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Abstract

In this paper we address the problem of performing Bayesian inference for the parameters of
a nonlinear multioutput model and the covariance matrix of the different output signals. We pro-
pose an adaptive importance sampling (AIS) scheme for multivariate Bayesian inversion problems,
which is based in two main ideas: the variables of interest are split in two blocks and the infer-
ence takes advantage of known analytical optimization formulas. We estimate both the unknown
parameters of the multivariate non-linear model and the covariance matrix of the noise. In the first
part of the proposed inference scheme, a novel AIS technique called adaptive target AIS (ATAIS)
is designed, which alternates iteratively between an IS technique over the parameters of the non-
linear model and a frequentist approach for the covariance matrix of the noise. In the second part
of the proposed inference scheme, a prior density over the covariance matrix is considered and
the cloud of samples obtained by ATAIS are recycled and re-weighted for obtaining a complete
Bayesian study over the model parameters and covariance matrix. ATAIS is the main contribu-
tion of the work. Additionally, the inverted layered importance sampling (ILIS) is presented as
a possible compelling algorithm (but based on a conceptually simpler idea). Different numerical
examples show the benefits of the proposed approaches.
Keywords: Bayesian inversion; importance sampling; uncertainty analysis; covariance matrix;
tempering; sequence of posteriors

1 Introduction
The estimation of parameters from noisy observations is at the center of areas such as signal pro-
cessing, statistics and machine learning. Looking at this problem from a Bayesian perspective, the
inference problem becomes the construction and analysis of the posterior density over the unknown
parameters [1, 2]. The computation of complicated integrals involving these posterior distributions
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are often needed (e.g., any moment of the random variable distributed as the posterior density). Monte
Carlo sampling methods are able to draw samples from the posterior probability density function
(pdf) and hence those integrals can be approximated by stochastic quadrature formulas employing the
generated samples. The Monte Carlo techniques can be divided in four main families: direct transfor-
mation methods, rejection sampling, importance sampling and Markov Chain Monte Carlo (MCMC)
algorithms [3, 4, 5, 6]. The last two classes are the most used by the users, since they are universal
methods, i.e., they can always be applied.

However, the Monte Carlo techniques find several difficulties that jeopardize their performance in
many scenarios, for instance when working high - dimensional spaces, and with narrow, tight posteri-
ors. Both issues are related to the problem of the exhaustive exploration of the state space. For these
reasons, many Monte Carlo algorithms try to work in sub-dimensional spaces (step by step, with itera-
tive or sequential procedures), such as the Gibbs sampling and the particle filtering schemes [5, 7, 8, 9].

In this work, we focus on the problem of make a joint inference on a covariance matrix and a vector
of parameters [3, 10]. This is a particularly complex inference problem since bad choices of the co-
variance matrix can jeopardize the sampling of the vector of interest [11, 12, 13]. This problem can
suffer both issues previously described: it is often high - dimensional (specially if the dimension ma-
trix is big) and the posterior is often tight. More specifically, we address a generic multidimensional
Bayesian inversion problem, where each vector observation yr is the output of a multidimensional,
nonlinear vectorial mapping f(θ) of the parameter of interest θ, perturbed by an error vector with
correlated components that, e.g., can be Gaussian vr ∼ N(vr|0,Σ).1 The goal is to make inference in
the joint space of θ and Σ. The dimension of the entire space grows linearly with the dimension of
the vector θ and quadratically with the dimension of the matrix Σ. We consider virtually no assump-
tions over the vectorial non-linearity f, and usually it represents some complex physical process. For
instance, f(θ) could be also non-differentiable. In this work, the unique requirement about f is to be
able to evaluate point-wise f(θ). Since, the inference task on the complete space {θ,Σ} is particularly
challenging, we introduce two different compelling Monte Carlo schemes based the idea of splitting
the inference space in two blocks, θ and Σ (as in a block Gibbs sampling).

Main proposed scheme - Complete ATAIS. Firstly, we extend and generalize the approach pre-
sented in [14, 15]. The proposed inference scheme is divided in two main parts. In the first part the we
approximate the conditional posterior of θ given the data and the maximum likelihood estimator ΣML
of the matrix Σ. This first part is called adaptive target adaptive importance sampling (ATAIS), since
we perform an adaptive importance sampling on a sequence of adaptive posteriors (due to the varia-
tion of Σ). The ATAIS method is then completed by a second part which allows a complete Bayesian
inference also over Σ. Indeed, in this second inference part, we approximate the complete posterior of
pair of variables of interest {θ,Σ}, without any additional generation of samples over θ. The resulting
scheme is a robust inference approach for Bayesian inversion, based on adaptive importance sampler
that addresses a sequence of different conditional posteriors and a post-process that allows a Bayesian
inference over Σ as well. We refer to the overall scheme (first and second part) as complete ATAIS.

1We assume Gaussianity in the first part of the work, only for clarity and simplicity in the explanation.

2



The conditional posteriors addressed by ATAIS differ in the use of different covariance matrices: this
procedure can resemble a tempering of the posterior distribution [16, 17, 18, 19].

Auxiliary competitive scheme - ILIS. As also remarked in different works [14, 20, 11], the ap-
plication of a Monte Carlo sampling methods directly in the complete space {θ,Σ} is particularly
challenging and the resulting performance is quite poor. Hence, at least with our current knowledge
of the literature, it is also difficult to find a competitive alternative to ATAIS, which can provide errors
in estimation of the same magnitude. However, in our practical experience, we have designed an-
other Monte Carlo scheme (conceptually simpler than ATAIS) that can also obtain reasonable results.
We call this competitive scheme, inverse layered importance sampling (ILIS) since we adapt the idea
given [21, 22] for this inference context. With respect to the main algorithm in [21, 22], we switch
the positions of the importance sampling (IS) method and Markov Chain Monte Carlo (MCMC) tech-
niques [23, 24, 7, 10]: in ILIS the upper layer is formed by an IS procedure, and the lower layer is
formed by weighted MCMC chains. Conceptually speaking, ILIS is simpler than ATAIS but the ILIS
performance is more sensible on choice of certain proposal parameters (e.g., covariance reference ma-
trix in the upper layer proposal), whereas the complete ATAIS procedure is able to auto-tune some
auxiliary parameters, reducing the number of parameters decided by the user. In this sense, ATAIS
is more automatic and robust than ILIS. As final observation, we highlight that ATAIS could be also
combined and jointly employed.
A summary of the main contributions of the work and related important considerations are given be-
low:

• We propose a robust and efficient inference scheme for complex Bayesian inversion problems,
where a scale (covariance) matrix must be also estimated.

• The model considers a vectorial non-linear function f(θ) to invert, that can represent complex
dynamical systems, a set of time series models, or a statistical spatial model for instance.

• The proposed method allows a complete Bayesian analysis of θ and Σ so that, we can perform
uncertainty analysis over θ and/or Σ, obtaining credible intervals. Moreover, we can perform
hypothesis testing or model selection approximating the marginal likelihood [3, 25, 26]. Hence,
we remark that the proposed scheme is much more than an optimizer: it is a sampler which
allows a complete Bayesian inference over θ and Σ.

• In its second inference part, ATAIS recycles all the samples (w.r.t. θ) and the posterior evalua-
tions from the first part. Therefore, this second part does not require any additional evaluation
of the possibly complex and costly nonlinearity f.

• We also introduce several extensions as addressing models with t-student noise (or, more gener-
ally, with other elliptical distributions) and/or the possible use of mini-batches (that is allowed
by ATAIS).

• Since, in ATAIS, we consider a sequence of adaptive conditional posteriors, ATAIS can be
considered as an adaptive importance sampler where both proposal and target pdfs are adapted.
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• The complete ATAIS method can be also interpreted as an IS version of the recycling Gibbs
sampling scheme in [7] (with two blocks). Indeed, the complete space is divided in two blocks,
θ and Σ, where different numbers of samples is considered for each block, denoted as NT for
θ and J for Σ.

