Existing a prime in interval n^{2} and $n^{2}+\epsilon n$

Hashem sazegar
School of Mathematics, Azad university branch of Mashhad, Mashhad, Iran
E-mail:h.sazegar@gmail.com

Abstract

Oppermance' conjecture states that there is a prime number between n^{2} and $n^{2}+n$ for every positive integer n, first we show that, All integer numbers between x^{2} and $x^{2}+\epsilon x$ can be written as $x^{2}+i>4 p$ that $1 \leq i \leq \epsilon x$ and $p=(x-m-2)^{2}+j$ in which j is a number in intervals $1 \leq j \leq \epsilon(x-m-2)$, and then we prove generalization of Oppermance' conjecture i.e there is a prime number in interval n^{2} and $n^{2}+\epsilon n$ such that $0<\epsilon \leq 1$.

Keywords: Bertrand-chebyshev theorem,landu's problems,Goldbach's conjecture,twin prime,Legendre's conjecture,oppermanc's conjecture

1. Introduction

Bertrand's postulate state for every positive integer n, there is always at least one prime p,such that $n<p<2 n$. This was first proved by chebyshev in 1850 which is why postulate is also called the Bertrand-chebyshev theorem.

Legendre's conjecture states that there is a prime between n^{2} and $(n+1)^{2}$ for every positive integer n, which is one of the four Landu's problems. The rest of these four basic problems are:
(i) Twin prime conjecture :there are infinitely many primes p such that $p+2$ is a prime.
(ii) Goldbach's conjecture: every even integer $n>2$ can be written as the sum of two primes.
(iii) Are there infinitely many primes p such that $p-1$ is a perfect square? problems(i),(ii),(iii) are open till date.
Legendre's conjecture is proved(in[8])
Theorem: there is at least a prime between n^{2} and $n^{2}+\epsilon n$,for every positive integer n such that $0<\epsilon \leq 1$ is constant arbitrary number.
we prove it by induction that if there is at least a prime between all $(x-1)^{2}$ and $(x-1)^{2}+\epsilon(x-1)$, then there is a prime between x^{2} and $x^{2}+\epsilon x$.
To proceed to this proof,firstly we use the following Lemmas:

2.Lemmas :

In this section, we present several lemmas which are used in the proof of our main theorem.
Lemma 2.1:for a large x, All integer numbers between x^{2} and $x^{2}+\epsilon x$ can be written as $x^{2}+i>4 p$ that $1 \leq i \leq \epsilon x$ and $p=(x-m-2)^{2}+j$ in which j is a number in intervals $1 \leq j \leq \epsilon(x-m-2)$, we Assume that $m=x / 2$ if x is even and $m=(x+1) / 2$ if x is odd and p is prime.
Proof:By induction there is a prime in intervals k^{2} and $k^{2}+\epsilon k$
that $k=a,(a+1), \ldots,(x-1)$ (for example if $\epsilon=1$ so $\mathrm{a}=2$), since $m=x / 2$, if x is even or $m=(x+1) / 2$ if x is odd,so always $p>(x-4)^{2} / 4$, for a large x, hence $x^{2}+i>4 p$,that $1 \leq i \leq \epsilon x$
Lemma 2.2:If l to be the number of $3 \leq q<x$,(q is prime) are in equation
$x^{2}+i=t q$ (is odd)that $1 \leq i \leq \epsilon x$ so $l<\frac{\epsilon x}{2 q}$, for some $3 \leq q<x$
Proof: if $q \geq 3$, we put $i=j+2 q l(j \geq 1)$,so $j+2 q l \leq \epsilon x$, then $l<\frac{\epsilon x}{2 q}$, in this case l is the number of $q \geq 3$ that $x^{2}+i=t q$ is odd.
Lemma 2.3:If f to be the number of $N>x$ are in $x^{2}+i=q N$ that these numbers are odd and $1 \leq i \leq \epsilon x$
So:
for $g=3$

$$
f \leq \frac{\epsilon x}{2 \times 3}
$$

for $g=5$

$$
\begin{equation*}
f \leq \frac{\epsilon x(1-1 / 3)}{2 \times 5} \tag{2}
\end{equation*}
$$

for $g=7$

$$
f \leq \frac{\epsilon x(1-1 / 3-1 / 5)}{2 \times 7}(3)
$$

we continue this method to reach $1-1 / 3-1 / 5-\ldots 1 / 29=\operatorname{almost} 0(4)$
Proof:If $N>x$ and $x^{2}+i=q N$ to be odd ,since $1 \leq i \leq \epsilon x$
so $x^{2} / q \leq N \leq\left(x^{2}+\epsilon x\right) / q$, in Which $3 \leq q<x$ are primes. Since the distance of between two odd numbers should be 2 ,so If $q=3$,the number of such N odd number is:

