098, 19.6395, 0.662309}	(1968-04-09T02:28:58.390Z, 33.1798, -116.103, 10, 6.6)
145	Zhangye	1 303 700	{38.93, 100.45}	China	{142.713, 6.6, 195.466, 0.615865, 66.5833, 0.326469}	{2022-01-07T17:45:30.809Z, 37.8283, 101.29, 13, 6.6}
146	Fangshan	814367	{39.69, 115.96}	China	{150.619, 6.3, 87.9507, 0.280825, 193.248, 0.353801}	{1976-11-15T13:53:00.600Z, 39.444, 117.688, 15, 6.3}
147	Taixing	1 197 000	{32.17, 120.}	China	$\left\{152.886, 6, 42.7825, 0.137125, 431.936, \frac{1}{2}\right\}$	{1984-05-21T15:38:58.730Z, 32.688, 121.509, 18.2, 6}
148	Rome	2873494	{41.89, 12.5}	Italy	{118.664, 6.6, 282.725, 0.966691, 18.726, 0.307324}	{2016-10-30T06:40:18.670Z, 42.8621, 13.0961, 8, 6.6}
149	Konya	1220795	(37.88, 32.48)	Turkey	{130.728, 6.5, 185.038, 0.655783, 59.7331, 0.0886322}	{2002-02-03T07:11:28.410Z, 38.573, 31.271, 5, 6.5}
150	Semarang	1555984	<pre>{-6.97, 110.42}</pre>	Indonesia	{131.867, 6.6, 228.944, 0.847477, 33.8773, 1.20315}	{1994-09-28T16:39:51.670Z, -5.786, 110.352, 637.5, 6.6}

the empirical detection factor $\alpha \left(M_{w,0}, M_w^{min}, M_w^{max} \right) = 1.68$, we still have a flat distribution for the Probability Estimation but there is an unwanted anomaly enlargement up to 1.6- σ .

Remark 01 : A total of 17 671 earthquakes have been considered for the building of the filter \mathcal{F}_Z with a low background a Natural Earthquakes with respect to the Nuclear ones: 5.9 – 7.9 M_w , from 1st January 1960 to 15th September 2023, $R_i < 160 \ km$ with the index *i* spanning the 1230 largest cities and having a maximal horizontal shaking ratio $10^{M_w,i}/R_i^2$ for each specific city *i* satisfying these filtering ranges.

Remark 02 : A total of 440 351 earthquakes have been considered for the background of the recent smaller earthquakes around the 1230 largest cities ($M_w \ge M_{w,0} = 4.0, 1980\text{-}2022, R_i < R_{max} = 160 \text{ km}$, Gutenberg-Richter law and $\Delta N_i \ge 10^{5.9-4.0} > 79$ in the case of an absence of filtered earthquakes with the filter \mathcal{F}_Z).

References

[1] A. Zaganidis, "Mathematica Notebooks, Pictures and Source Files: A $8.4-\sigma$ anomaly is found from the 189 filtered earthquakes with the maximal horizontal shaking ratio $10^{M_w}/R_{EPI}^2$ around 371 cities after the year 1959, over 393 cities having enough seismic data and among a total of 1230 largest cities." https://drive.google.com/drive/folders/1Rid5ZDhbUKgQ t1XHSdVGLiYODgAv5OAU?usp=share_link.

- [2] A. Zaganidis, "A Specific Magnitude Budget for the Detection of 44 Nuclear Earthquakes near Large Urban Areas subject to a Natural Seismic Hazard.." https://drive.google.com /drive/folders/1Rid5ZDhbUKgQt1XHSdVGLiYODgAv50AU?usp=share_link.
- [3] USGS. https://earthquake.usgs.gov/earthquakes/search/.
- [4] Wikipedia. https://en.wikipedia.org/wiki/United_States_Geological_Survey.
- [5] Wikipedia. https://en.wikipedia.org/wiki/Earthquake.
- [6] Wikipedia. https://en.wikipedia.org/wiki/Epicentral_distance.
- [7] Wikipedia. https://en.wikipedia.org/wiki/Gutenberg%E2%80%93Richter_law.
- [8] Wikipedia. https://en.wikipedia.org/wiki/List_of_costliest_earthquakes.
- [9] Wikipedia. https://en.wikipedia.org/wiki/Estimator.
- [10] Wikipedia. https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule.
- [11] Wikipedia. https://en.wikipedia.org/wiki/List_of_largest_cities.
- [12] Wikipedia. https://en.wikipedia.org/wiki/Subterrene.
- [13] Wikipedia. https://en.wikipedia.org/wiki/Gyrotron.
- [14] Wikipedia. https://en.wikipedia.org/wiki/Quaise.
- [15] E. F. Plinski, "Gorky's gyrotron heroes," 01 2020.
- [16] Wikipedia. https://en.wikipedia.org/wiki/Russian_submarine_Belgorod_(K-329).
- [17] Wikipedia. https://en.wikipedia.org/wiki/OK-650_reactor.