• A discussion, with practical suggestions, regarding the tuning of hyper-parameters of the prior
densities is provided.

• We also design a competitive sampling scheme, denoted as ILIS, for comparing the performance
of ATAIS.

The paper is structured as follows. We start with the description of the problem statement in Section
2. The first part of the main proposed inference scheme is introduced in Sections 3 and 3.1. The
second part of the main proposed inference scheme is described in Section 4. The alternative scheme,
inverted layered importance sampling (ILIS), is given in Section 5. Finally, Section 6 contains several
numerical experiments and Section 7 provides some final conclusions.

2 Problem Statement
Let us denote as θ = [θ1, ..., θM]⊤ ∈ Θ ⊆ RM, a variable of interest that we desire to infer. Moreover,
related to θ, we observe

• R values in different time instants (or spatial points) of

• K different signals (time series), i.e.,

yr = [yr,1, ..., yr,K] ∈ RK×1 for r = 1, ...,R. Hence, all received data can be stored in a matrix Y =
[y1, ..., yR] ∈ RK×R. Furthermore, let us consider the observation model

yr = fr(θ) + vr, r = 1, ...,R, (1)
Y = F(θ) + V, (2)

where we have a nonlinear mapping for each time instant and each time series,

fr(θ) = [ fr,1(θ), ..., fr,K(θ)]⊤ : Θ ⊆ RM → RK×1, (3)

F(θ) = [f1(θ), ..., fR(θ)] : Θ ⊆ RM → RK×R, (4)

and a K × 1 vector of Gaussian noise perturbation for each time instant,

vr = [vr,1, ..., vr,K]⊤ ∼ N(vr|0,Σ) ∈ RK×1, (5)

V = [v1, ..., vR] ∈ RK×R, (6)

where Σ is K × K covariance matrix, which generally is unknown. The mapping fr(θ) could be
analytically unknown, the only assumption is that we are able to evaluate it pointwise.2 The likelihood

2Each component fr,k, for k = 1, ...K, can be a function of the complete vector θ or only a subset of components of this
vector. See for instance the simulation experiment in Section 6.2.
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function is

ℓ(Y|θ,Σ) =
(︄

1
(2π)K/2det(Σ)1/2

)︄R

exp

⎛⎜⎜⎜⎜⎜⎝−1
2

⎡⎢⎢⎢⎢⎢⎣ R∑︂
r=1

(yr − fr(θ))⊤Σ−1 (yr − fr(θ))

⎤⎥⎥⎥⎥⎥⎦⎞⎟⎟⎟⎟⎟⎠ , (7)

Note that we have two types of variables of interest for an inference point of view:

• the vector θ contains the parameters of the nonlinear mapping fr(θ), for r = 1, ...,R,

• and Σ is a scale matrix of the likelihood function.

Given the complete matrix of measurements Y, we desire to make inferences regarding the hidden
parameters θ and the noise matrix Σ, obtaining at least some point estimators ˆ︁θ and ˆ︁Σ. We are
also interested in performing uncertainty and correlation analysis among the components of θ. Fur-
thermore, we aim to perform model selection, i.e., to compare, select or properly average different
models.

2.1 Application to time series and spatial processes
The range of application of the considered model is very broad. For instance, in the case of having K
different time series (in continuous or discrete time), or K spatial processes we can have more explicit
notation, where there is a one-to-one correspondence between each index r ∈ {1, ...,R} and a real time
instant τk,r ∈ R or a point xk,r ∈ R

L, i.e.,

r ∈ {1, ...,R} ←→ {τk,r ∈ R}
K
k=1, r ∈ {1, ...,R} ←→ {xk,r ∈ R

L}Kk=1.

Each vector yr (of dimension K × 1) contains the measurements at time instants τ1,r, ..., τK,r (or
x1,r, ..., xK,r) each one corresponding to a different time series. Hence, recalling the observation equa-
tion yr = fr(θ) + vr, we could use a more explicit notation, instead of fr(θ), i.e.,

yr = f(θ, τ1,r, ..., τK,r) + vr, (8)
yr = f(θ, x1,r, ..., xK,r) + vr, r = 1, ...,R, (9)

where τ1,r, ..., τK,r, or x1,r, ..., xK,r play the role of auxiliary known parameters (or vectors of parame-
ters). A graphical representation is given in Figure 1.
Remark. Note that the vector θ = [θ1, ..., θM]⊤ contains the parameters that are possibly shared from
the models representing the K different time series (or K spatial processes), or all the parameters that
only affect one series (or just a subset of time series).

2.2 Bayesian inference in the complete space
The full Bayesian solution considers the study of the complete posterior density

p(θ,Σ|Y) =
1

p(Y)
p(θ,Σ,Y) =

1
p(Y)
ℓ(Y|θ,Σ)gθ(θ)gΣ(Σ), (10)
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Figure 1: Graphical representation of the considered multioutput model with K = 3 output signals and
R = 4 time instants for each signal. One can suppose that Σ represents a 3 × 3 covariance matrix of
three possible nodes in a graph.

where gθ(θ) and gΣ(Σ) represent the prior densities over the vector θ and the matrix Σ. Usually,
complex integrals involving p(θ,Σ|Y) should be computed in order to perform the inference.

Main observation. Generally, generating random samples from a complicated posterior in Eq. (10)
and computing efficiently the integrals involving p(θ,Σ|Y) is a hard task. Note that the complete
dimension of the inference problem D is

D = M +
K(K + 1)

2
,

i.e., the number of parameters to infer is exactly D. With M = 2 and K = 5, we have D = 17 and
with M = 2, K = 10 we have D = 57. The dimension D grows linearly with M and quadratic with
respect to K. Moreover, we have also the constrains regarding Σ, since it must be a covariance matrix.
This task becomes even more difficult when we try to perform a joint inference, learning jointly the
covariance matrix Σ and parameters of the nonlinearity θ. Indeed, “wrong choices” of Σ can easily
jeopardize the sampling of θ.
Below, we describe an inference scheme formed by two main parts. First, we tackle the problem of
drawing from conditional posterior of θ given the data the maximum likelihood estimator of Σ. With
this goal, the maximum likelihood estimator of Σ must be obtained. Therefore, in this first part, we
apply a Bayesian inference over θ and a frequentist approach over Σ. In the second part, we assume
also a prior density over the covariance matrix Σ, and perform a Bayesian inference over Σ as well,
recycling the outputs (samples and other information) obtained in the first part.
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3 First part of the proposed inference scheme
Main idea. The main idea underlying the complete ATAIS algorithm is to take advantage of the split
of the inference space (working firstly in smaller portions of the entire space). In a first part, de-
scribed in this section, we search for high probability regions in the complete space, sampling from a
sequence of adaptive conditional posterior distributions with respect to θ (given a covariance matrix
ΣML). Whereas, a known analytic formula is employed for obtaining a sequence of optimized matri-
ces ΣML. In the second part, described in Section 4, we generate sampling random matrices from an
auto-tuned prior pdf (or possibly other proposal density) and we re-weight all the previously gener-
ated samples w.r.t. θ, in order to allow a complete Bayesian inference (hence including uncertainty
analysis etc.) for both θ and Σ.

