Existing a prime in interval n^2 and $n^2 + \epsilon n$

Hashem sazegar School of Mathematics, Azad university branch of Mashhad, Mashhad, Iran E-mail:h.sazegar@gmail.com

1

Abstract

Oppermance' conjecture states that there is a prime number between n^2 and $n^2 + n$ for every positive integer *n*,first we show that , All integer numbers between x^2 and $x^2 + \epsilon x$ can be written as $x^2 + i > 4p$ that $1 \le i \le \epsilon x$ and $p = (x - m - 2)^2 + j$ in which j is a number in intervals $1 \le j \le \epsilon(x - m - 2)$, and then we prove generalization of Oppermance' conjecture i.e there is a prime number in interval n^2 and $n^2 + \epsilon n$ such that $0 < \epsilon \le 1$.

Keywords: Bertrand-chebyshev theorem, landu's problems, Goldbach's conjecture, twin prime, Legendre's conjecture, oppermanc's conjecture

1. Introduction

Bertrand's postulate state for every positive integer n, there is always at least one prime p, such that n . This was first proved by chebyshev in 1850which is why postulate is also called the Bertrand-chebyshev theorem.

Legendre's conjecture states that there is a prime between n^2 and $(n + 1)^2$ for every positive integer *n*, which is one of the four Landu's problems. The rest of these four basic problems are:

(i) Twin prime conjecture : there are infinitely many primes p such that p+2 is a prime.

(*ii*) Goldbach's conjecture: every even integer n > 2 can be written as the sum of two primes.

(*iii*) Are there infinitely many primes p such that p-1 is a perfect square? problems(i),(ii),(iii) are open till date. Legendre's conjecture is proved(in[8])

Theorem: there is at least a prime between n^2 and $n^2 + \epsilon n$, for every positive integer n such that $0 < \epsilon \leq 1$ is constant arbitrary number. we prove it by induction that if there is at least a prime between all $(x - 1)^2$ and $(x - 1)^2 + \epsilon(x - 1)$, then there is a prime between x^2 and $x^2 + \epsilon x$.

To proceed to this proof, firstly we use the following Lemmas:

2.Lemmas :

In this section , we present several lemmas which are used in the proof of our main theorem.

Lemma 2.1:for a large x,All integer numbers between x^2 and $x^2 + \epsilon x$ can be written as $x^2 + i > 4p$ that $1 \le i \le \epsilon x$ and $p = (x - m - 2)^2 + j$ in which j is a number in intervals $1 \le j \le \epsilon (x - m - 2)$, we Assume that m = x/2 if x is even and m = (x + 1)/2 if x is odd and p is prime.

Proof:By induction there is a prime in intervals k^2 and $k^2 + \epsilon k$

that k = a, (a + 1), ..., (x - 1) (for example if $\epsilon = 1$ so a=2), since m = x/2, if x is even or m = (x + 1)/2 if x is odd, so always $p > (x - 4)^2/4$, for a large x, hence $x^2 + i > 4p$, that $1 \le i \le \epsilon x$

Lemma 2.2: If l to be the number of $3 \le q < x$, (q is prime) are in equation

 $x^2 + i = tq$ (is odd)that $1 \le i \le \epsilon x$ so $l < \frac{\epsilon x}{2q}$, for some $3 \le q < x$ Proof: if $q \ge 3$, we put i = j + 2ql $(j \ge 1)$, so $j + 2ql \le \epsilon x$, then $l < \frac{\epsilon x}{2q}$, in this case l is the number of $q \ge 3$ that $x^2 + i = tq$ is odd. Lemma 2.3: If f to be the number of N > x are in $x^2 + i = qN$ that these numbers are odd and $1 \le i \le \epsilon x$ So: for g = 3

$$f \leq \frac{\epsilon x}{2 \times 3}$$
 (1)

for g = 5

$$f \le \frac{\epsilon x (1-1/3)}{2 \times 5} \ (2)$$

for g = 7

$$f \le \frac{\epsilon x (1 - 1/3 - 1/5)}{2 \times 7} (3)$$

.

we continue this method to reach 1 - 1/3 - 1/5 - ...1/29 = almost0 (4) Proof:If N > x and $x^2 + i = qN$ to be odd ,since $1 \le i \le \epsilon x$ so $x^2/q \le N \le (x^2 + \epsilon x)/q$, in Which $3 \le q < x$ are primes.Since the distance of between two odd numbers should be 2,so If q = 3, the number of such N odd number is:

$$f \leq \frac{\epsilon x}{2 \times 3}$$

but since N > x, only one N > x could be in $x^2 + i = qN$, so for q = 5,

$$f \le \frac{\epsilon x(1-1/3)}{2 \times 5}$$

For q = 7,

$$f \le \frac{\epsilon x (1 - 1/3 - 1/5)}{2 \times 7}$$

we continue this method to reach, $1 - \frac{1}{3} - \frac{1}{5} - \frac{1}{29} = almost0$