$$
f \leq \frac{\epsilon x}{2 \times 3}
$$

but since $N>x$, only one $N>x$ could be in $x^{2}+i=q N$,so for $q=5$,

$$
f \leq \frac{\epsilon x(1-1 / 3)}{2 \times 5}
$$

For $q=7$,

$$
f \leq \frac{\epsilon x(1-1 / 3-1 / 5)}{2 \times 7}
$$

we continue this method to reach, $1-1 / 3-1 / 5-\ldots 1 / 29=$ almost 0
NOTE: we have only $\epsilon x / 2$ composite odd numbers ,since we say about $N>$ x (this is new idea)not old idea i.e $q<x$,for $q=3$, we have $\epsilon x / 2 / 3$ such $N>x$,since we have only one such $N>x$, exist , if we have two such primes i.e $N_{1} N_{2} q>x^{2}$ and this is contradiction ,so for $q=5 \epsilon x / 2$ numbers changed to $\epsilon x / 2-\epsilon x / 2 / 3$,for $q=7$ these numbers changed to $(\epsilon x / 2)-(\epsilon x / 2) / 3-(\epsilon x / 2) / 5$ we continue this method to reach $(\epsilon x / 2)-(\epsilon x / 2) / 3-(\epsilon x / 2) / 5-\ldots-(\epsilon x / 2) / 29=$ almost 0 , and also we have not same N for different q,for example for $q=3$,$x^{2} / 3 \leq N \leq\left(x^{2}+\epsilon x\right) / 3$,for $q=5, x^{2} / 5 \leq N \leq\left(x^{2}+\epsilon x\right) / 5$, we can reach to
contradiction notice that we consider numbers between n^{2} and $n^{2}+\epsilon n$

3. The proof of main theorem

Theorem: There is at least a prime between x^{2} and $x^{2}+\epsilon x$
Proof:Let we have at least a prime in intervals k^{2} and $k^{2}+\epsilon k$
that $k=a,(a+1), \ldots,(x-1)$.By induction, we prove that, we have a prime between x^{2} and $x^{2}+\epsilon x$.Assume that this is not true,so we can write $x^{2}+i=l q$,i.e all numbers in interval x^{2} and $x^{2}+\epsilon x$ are not primes. Since $1 \leq i \leq \epsilon x$ so according to(G.H.Hardy, E.M.Wright, Oxford, 1964)there is a prime factor like q that for any composite number in n^{2} and $n^{2}+\epsilon n$ this interval $q \leq \sqrt{x^{2}+\epsilon x} \leq x+1$
now we use the above results to reach to a contradiction, notice that we use odd statements so:

$$
\left(x^{2}+1 \text { or } 2\right) \ldots\left(x^{2}+([\epsilon x]-1) \text { or }[\epsilon x]\right)>(4 p)^{\left[\frac{\epsilon x}{2}\right]}(5)
$$

According to lemmas 2.2 and 2.3 ,we have:

$$
\begin{align*}
& \left.\quad\left(x^{2}+1 \operatorname{or} 2\right) \ldots\left(x^{2}+[\epsilon x]-1\right) \operatorname{or}[\epsilon x]\right)<3^{\frac{\epsilon x}{2 \times 3}} \times \ldots \times 29^{\frac{\epsilon x}{2 \times 29}} \times \frac{x^{2}}{3} \frac{\frac{\epsilon x}{2 \times 3}}{\frac{\epsilon x^{2}}{5}} \frac{\frac{(\epsilon x)(1-1 / 3)}{2 \times 5}}{} \times \\
& \ldots \frac{x^{\frac{2 x(1-1 / 3-\ldots-1 / 29)}{29}} 2 \times 31}{29}(6) \tag{6}\\
& \text { We continue to reach } 1-1 / 3-1 / 5-\ldots-1 / 29=\text { almost } 0 \text {.Hence we have: }
\end{align*}
$$

$$
\left.\frac{\epsilon x-2}{2} \log (4 p)<\log \left(x^{2}+1 \text { or } 2\right)+\ldots+\log \left(x^{2}+[\epsilon x]-1\right) \text { or }[\epsilon x]\right)<
$$

$(\epsilon x / 2) \sum_{3 \leq q<w} \frac{\log q}{q}+(\epsilon x / 2)(1 / 3+(1-1 / 3) / 5+(1-1 / 3-1 / 5) / 7+\ldots+0) \log x^{2}(7)$
So by refer to [3], $\sum_{3 \leq q<w} \frac{\operatorname{logq}}{q}<\log w+c$,thatc is positive constant number,so:

$$
\frac{\epsilon x-2}{2} \log (4 p)<(\epsilon x / 2) \log w+(\epsilon x / 2) c+0.8(\epsilon x / 2) \log x^{2}(8)
$$

Then for a large $x, \frac{\epsilon x-2}{2} \log (4 p)<1.7 \frac{\epsilon x}{2} \log x$, but since $\frac{\epsilon x-2}{2}>0.94 \frac{\epsilon x}{2}$ for a large x so $p<x^{1.8} / 4$ and this is a contradiction ,because by lemma $2.1, p>$ $(x-4)^{2} / 4$.

References:

[1]M.EI Bachraoui. prime in the interval[2n, $3 n$] . International journal of contemporary Mathematical sciences,1 (3):617-621,2006.
[2]P.Erdos. Beweis eines satzes von tschebyschef. Acta Litt.Univ.sci,Szeged,Sect. Math.,5:194-198,1932.
[3]G. H. Hardy , E .M . Wright, An introduction to the theory of numbers .Oxford 1964.
[4] Unsolved problem in number Theory, Richard K. Guy, Amazon.com.
[5] P.Erdos and J.suranyi. Topics in the theory of numbers.undergraduate texts in mathematics. Springer Verlag,2003.
[6]S. Ramanujan.A proof of Bertrand, S. Postulate. journal of the Indian Mathematical society 11:181-182,1919.
[7]Shiva kintali, A Generalization of Erdos's Proof of Bertrand-Chebyshev Theorem, http://www.cs.princeton.edu/ kintali, 2008.
[8]H.sazegar,A Method for solving Legendr's conjcture,journal of Mathematics Research,Feb. 2012