More specifically, in the first stage, we consider a sub-optimal (in Bayesian sense) but substantially
more efficient inference scheme (since we work in a reduced - much smaller - dimensional space),
studying only a sequence of conditional posterior distributions. More precisely, we study the follow-
ing conditional posterior

p(θ|Y,ΣML) =
ℓ(Y|ΣML,θ)gθ(θ)

p(Y|ΣML)
∝ ℓ(Y|ΣML,θ)gθ(θ). (11)

Furthermore, we have denoted the (conditioned) maximum likelihood estimator of Σ as

ΣML = arg max
Σ
ℓ(Y|Σ,θMAP), (12)

where θMAP denotes the global maximum of p(θ|Y,ΣML), i.e.,

θMAP = arg max
θ

log p(θ|Y,ΣML),

= arg min
θ

⎡⎢⎢⎢⎢⎢⎣ R∑︂
r=1

(yr − fr(θ))⊤Σ−1
ML (yr − fr(θ)) + log gθ(θ)

⎤⎥⎥⎥⎥⎥⎦ . (13)

It is important to observe that, given θMAP, we have the analytic form of ΣML, i.e.,

ΣML =
1
R

R∑︂
r=1

(yr − fr(θMAP)) (yr − fr(θMAP))⊤ . (14)

Note that ΣML depends on θMAP, and θMAP depends on ΣML. Similar approaches for dealing with un-
known covariance can be found in [20, 11].

Remark. The key idea to implement this inference scheme is to perform an alternating optimization
procedure where, at each iteration t, we produce two estimations ˆ︁θ(t)

MAP, ˆ︁Σ(t)
ML of θMAP, ΣML, respectively

[12, 13]. Clearly, we desire the convergence as the number of iterations grow, t → ∞, i.e.,

ˆ︁θ(t)
MAP −→ θMAP, (15)ˆ︁Σ(t)
ML −→ ΣML. (16)
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Table 1: Alternating optimization.

For t = 1, . . . ,T :

1 Estimate, by Monte Carlo,

θ(t)
MAP = arg min

θ

⎡⎢⎢⎢⎢⎢⎣ R∑︂
r=1

(yr − fr(θ))⊤
[︂ˆ︁Σ(t−1)
ML

]︂−1
(yr − fr(θ)) − log gθ(θ)

⎤⎥⎥⎥⎥⎥⎦ , (17)

obtaining ˆ︁θ(t)
MAP, e.g., using an importance sampling (IS) scheme with respect to

p(θ|Y, ˆ︁Σ(t−1)
ML ).

2 Compute

ˆ︁Σ(t)
ML =

1
R

R∑︂
r=1

(︂
yr − fr(ˆ︁θ(t)

MAP)
)︂ (︂

yr − fr(ˆ︁θ(t)
MAP)

)︂⊤
. (18)

The suggested iterative approach is summarized briefly by two steps. Starting with an initial matrix
Σ

(0)
ML , that is as a rough approximation of ˆ︁ΣML, the alternating optimization procedure is given in Table

1.
Since, we employ IS scheme for obtaining ˆ︁θ(t)

MAP, at each t-th iteration, we have also a cloud of particles
{θ(n)

t )}Nn=1 that can be used for performing Bayesian inference over θ. Namely, after T iteration, we can
build a particle approximation of p(θ|Y, ˆ︁Σ(T )

ML ), i.e.,

ˆ︁p(θ|Y, ˆ︁Σ(T )
ML ) =

T∑︂
t=1

N∑︂
n=1

˜︁w(n)
t δ(θ − θ

(n)
t ),

T∑︂
t=1

N∑︂
n=1

˜︁w(n)
t = 1. (19)

By Eq. (19), we can approximate all the moments associate to the conditional posterior p(θ|Y, ˆ︁Σ(T )
ML )

hence, for instance, we can also provide an uncertainty estimation over the vector of θ.

On the convergence of the alternating optimization. Due to the error in step 1 of the alternat-
ing optimization (described above) can be controlled by the number of particles N (i.e., the error in
the approximation of θMAP can be bounded increasing N, i.e., even with a bad choice of ˆ︁Σ(t−1)

ML we can
obtain a reasonable vector ˆ︁θ(t)

MAP, and the estimator ˆ︁Σ(t)
ML in Eq. (18) approaches the matrix ΣML in Eq.

(14), as t → ∞. Moreover, as the number of realizations R grows the matrix ΣML in Eq. (14) converges
to the true covariance matrix of the data.
Note that the pair θMAP and ΣML are fixed points of the iterative (dynamical) system formed by Eqs.
(17)-(18). Namely, the key point of the convergence is to be able to find a good approximation of θMAP
(placing us close to the fixed point). This is possible since we are working in a reduced portion of the
complete space, and more efficient Monte Carlo scheme can be applied [27, 28, 29, 30]. It has the
same convergence rate of a Monte Carlo method for stochastic optimization, as a standard simulated
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annealing [16].

Accelerating the convergence of the global optimization problem. In other to find a good region of
the space for starting the alternating optimization, we can use some iterations (let say T0 < T ) of the
algorithm considering

θ(t)
MAP = arg min

θ

⎡⎢⎢⎢⎢⎢⎣ R∑︂
r=1

||yr − fr(θ)||2 − log gθ(θ)

⎤⎥⎥⎥⎥⎥⎦ , t = 1, ...,T0, (20)

that is equivalent to set ˆ︁Σ(t)
ML = IK for t = 0, ...,T0 − 1 in Eq. (17), where IK is a K × K unit

matrix. Thus, in the first T0 iterations, we focus only in finding a good point θ(T0)
MAP . Indeed, note

that if there exists a point θ∗ such that
∑︁R

r=1 ||yr − fr(θ∗)||2 = 0, then this point θ∗ is also a root for∑︁R
r=1 (yr − fr(θ∗))⊤ ˆ︁Σ−1 (yr − fr(θ∗)) = 0 for any possible covariance matrix ˆ︁Σ.

Outputs of this first part of the inference scheme. With the procedure above, we perform a
Bayesian inference over the vector θ, but only analyzing and approximating the conditional poste-
rior p(θ|Y, ˆ︁Σ(T )

ML ). In this first part, with respect to Σ, we only provide a frequentist estimator ˆ︁Σ(T )
ML .

Note that, in the iterative procedure, we have a sequence conditional posteriors p(θ|Y, ˆ︁Σ(t)
ML). For this

reason, we call the algorithm as adaptive target adaptive importance sampling (ATAIS)3 The details
of the ATAIS algorithm which performs this scheme are given in the next section.

3.1 Adaptive Target Adaptive Importance Sampling (ATAIS)
This section provides more details about the Step 1 of the alternating procedure described above.
More generally, we will provide all the details of the ATAIS algorithm. For simplifying the notation,
we denote the unnormalized conditional posterior at the t-th iteration,

πt(θ) = ℓ(Y|ˆ︁Σ(t−1)
ML ,θ)gθ(θ) ∝ p(θ|Y, ˆ︁Σ(t−1)

ML ). (21)

At each iteration, we consider πt(θ) as the target distribution. Finally, we are able to approximate
πT+1(θ) ∝ p(θ|Y, ˆ︁Σ(T )

ML ), without any additional evaluation of the likelihood function. The dependence
on the iteration t is due to ˆ︁Σ(t)

ML varies with t. The ATAIS algorithm is outlined in Table 6, whereas the
main features of ATAIS are described below.

IS steps. A set of N samples {θ(n)
t }

N
n=1 are drawn from a (normalized) proposal density q(θ|µt,Λt)

with mean µt and a covariance matrix Λt. An importance weight

w(n)
t =

πt(θ
(n)
t )

q(θ(n)
t |µt,Λt)

,

is assigned to each sample θ(n)
t , for all n and t.

3Another reason is that it is also an extension of the techniques in [14, 15], that use the acronym ATAIS as well.
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Optimal denominator in IS weights. Since we adapt the proposal density during the iterations,
we are actually in a multiple IS scenario [31, 22]. It is well-known that the standard IS denominator
(using just the unique proposal q(θ|µt,Λt)) provides instability and high variance in the final IS esti-
mators. The correct way of avoiding this behavior is to employ a mixture of all proposals used during
the iterations, i.e.,

w(n)
t =

πt(θ
(n)
t )

1
t

∑︁t
i=1 q(θ(n)

t |µi,Λi)
.