NOTE: we have only $\epsilon x/2$ composite odd numbers , since we say about N>x (this is new idea) not old idea i.e q< x,for q=3, we have $\epsilon x/2/3$ such N>x, since we have only one such N>x, exist , if we have two such primes i.e $N_1N_2q>x^2$ and this is contradiction , so for q=5 $\epsilon x/2$ numbers changed to $\epsilon x/2-\epsilon x/2/3$,for q=7 these numbers changed to $(\epsilon x/2)-(\epsilon x/2)/3-(\epsilon x/2)/5-(\epsilon x/2)/5$ we continue this method to reach $(\epsilon x/2)-(\epsilon x/2)/3-(\epsilon x/2)/5-\ldots-(\epsilon x/2)/29=almost~0$, and also we have not same N for different q, for example for q=3, $x^2/3\leq N\leq (x^2+\epsilon x)/3$, for $q=5,x^2/5\leq N\leq (x^2+\epsilon x)/5$, we can reach to contradiction notice that we consider numbers between n^2 and $n^2 + \epsilon n$ 3. The proof of main theorem

Theorem: There is at least a prime between x^2 and $x^2 + \epsilon x$ Proof:Let we have at least a prime in intervals k^2 and $k^2 + \epsilon k$ that k = a, (a + 1), ..., (x - 1). By induction ,we prove that,we have a prime between x^2 and $x^2 + \epsilon x$. Assume that this is not true, so we can write $x^2 + i = lq$, i.e all numbers in interval x^2 and $x^2 + \epsilon x$ are not primes. Since $1 \le i \le \epsilon x$ so according to (G.H.Hardy, E.M.Wright, Oxford, 1964) there is a prime factor like q that for any composite number in n^2 and $n^2 + \epsilon n$ this interval $q \le \sqrt{x^2 + \epsilon x} \le x + 1$

now we use the above results to reach to a contradiction, notice that we use odd statements so:

$$(x^{2} + 1or2)...(x^{2} + ([\epsilon x] - 1)or[\epsilon x]) > (4p)^{\left[\frac{\epsilon x}{2}\right]}$$
(5)

According to lemmas $2.2 \ and \ 2.3$, we have:

$$(x^{2} + 1 or 2) \dots (x^{2} + [\epsilon x] - 1) or [\epsilon x]) < 3^{\frac{\epsilon x}{2 \times 3}} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{3} \frac{\frac{\epsilon x}{2 \times 3}}{2 \times 3} \times \frac{x^{2}}{5} \frac{\frac{(\epsilon x)(1 - 1/3)}{2 \times 5}}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{3} \frac{x^{2}}{2 \times 3} \times \frac{x^{2}}{5} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{3} \frac{x^{2}}{2 \times 3} \times \frac{x^{2}}{5} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{3} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{3} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{3} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{3} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{3} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{3} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{3} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{3} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{3} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{5} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{5} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{5} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{5} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{5} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{5} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{5} \frac{(\epsilon x)(1 - 1/3)}{2 \times 5} \times \dots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{5} \times$$

We continue to reach $1 - 1/3 - 1/5 - \dots - 1/29 = almost0$. Hence we have:

 $\begin{array}{l} \frac{\epsilon x-2}{2} log(4p) < log(x^2+1 or 2) + \ldots + log(x^2+[\epsilon x]-1) or[\epsilon x]) < \\ (\epsilon x/2) \sum_{3 \leq q < w} \frac{logq}{q} + (\epsilon x/2)(1/3 + (1-1/3)/5 + (1-1/3-1/5)/7 + \ldots + 0) log x^2(7) \\ \text{So by refer to } [3], \sum_{3 \leq q < w} \frac{logq}{q} < log w + c, \text{that} c \text{ is positive constant number, so:} \end{array}$

$$\frac{\epsilon x-2}{2} log(4p) < (\epsilon x/2) logw + (\epsilon x/2)c + 0.8(\epsilon x/2) logx^2$$
(8)

Then for a large x, $\frac{\epsilon x-2}{2}log(4p) < 1.7\frac{\epsilon x}{2}logx$, but since $\frac{\epsilon x-2}{2} > 0.94\frac{\epsilon x}{2}$ for a large x so $p < x^{1.8}/4$ and this is a contradiction ,because by lemma $2.1, p > (x-4)^2/4$.

References:

[1]M.EI Bachraoui. prime in the interval [2n, 3n]. International journal of contemporary Mathematical sciences, 1 (3):617-621,2006.

[2]P.Erdos. Beweis eines satzes von tschebyschef. Acta Litt.Univ.sci,Szeged,Sect. Math.,5:194-198,1932.

 $[3]{\rm G.~H.~Hardy}$, E .M . Wright , An introduction to the theory of numbers . Oxford 1964.

[4] Unsolved problem in number Theory, Richard K. Guy, Amazon.com.

[5] P.Erdos and J.
suranyi. Topics in the theory of numbers.
undergraduate texts in mathematics. Springer Verlag,2003.

[6]S. Ramanujan.A proof of Bertrand, S. Postulate. journal of the Indian Mathematical society 11:181-182,1919.

[7]Shiva kintali, A Generalization of Erdos's Proof of Bertrand-Chebyshev Theorem , http://www.cs.princeton.edu/ kintali, 2008.

 $[8]\mbox{H.sazegar,A}$ Method for solving Legendr's conjcture, journal of Mathematics Research, Feb.2012