This procedure provides the lowest variance of the final IS estimators but requires an high computa-
tional cost. Indeed, for each sample θ(n)

t , we have to evaluate a mixture where the number of compo-
nents grows with the iterations. Moreover, at least in the final iteration T decided by the user, all the
previous weights must be updated recomputing a new denominator for each sample. Alternatives for
reducing the computational cost have been proposed [32]. The simplest solution among the proposed
one is to build a compressed denominator [33, 22]. Here, for avoiding instabilities in the results, we
discard the samples in the first iterations when the proposal density changes substantially. For in-
stance, one can discard the samples in the first iterations t such that ||ˆ︁θ(t)

MAP −
ˆ︁θ(t−1)
MAP || > ϵ where ϵ is a

small positive value.

Proposal adaptation. The location parameter of the proposal density is moved to ˆ︁θ(t)
MAP, i.e.,

µt = ˆ︁θ(t)
MAP. (22)

Note that, we set µt = ˆ︁θ(t)
MAP instead of using the empirical mean of the samples (as in other classical

AIS schemes). This is because we have noticed that this choice provides better and more robust re-
sults, especially as the dimension of the problem grows. Indeed, his choice helps in the search of the
global maximum (since the next cloud of particles will be around the current MAP estimation) and, as
a consequence, helps also the estimation of ˆ︁ΣML due to (18).
The covariance matrix Λt is adapted by considering the empirical covariance of the weighted sam-
ples at the t-th iteration, plus a diagonal matrix controlled by a parameter δ > 0 which determines
the elements in the diagonal. The value of δ must be always greater than zero, since it helps the IS
performance (see , e.g., [25, Numerical Example 1]) and avoids catastrophic scenarios. For a robust
implementation, we suggest to use a greater value of δ specially in the first iterations of the algorithm.
The value of δ could be decreased as the iterations grow.

ATAIS outputs. After T iterations, a final correction of the weights is needed, i.e.,

˜︁w(n)
t = w(n)

t
πT+1(θ(n)

t )

πt(θ
(n)
t )
, for all n, t, (23)

in order to obtain a particle approximation of the measure of the final conditional posterior πT+1(θ) ∝
p(θ|Y, ˆ︁Σ(T )

ML ). Thus, the algorithm returns the final estimators ˆ︁θ(T )
MAP, ˆ︁Σ(T )

ML , and all the weighted samples
{θ(n)

t ,˜︁w(n)
t }, for all n = 1, ...,N and t = 1, ...,T . Other outputs can be obtained with a post-processing of

the weighted samples, as shown below. Note that Eq. (23) does not require any additional evaluations
of the model, if the save the computation of the error vectors e(n)

t,r = yr− fr(θ
(n)
t ). Moreover, we can also
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use {e(n)
t,r } and {θ(n)

t } for building a particle approximation of any other conditional posterior p(θ|Y,Σ).

3.2 Possible use of mini-batches
When the number of vectors yr of data R grows, the calculation of the likelihood can become costly.
ATAIS allows the direct use of mini-batches of data (see [34, 35]). Namely, we can use a sub-set of
data (e.g., formed by L < R vectors yi of data) to create sub-posteriors,

π̃t(θ) ∝

⎡⎢⎢⎢⎢⎢⎣ L∏︂
i=1

ℓ(yi|Σ
(t−1)
ML ,θ)

⎤⎥⎥⎥⎥⎥⎦ gθ(θ), (24)

where {yi}
L
i=1 are L < R vectors selected randomly over the R possible vectors. As stated in [34], ATAIS

can use the subposteriors (24) in step a.ii in (6) reaching asymptotically the true values of θmap and
ΣML. Moreover, in the second part of the proposed inference scheme (see below in the next section),
the final re-weighting step must be made according to the full posterior, so that the final estimations
are performed considering all the dataset. Hence, the complete ATAIS method can consider the use of
mini-batches only in the first part, whereas, in the second part, the full-posterior must be evaluated.

3.3 Elliptically contoured distributions as observation models
The ATAIS algorithm described above (including the alternating optimization above) can be also ap-
plied for more general models. When the noise has an elliptically contoured distribution [36, 37, 38],
i.e.,

vr ∼ p(v), (25)

where represents the density below

p(v) =
kp

|Σ|1/2
h
(︂
v⊤Σ−1v

)︂
,

where kp > 0 is a constant, h(z) : R→ R+is a one-dimensional positive function. The K × K matrix Σ
is a scale parameter related to the corresponding covariance matrix. An example, it is the multivariate
t-distribution:

p(v) ∝
1
|Σ|1/2

[︄
1 +

1
ν

vTΣ−1v
]︄−(ν+K)/2

,

where ν > 0 represents the degrees of freedom.

4 Second part of the proposed inference scheme
Here, we describe the second part of the ATAIS procedure, which allow a complete Bayesian analysis
of θ and Σ. It is important to remark that this second part of ATAIS does not require any additional
sample generation and likelihood evaluation. Indeed, ATAIS recycles and reweights the samples θ(n)

t
obtained in the first part by Table 6.
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4.1 Approximating different conditional posteriors
The idea here is to re-use all the generated samples since, if we have saved the computation of the
error vectors e(n)

t,r = yr − fr(θ
(n)
t ) no any additional evaluation of the model are required. Note that

the cloud of particles {θ(n)
t } is well-located, since ATAIS works to generate samples around the MAP

and ML estimators of θ and Σ. Moreover, we can also use {e(n)
t,r } and {θ(n)

t } for building a particle
approximation of any other conditional posterior p(θ|Y,Σ), i.e.,

ˆ︁p(θ|Y,Σ) =
T∑︂

t=1

N∑︂
n=1

ρ̄(n)
t (Σ) · δ(θ − θ(n)

t ),
T∑︂

t=1

N∑︂
n=1

ρ̄(n)
t (Σ) = 1, (26)

where

ρ(n)
t (Σ) =

ℓ(Y|θ(n)
t ,Σ)gθ(θ

(n)
t )

q(θ(n)
t |µt,Λt)

, and (27)

ρ̄(n)
t (Σ) =

ρ(n)
t (Σ)∑︁T

τ=1
∑︁N

i=1 ρ
(i)
τ (Σ)

. (28)

Given a new matrix Σ, to compute the likelihood

ℓ(Y|θ(n)
t ,Σ) =

(︄
1

(2π)K/2det(Σ)1/2

)︄R

exp

⎛⎜⎜⎜⎜⎜⎝−1
2

R∑︂
r=1

(︂
yr − fr

(︂
θ(n)

t

)︂)︂⊤
Σ−1

(︂
yr − fr

(︂
θ(n)

t

)︂)︂⎞⎟⎟⎟⎟⎟⎠ , (29)

=

(︄
1

(2π)K/2det(Σ)1/2

)︄R

exp

⎛⎜⎜⎜⎜⎜⎝−1
2

R∑︂
r=1

(︂
e(n)

t,r

)︂⊤
Σ−1

(︂
e(n)

t,r

)︂
,

⎞⎟⎟⎟⎟⎟⎠ (30)

we need the vectors e(n)
t,r , the inverse matrix of Σ and the determinant of Σ.

4.2 Approximation of the complete posterior distribution and marginal likeli-
hood

We can apply an IS scheme with the complete target pdf,

p(θ,Σ|Y) =
p(θ,Σ,Y)

p(Y)
=
ℓ(Y|θ,Σ)gθ(θ)gΣ(Σ)

p(Y)
, (31)

∝ ℓ(Y|θ,Σ)gθ(θ)gΣ(Σ), (32)

and employing a proposal density that can be factorized as q(θ|µt,Λt)qΣ(Σ) where the piece of pro-
posal q(θ|µt,Λt) is the same used in ATAIS at the t-th iteration. Recycling the NT samples produced
by ATAIS, i.e., θ(n)

t ∼ q(θ|µt,Λt) and drawing J random matrices from the proposal qΣ(Σ), i.e.,
Σ( j) ∼ qΣ(Σ), the complete IS weights are

β(n)
t, j =

ℓ(Y|θ(n)
t ,Σ

( j))gθ(θ
(n)
t )gΣ(Σ( j))

q(θ(n)
t |µt,Λt)qΣ(Σ( j))

, (33)

= ρ(n)
t (Σ( j))

gΣ(Σ( j))
qΣ(Σ( j))

= ρ(n)
t (Σ( j))γ j = ρ

(n)
t, j γ j, (34)
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where we have set γ j =
gΣ(Σ( j))
qΣ(Σ( j)) and ρ(n)

t, j = ρ
(n)
t (Σ( j)) are given in Eq. (27). Clearly, if qΣ(Σ) = gΣ(Σ)

then γ j = 1. The complete posterior approximation is given by

ˆ︁p(θ,Σ|Y) =
J∑︂

j=1

T∑︂
t=1

N∑︂
n=1

β̄
(n)
t, j · δ(θ − θ

(n)
t )δ

(︂
Σ −Σ( j)

)︂
(35)

where β̄(n)
t, j =

β(n)
t, j∑︁J

i=1
∑︁T

v=1
∑︁N

m=1 β
(m)
v,i

. Note that we have different numbers of samples about θ (i.e., NT ) and

Σ (i.e., J). This recall the recycling Gibbs sampling idea in [7], where the space is divided in blocks
and different numbers of samples is considered for each block.
The marginal likelihood p(Y) can be approximated as

p(Y) ≈ ˆ︁p(Y) =
1

JNT

J∑︂
j=1

T∑︂
t=1

N∑︂
n=1

β(n)
t, j . (36)

4.3 Approximation of the marginal posteriors
An approximation of the marginal posterior distribution of θ can be obtained

p(θ|Y) =
∫︂
Σ

p(θ,Σ|Y)dΣ ≈ ˆ︁p(θ|Y) =
T∑︂

t=1

N∑︂
n=1

ᾱ(n)
t · δ(θ − θ

(n)
t ), (37)

where

ᾱ(n)
t =

∑︁J
j=1 β

(n)
t, j∑︁J

i=1
∑︁T

v=1
∑︁N

m=1 β
(m)
v,i

. (38)

Moreover, we can assign a weight to each drawn matrix above Σ( j), approximating the marginal pos-
terior of the covariance matrix

p(Σ( j)|Y) =
∫︂
Θ

p(θ,Σ( j)|Y)dθ ≈

∑︁T
t=1

∑︁N
n=1 β

(n)
t, j∑︁J

i=1
∑︁T

v=1
∑︁N

m=1 β
(m)
v,i

δ
(︂
Σ −Σ( j)

)︂
, (39)

= λ̄ j · δ
(︂
Σ −Σ( j)

)︂
, (40)

where

λ̄ j =

∑︁T
t=1

∑︁N
n=1 β

(n)
t, j∑︁J

i=1
∑︁T

v=1
∑︁N

m=1 β
(m)
v,i

. (41)

Then, the marginal posterior of the covariance matrix is approximated as

p(Σ|Y) ≈ ˆ︁p(Σ|Y) =
J∑︂

j=1

λ̄ j · δ
(︂
Σ −Σ( j)

)︂
. (42)
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For instance, a minimum mean square error estimator of Σ can be approximated as

ˆ︁Σ = J∑︂
j=1

λ̄ jΣ
( j),

and approximations of high-order moments p(Σ|Y) can be also obtained. Table 2 summarizes all the
weights and the corresponding distributions.

Table 2: Summary of the weights and the corresponding distributions.
Distribution to approximate Normalized weights Additional information

β(n)
t, j =

ℓ(Y|θ(n)
t ,Σ

( j))gθ(θ
(n)
t )

q(θ(n)
t |µt ,Λt)

·
gΣ(Σ( j))
qΣ(Σ( j))

p(θ|Y, ˆ︁Σ(T )
ML ) ˜︁w(n)

t – See Eqs. (19) and (23)

p(θ|Y,Σ) ρ̄(n)
t (Σ) = ℓ(Y|θ

(n)
t ,Σ)gθ(θ

(n)
t )

q(θ(n)
t |µt ,Λt)

β(n)
t, j = ρ

(n)
t (Σ( j)) · γ j

p(θ,Σ|Y) β̄
(n)
t, j =

β(n)
t, j∑︁J

i=1
∑︁T

v=1
∑︁N

m=1 β
(m)
v,i

p(θ|Y) ᾱ(n)
t =

∑︁J
j=1 β

(n)
t, j∑︁J

i=1
∑︁T

v=1
∑︁N

m=1 β
(m)
v,i

p(Σ|Y) λ̄ j =

∑︁T
t=1

∑︁N
n=1 β

(n)
t, j∑︁J

i=1
∑︁T

v=1
∑︁N

m=1 β
(m)
v,i

p(Y)
∑︁J

j=1
∑︁T

t=1
∑︁N

n=1 β
(n)
t, j

4.4 Prior and proposal densities over covariance matrices
Consider a positive definite K ×K matrix Σ. The Wishart distribution is defined on the space RK ×RK

of positive definite matrices. The corresponding pdf is

gΣ(Σ) = gΣ(Σ|Φ, ν) ∝ |Σ|
ν−K−1

2 exp
(︄
−

1
2

trace(Φ−1Σ)
)︄
, (43)

where |Σ| denotes the determinant of the matrix Σ, ν ≥ K−1 is the number of degrees of freedom and
Φ is an K ×K reference covariance matrix. It is possible to see Eg[Σ] = νΦ. The Wishart distribution
is often interpreted as a multivariate extension of the χ2 distribution.

Choice of Φ and ν. We choose

Φ =
1
ν
ˆ︁Σ(T )
ML . (44)
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Recall that Eg[Σ] = νΦ. In this sense, our approach is an empirical Bayes scheme since this param-
eter of the prior is chosen after looking the data by ATAIS (see also data-based priors in [26]). The
parameter ν represents the degrees of freedom of the distribution. This value must be ν ≥ K − 1, but
for the generated matrices to be non-singular with probability 1 we need ν ≥ K. For learning ν, we
can use again an empirical Bayes approach maximizing the marginal likelihood p(Y) = p(Y|ν) in Eq.
(36), i.e., we can find the ν∗ such that ν∗ = arg max p(Y|ν).

Choice of the proposal pdf. For simplicity, we assume qΣ(Σ) = gΣ(Σ), i.e., we choose a pro-
posal density equal to the prior density. As a consequence, with this choice we have γ j = 1 in Eq.
(34).

Generation of random matrices according to a Wishart density. When ν is an integer, the Wishart
distribution represents the sums of squares (and cross-products) of ν draws from a multivariate Gaus-
sian distribution. Specifically, given ν random vectors of dimension K × 1, i.e. si ∼ N(0,Φ),
i = 1, . . . , ν, the generated matrix

Σ′ =
ν∑︂

i=1

sis⊤i ,

is distributed as a Wishart density with ν degrees of freedom and K × K scale matrix Φ. Then, we can
employ the following sampling method:

1. Draw ν multivariate Gaussian samples si = [si,1, . . . , si,K]⊤ ∼ N(0,Φ), with i = 1, . . . , ν.

2. Set Σ′ =
∑︁ν

i=1 sis⊤i .

5 Inverted layered importance sampling (ILIS)
The direct application of Monte Carlo methods in the complete space of θ and Σ generally does not
provide good results. This is the reason why we propose the ATAIS algorithm where the inference
is carried out in two phases, first a set of θ samples and ˆ︁ΣML are obtained. Then the samples θ are
re-weighted and other weighted sample matrices Σ are generated.
In this section, we introduce a method, conceptually simpler than ATAIS, called inverted layered
importance sampling (ILIS). See Table 3 for a detailed description. This method starts by generating
N covariance matrices and running N different (parallel and indipendent) MCMC chains with target
density π̄(θ|Σ(n),Y), i.e., the conditional distribution of θ given Σ(n). Some important considerations
are provided below:

• Each MCMC algorithm produces a chain of T vectors, i.e., θ(n)
1 , ....θ

(n)
T . All these vector are

weighted with the weight γn =
gΣ(Σ(n))
qΣ(Σ(n))

.

• ILIS can be seen as a Monte Carlo scheme which combines IS and MCMC techniques, based on
two layers. With respect to the works in [21, 22], we can interpreted that the IS part forms the
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upper layer, whereas the MCMC chains are generated in the lower layer of ILIS. and all these

vectors are weighted with the weight γn =
gΣ(Σ(n))
qΣ(Σ(n))

.

• Note that again, as in ATAIS, we have a different number of samples with respect to θ (i.e., NT ),
and with respect to Σ (i.e., N), which recalls the recycling Gibbs scheme in [7].

The complete posterior approximation by ILIS is given by

ˆ︁p(θ,Σ|Y) =
T∑︂

t=1

N∑︂
n=1

γ̄n · δ(θ − θ
(n)
t )δ

(︂
Σ −Σ(n)

)︂
, with γ̄n =

γn∑︁N
i=1 γi
. (45)

Even if ILIS seems much simpler than ATAIS, the results are not particularly good compared to the
obtained performance by ATAIS, as we show in the numerical simulations.
Joint use of ATAIS and ILIS. One interested practitioner could use the first part of ATAIS in Table 6
“to feed” with good parameters the proposal density qΣ(Σ) and the proposals used inside the N parallel
MCMC chains (i.e., design good proposals for ILIS). However, with respect to the complete ATAIS,
this scheme has an higher computational cost in terms of generated samples and likelihood evaluation.
Indeed, recall that the second part of ATAIS does not require any additional sample generation and
likelihood evaluation.

Table 3: Inverted layered importance sampling (ILIS)

1. Choose N, T , µ0 and qΣ(Σ) as well as the the proposal densities and structure of M possi-
bly different MCMC methods.

2. For j = 1, . . . , J:

(a) Generate Σ( j) ∼ qΣ(Σ).

(b) Generate N different MCMC chains of length T obtaining {θ(n)
t }

T
t=1, with the condi-

tional distribution
π̄(θ|Σ( j),Y) ∝ ℓ(Y|θ,Σ( j))gθ(θ),

as a target density.

(c) Assign to each pair {θ(n)
t ,Σ

(n)} the weight γ j =
gΣ(Σ( j))
qΣ(Σ( j))

, for all j = 1, ..., J and

t = 1, ...,T .

6 Simulations
We test the proposed scheme in three different numerical examples. It is important to remark that, in all
the numerical experiments, any attempts of using a Monte Carlo approach (such an MCMC algorithm)
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directly of the joint space {θ,Σ} produces much higher errors in estimation, which makes difficult to
compare and visualize with respect to the results obtained by the proposed schemes. Therefore, we
mainly compare complete ATAIS with ILIS.

6.1 Localization in wireless sensor network
To test the proposed methods, we aim to solve the task of determining the location of a target based
on wireless sensor measurements. We can represent the target position as a random vector θ ∈ R2.
We have a wireless network of K = 3 sensors, whose positions are known and labeled as s1, ..., sK . We
collect R measurements from each sensor, and these measurements follow a certain distribution. Lets
recall that each observations has the form

yr = fr(θ) + vr (46)

with fr : R2 → R3 given by:

fr(θ) = [−A log(∥ θ − s1 ∥
2), −A log(∥ θ − s2 ∥

2), −A log(∥ θ − s3 ∥
2)] (47)

i.e.,
fr,i(θ) = −A log(∥ θ − si ∥

2),

for i = 1, 2, 3. The error term is vr ∼ N(0,Σtrue), with Σtrue ∈ R
3×3 being a diagonal matrix with

diagonal elements 1, 2 and 3. The parameter A is a constant that determines the rate at which the signal
strength decreases with distance and is fixed at 10. This value can be influenced by various factors,
such as environmental conditions or manufacturing processes. The values of variance of the sensors,
as stated before, is unknown for each sensor.
We consider a scenario with K = 3 sensors, which makes the complete dimension of the problem to
be

D = M +
K(K + 1)

2
= 2 +

3(3 + 1)
2

= 8.

The positions of these sensors are given by: s1 = [0.5, 1], s1 = [3.5, 1] and s3 = [2, 3]. The positions
of the target (and parameter we want to estimate) is θtrue = [2.5, 2]. In this scenario 50 observation
vectors were generated. For comparison purposes, the prior over θ was set as uniform, i.e., g(θ) ∝ 1.

We test 3 different algorithms: (a) complete ATAIS, (b) ILIS using Metropolis Hastings (MH)
chains and (c) a unique MH chain working only in the θ-space, keeping fixed the covariance matrix
to the maximum likelihood estimation obtained by ATAIS in its first part (i.e., ˆ︁Σ(T )

ML ). The results are
given in Figure 3. Our goal is to approximate the MAP estimation of θ. All the results are averaged
over 1000 independent runs.
In ATAIS, we set T = 40 iterations with N = 50 particles. We consider a Gaussian proposal density
for the θ-space with initial mean [0, 0]⊤, with a diagonal initial covariance matrix of 6I2. The initial
covariance matrix ˆ︁Σ(0)

ML is set to the identity matrix I3. For ILIS, we consider as prior and proposal den-
sity for the covariance matrices a Wishart distribution with ν = 4 degrees of freedom and a reference
matrix Φ = 3I3. Then, for θ-space, we use MH chains with random walk Gaussian proposal density
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(starting in [0, 0] and diagonal covariance 0.05I2) and with length T = 200. We set J = 10, i.e., we
generates J = 10 possible matrices and we have J = 10 parallel chains considering different target
densities (i.e., different conditional posterior pdfs, each one considering a different covariance matrix).
Here, we consider all the chains and we estimate a unique estimation of the MAP of θ. Finally, for the
unique/single MH chain addressing the conditional posterior keeping fixed ˆ︁Σ(T )

ML (obtained by ATAIS),
we consider again a random walk Gaussian proposal density (with inital [0, 0]⊤ and diagonal covari-
ance 0.05I2) and with length T = 2000.
Note that the number of evaluations of the non-linear model f differs in the different methods: in
ATAIS is only NT = 2000, in ILIS is JT = 2000, whereas in the single MH we have T = 2000
evaluations of f. Therefore, all techniques have the same evaluations of the non-linear model f(θ) that
corresponds to the main cost in the likelihood evaluation.
In Figure 3(a), we can see the final ATAIS approximates of MAP of θ, represented with green squares,
whereas the estimations of ILIS are presented with red circles. The results provided by the single MH
chain are depicted with blue diamonds in Figure 3. Looking at Figure 3 (a) it is clear that ATAIS (green
squares) provides the best performance estimating θtrue (black cross) better than ILIS (red circles). In
addition, we can see that the single MH chain using the covariance matrix estimated by ATAIS (blue
diamonds) shows better results in most of the cases than ILIS, but they are still worst than ATAIS.
Additionally, we provide the mean absolute error (MAE) versus N, obtained by ATAIS in estimating
the mean in θ in Figure 4 (left). The error decreases as we increase the number of samples for both
values of T = 50 and T = 100. Other MAE values (also in estimating the covariance matrix Σ)
obtained by ATAIS are given in Tables 4 and 5, in column “Localization”. In Tables 4 and 5, ΣML is
the true maximum of the likelihood function for the covariance matrix fixing θ to θtrue (i.e., using
θtrue in Eq (18)). As expected, the best results are obtained increasing the number of particles and the
iterations, allowing a better exploration of the parameter space.
Note that, in this example, the posterior is very narrow, which can make it hard for the generation
of samples in regions with high posterior evaluation, this is why the adaptation of the proposal scale
matrix in step 2d of Table 6 is quite important. In order to improve even more the exploration, at some
iteration the scale matrix of the proposal densities can be periodically increased to allow exploration
of areas away from the narrow mode.

Credible interval with 95% of probability for the matrix. In order to show how to perform a
complete Bayesian inference over the covariance matrix Σ as well, we consider a Wishart proposal
with ν = 100 (degrees of freedom) with a reference matrix (Φ) equals to ˆ︁Σ(T )

ML (i.e., we apply the
second part of ATAIS). With this proposal distribution, we generate J = 1000 matrices and assign
a weight to each of them following Eq. (39). Applying resampling (exactly J times) according to
the normalized weights {λ̄ j}

J
j=1, we calculate the percentiles 0.025 and 0.975 for each component to

get a credible interval for the covariance matrix Σ, as shown below (where we have averaged over
100 independent runs) in Eq (48). The first part of ATAIS was performed with T = 50 and N = 50,
obtaining a confidence interval with α = 0.05 for each value of the matrix,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ [0.6697, 1.3594] [−0.3206, 0.2958] [−0.6946, 0.3115]

[−0.3206, 0.2958] [1.2584, 2.4827] [−0.4709, 0.8096]
[−0.6946, 0.3115] [−0.4709, 0.8096] [2.9975, 5.8437]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (48)
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Note that the covariance matrix Σ represents the covariance among the different sensors in the net-
work. In Figure 2, we can see the histograms obtained by the resampled particles of each components
of Σ (after performing resampling according to the weights {λ̄ j}

J
j=1). We must remark how the his-

tograms corresponding to the null components of Σtrue have the mode very close to the value 0.

Figure 2: Histogram of the components, denoted as [Σ]i, j = Σi, j, of the covariance matrices after
resampling according to the weights λ̄ j, for the location example.
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(a) (b)

Figure 3: Green squares represent the estimation with ATAIS, red circles stand for the estimations
of ILIS with a covariance matrix generated from an uninformative wishart distribution. The blue
diamonds represent the estimations of the MCMC using the estimation of ΣML found by ATAIS. The
black cross stands for the true MAP. (a) location example; (b) multi-output example.

6.2 Multi-output model
In this second example, we take a multi-output model given by

yr = fr(θ) + vr (49)

where the vector function fr(θ) : R2 → R4 with θ = [θ1, θ2]⊤ is given by the components

fr,1(θ1) = θ1 sin(t)t,
fr,2(θ2) = θ2 cos(t)t2,
fr,3(θ) = fr,3(θ1, θ2) = (θ1 + θ2) sin(t) cos(t),
fr,4(θ2) = θ2t2,

(50)

Where the error term vr ∼ N(0,Σtrue) with

Σtrue =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.1 0.3 0.16 0
0.3 1.05 0 0

0.16 0 2 0
0 0 0 2.95

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The true value of theta is set as θ = [0.2, 0.1]⊤. In this case de dimension of the observations remains
at K = 4, with θ of dimension M = 2, which makes a total inference dimension of

D = M +
K(K + 1)

2
= 2 +

4(4 + 1)
2

= 10.

20



This example states clearly the difficulty of performing an estimation Σ directly from the vectors ob-
served, {yr}

R
r=1. This difficulty comes from the vectors not sharing the same theoretical mean. The

prior for θ was also taken as g(θ) ∝ 1.
For this example we also test three algorithms: (a) complete ATAIS, (b) ILIS using Metropolis Hast-
ings (MH) and (c) a single MH chain working exclusively in the θ-space, maintaining fixed the covari-
ance matrix and equal to the maximum likelihood estimation obtained by ATAIS, as in the previous
example. The results are presented in Figure 3(b). We aim to approximate the MAP estimate of θ. All
the results are averaged over 1000 independent runs.
We employ in ATAIS the same specifications as in the previous example, i.e., N = 50,T = 40. We use
a Gaussian proposal with the initial mean at [0, 0] and the initial covariance matrix is 6I2. The initial
covariance matrix for the observations, ˆ︁Σ(0)

ML , is the identity matrix, I4. For ILIS, we consider as prior
and proposal density for the covariance matrix a Wishart distribution with ν = 5 degrees of freedom
and a reference matrix Φ = 1

ν
I4. For working in the θ-space we use MH chains with a Gaussian

random walk proposal density with initial mean [0,0] and diagonal covariance matrix 0.005I2. The
length of the chains is T = 200. We generate J = 10 possible matrices, thus we have J = 10 parallel
chains considering different target densities (each target considers a different covariance matrix). We
consider that all the chains provide a unique estimation of the MAP of θ.
Finally, for the single MH chain addressing the conditional posterior that fix the covariance matrix to
the estimated ˆ︁Σ(T )

ML by ATAIS we consider a Gaussian random walk proposal density. This proposal
density has an initial mean [0, 0] and has diagonal covariance matrix 0.005I2. The length of the chain
is T = 2000.
In Figure 3(b) we can see the final ATAIS estimates of the MAP of θ represented by green squares,
while red circles represent the estimations of ILIS. The results provided by single MH chain are dis-
played using blue diamonds. Looking at Figure 3(b) it is clear that the ATAIS gives the best estima-
tions of θtrue (black cross) than the estimations of ILIS. Once again we see how using the covariance
matrix estimated by ATAIS (blue diamonds) gives better results than ILIS. In addition, we can see that
the single MH chain using the covariance matrix estimated by ATAIS (blue diamonds) shows better
results than ILIS in most of the cases, and some of them are comparable to ATAIS. Recall that, this
third method has the advantage of using exactly ˆ︁Σ(T )

ML that is the estimation provided by ATAIS. Then,
the success of this third method is mainly due to an ATAIS ability.
Additionally, we provide the MAE versus the number of particles N, obtained by ATAIS in estimating
the mean of θ in Figure 4 (right). The error decreases as we increase the number of samples for both
values of T = 50 and T = 100. Other MAE values (also in estimating the covariance matrix Σ) ob-
tained by ATAIS are given in Tables 4 and 5, in column “Multi-output”. As expected, the best results
are obtained increasing the number of particles and the iterations, allowing a better exploration of the
parameter space. Even if the error of the estimation of ΣML is very small, the error estimating the Σtrue
of the process can be high, since the difference between ΣML and Σtrue depends on the amount of data
(they become closer with more data). This numerical example shows the strength of ATAIS, since in
this multi-output problem the covariance matrix Σ cannot be approximately in advance directly from
the data.

Credible interval with 95% of probability for the matrix. In order to perform a complete Bayesian
inference over the covariance matrix Σ, we apply the second part of ATAIS. We consider a Wishart
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density as proposal (and prior) with ν = 100 (degrees of freedom) with a reference matrix (Φ) equals toˆ︁Σ(T )
ML (i.e., we apply the second part of ATAIS). With this proposal distribution, we generate J = 1000

matrices and assign a weight to each of the following Eq. (39). Applying resampling according to the
normalized weights {λ̄ j}

J
j=1, we calculate the percentiles 0.025 and 0.975 for each component to get

a credible interval for the covariance matrix Σ, as shown below in Eq (51) (where we have averaged
over 100 independent runs). The first part of ATAIS was performed with T = 50 and N = 50.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[0.0614, 0.1586] [0.1669, 0.4483] [0.0703, 0.4736] [−0.2578, 0.1985]
[0.1669, 0.4483] [0.6125, 1.5325] [−0.4739, 0.7620] [−0.7571, 0.7682]
[0.0703, 0.4736] [−0.4739, 0.7620] [1.5868, 3.9349] [−1.3594, 1.0586]

[−0.2578, 0.1985] [−0.7571, 0.7682] [−1.3594, 1.0586] [2.4684, 9.1016]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (51)

Figure 4: Mean absolute error (MAE) for the estimation of the true mean of the posterior with different
number of particles by ATAIS. (Left: location example. Right: multi-output example with the scale
for y-axis in logarithm).

Table 4: Mean absolute error (MAE) averaged over 1000 simulations of ATAIS for estimating the
θMAP, ΣML and Σtrue . For every value N, the number of iterations is fixed at 50.

Localization Multi-output
N θmap ΣML Σtrue θmap ΣML Σtrue
5 0.0377 0.8934 1.0720 0.2325 0.7666 0.9094
12 0.0207 0.0443 0.2322 0.0102 0.0136 0.1789
25 0.0205 0.0443 0.2323 0.0013 0.0026 0.1709
50 0.0205 0.0442 0.2324 0.0012 0.0023 0.1713
100 0.0204 0.0442 0.2325 0.0009 0.0017 0.1712
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Table 5: Mean absolute error over 100 simulations of ATAIS for estimating the θMAP, ΣML and Σtrue.
For every value T , the number of particles is fixed at 100.

Location Multi-output
T θmap ΣML Σtrue θmap ΣML Σtrue
5 0.1740 2.4068 2.4644 0.2100 0.4648 0.5526
10 0.0758 0.4292 0.5360 0.1219 0.1293 0.2328
20 0.0328 0.5835 0.6933 0.0355 0.2663 0.3594
30 0.0205 0.0441 0.2326 0.0015 0.0031 0.1711
50 0.0205 0.0443 0.2324 0.0010 0.0021 0.1714

6.3 Application to a biology system
In this third example we focus on an inference problem in a biology system [39]. We aim to make
inference on the covariance matrix of the observations of a model. This model represents a physiolog-
ical system with two states and one input variable. The model is governed by a set of four parameters
denoted as θ = (k12, k21, k1e, b). The dynamics of the system is rule by the following differential
equations:

dx1(t)
dt
= − (k1e + k12) · x1(t) + k21 · x2(t) + b · u(t),

dx2(t)
dt
=k12 · x1(t) − k21 · x2(t),

(52)

where

u(t) =

⎧⎪⎪⎨⎪⎪⎩t + 0.5 if 0 ≤ t ≤ 1
1.5e1−t if t > 1,

(53)

is an input of the system. We set the true parameters to θtrue = [1, 1, 1, 2]⊤ and

Σtrue =

(︄
1 0.9

0.9 2

)︄
.

The prior for the components of θ was set as uniform in the interval [0, 5] (for all the components)
as suggested in [39]. The system above has not analytically close solution. Hence, the generation of
the data according to the system is obtained using a Runge-Kutta Matlab solver [40]. We assume that
the solution is perturbed by Gaussian noise according to the distribution N(0,Σtrue). Then, 100 data
points are sampled at equidistant times from the solution of the system (52).

Remark. Note that, in this experiment, the function f is evaluated only approximately since it is
the solution of the system (52) which can not be evaluated exactly. Thus, even considering the vector
of true values θtrue, we need to approximate f(θtrue) by a differential equation solver (discretizing it)
obtainingˆ︁f(θtrue). Since also the vector of θ must be estimated, here we can interpret that we are
doing a double approximation of f(θ).
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In order to make inference we use ATAIS with N = 300 particles during T = 100 iterations. The
initial value for the mean of the proposal is set at [0, 0, 0, 0] and for the covariance matrix is 6I4. The
initial estimate for the covariance matrix of the data, ˆ︁Σ(0)

ML , was the identity, I2.
In the second part of ATAIS, we generate J = 1000 matrices from a Whishart distribution (degrees of
freedom, ν = 100) with reference matrix equal to ˆ︁Σ(T )

ML , the final estimate of the first part of ATAIS. To
each of the generated matrices we assign a weight following Eq (39). After performing resampling.
Applying resampling according to the weights {λ̄ j} we calculate the percentiles 0.025 and 0.975 to get
a 95% credible interval (averaged over 50 independent runs) in Eq (54). It can be seen that our interval
contains the true components of the covariance matrix.(︄

[0.7820, 1.3876] [0.7099, 1.4614]
[0.7099, 1.4614] [1.6518, 2.8760]

)︄
(54)

As a final remark, in this example, the posterior has a particularly flat shape in some regions, so that
many values of the parameters θ provide acceptable results for the solution of the system (52), even if
the distance to the θtrue could be large.

7 Conclusions
In this work, we have introduced an adaptive importance sampling (AIS) method for robust inference
in complex Bayesian inversion problems with unknown parameters θ of the non-linear mapping and
unknown covariance matrix Σ of the noise perturbation. The variables of interest are split in two
blocks, the parameters θ of the non-linear model and the covariance matrix Σ, are handled in different
ways. The main proposed inference scheme is divided in two main parts. The first part is devoted to
approximate a conditional posterior θ given the data and the maximum likelihood estimator of Σ. This
first part allows of finding regions of high probability about θ and Σ (working alternately in subsets
of the complete space, with reduced dimensions).
In the second part, a Bayesian approach is also performed over Σ re-using and re-weighting the sam-
ples of θ previously generated. Then, an approximation of the complete posterior of {θ,Σ} is provided.
This second part does not required of additional evaluation of the possibly costly non-linear vectorial
model f. The resulting scheme is a robust inference approach for Bayesian inversion, based on adaptive
importance sampler that addresses a sequence of different conditional posteriors and a post-process
that allows a Bayesian inference also over Σ. Additionally, a simpler compelling scheme, called
ILIS, has been introduced in order to compare with ATAIS. In the numerical simulations presented in
this work we can see the good performance of ATAIS providing a complete Bayesian analysis of the
complete space {θ,Σ}.
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Table 6: ATAIS: an adaptive IS scheme with a sequence of adaptive target pdfs

1. Initializations: Choose N, µ1, Λ1, ˆ︁Σ(0)
ML , and set πMAP = 0. Recall πt(θ) ∝ p(θ|Y, ˆ︁Σ(t−1)

ML ).

2. For t = 1, . . . ,T :

(a) Sampling:
i. Draw θ(1)

t , ...,θ
(N)
t ∼ q(θ|µt,Λt).

ii. Assign to each sample the weights

w(n)
t =

πt(θ
(n)
t )

q(θ(n)
t |µt,Λt)

, n = 1, ...,N. (55)

(b) Current maximum estimations:
i. Obtain θ(t)

max = arg max
n
πt(θ

(n)
t ), and computeˆ︁rt = fr(θ

(t)
max).

ii. Compute ˆ︁Σt =
1
R

R∑︂
r=1

(yr −ˆ︁rt)(yr −ˆ︁rt)⊤.

(c) Global maximum estimations:
• If πt

(︁
θ(t)
max

)︁
> πMAP:

i. ˆ︁θ(t)
MAP = θ(t)

max,

ii. ˆ︁Σ(t)
ML =

ˆ︁Σt,

iii. Update according to ˆ︁θ(t)
MAP and ˆ︁Σ(t)

ML, i.e, πMAP = πt+1
(︁ˆ︁θ(t)
MAP

)︁
.

• Otherwise ˆ︁θ(t)
MAP =

ˆ︁θ(t−1)
MAP , and ˆ︁Σ(t)

ML =
ˆ︁Σ(t−1)
ML .

(d) Adaptation: Set

µt = ˆ︁θ(t)
MAP, (56)

Λt =

N∑︂
n=1

w̄(n)
t (θ(n)

t − θ̄t)⊤(θ(n)
t − θ̄t) + δIM, (57)

where w̄(n)
t

w(n)
t∑︁N

i=1 w(i)
t

are the normalized weights, θ̄t =
∑︁N

n=1 w̄(n)
t θ(n)

t and δ > 0.

3. Output: Return the final estimators ˆ︁θ(T )
MAP, ˆ︁Σ(T )

ML , and all the weighted samples {θ(n)
t ,˜︁w(n)

t },
for all t and n, with the corrected weights

˜︁w(n)
t = w(n)

t
πT+1(θ(n)

t )

πt(θ
(n)
t )
. (58)
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