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                                                      ABSTRACT 
 

 

 

In the chapter 12° of his most significant book LIBER ABACI, Leonardo Pisano known as Fibonacci 

(Pisa 1170-1240 (?)) proposed a problem on the reproduction of rabbits [*]. So many scholars 

deduced that he arrives to his famous numerical sequence starting from this problem. In this article 

is explained a new hypothesis. The Fibonacci sequence was generated by the iteration of a theorem 

on the Golden Section, and it is presumably that was the great Italian mathematician to state and 

demonstrate it. The theorem allow us to proof a lot of properties of Fibonacci numbers.  
 

[*]  A man put a pair of rabbits in a place surrounded on all sides by a wall. How many pairs of rabbits can be produced 

by the initial couple in a year supposing every couple each month produces a new pair that can reproduce itself from the 

second month?                                                                          
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1. The Golden Section 
 

Many math texts use the Greek letter φ to indicate the Golden Section and Φ to indicate the Golden 

Ratio. In this article, for such sizes, has been preferred to use the letters a, A; and un to indicate the 

generic number of the Fibonacci sequence. 

 

Definition: 

 

The golden section of a segment is the part of the segment mean proportional between the whole 

segment and the remaining part. 

 

With reference to figure  

 

 

                            
 

 we have :                                                          l : a = a : l – a  

 

 for the fundamental property of proportions it is : 

 

                                                                a
2
 = l·(l – a) 

 

whence :                                                a
2
 + l·a – l

2
 = 0 

 

Solving we obtain the acceptable (positive) solution : 𝑎 =   
 5−1

2
 ∙ 𝑙         (1) 

 

Place l = 1 → a =  0,61803398875…… irrational value.  

 

Theorem 

 

 If a is the Golden Section of l, then l is the Golden Section of l + a. 

 

Demonstration : 

 

From  l : a = a : (l – a)  applying composing property we have: (l + a) : l = (a + l – a) : a  → 

(l + a) : l = l : a  where a it’s the remaining part (l + a) – l  . 

 

From the definition of the Golden Section we have : 

 

                                                          (l + a) : l = l : (l + a) – l  

                                                           

i.e :                                                    (l + a) : l = l : a  

 

from which the quadratic equation : l
2
 = (l + a)·a  → l

2
 -  a·l – a

2
 = 0 
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resolving we obtain the acceptable (positive) solution :  l =   
 5+1

2
 ∙ 𝑎      (2) 

where  
 5+1

2
  = 1/a = A (Golden Ratio)  

 

Replacing (1) in (2) we have : 

 

                                         l =  
 5+1

2
 ∙  

 5−1

2
 ∙ 𝑙 =  

5−1

4
 ∙ 𝑙 = 𝑙   → 1 = 1 → QED   

 

So: a·1/a = a·A = 1 

 

The equation l
2
 - a·l – a

2
 = 0 can be write a

2
 + l·a – l

2
 = 0 from which the value of Golden Section.  

                     

Iterating the theorem we get the following algebraic succession :                                                            

                                                           

                                                        l + 1a  → l 

                                                       2l + 1a → l + a 

                                                      3l + 2a → 2l +1a   

            S(a)                                   5l + 3a → 3l + 2a    (3) 

                                                     8l + 5a → 5l + 3a       

                                                   13l + 8a → 8l + 5a    (5) 

                                                 … …  … … … … … 

                                               un+1·l + un·a → un·l + un-1·a 

                                                 … … … … … … … … …  

 

Check of the (3) : 

 

(5l + 3a) : (3l + 2a) = (3l + 2a) : [(5l +3a) - (3l + 2a)] 

(5l + 3a) : (3l + 2a) = (3l + 2a) : (2l + a) 

(3l + 2a)
2
 = (5l + 3a)·(2l + a) 

9l
2
 + 12al + 4a

2
 = 10l

2
 + 5al + 6al + 3a

2
 

l
2
 – al – a

2
 = 0   resolving equation  

 

 

Check of the (5) : 

 

(13l + 8a) : (8l + 5a) = (8l + 5a) : [(13l +8a) - (8l + 5a)] 

(13l + 8a) : (8l + 5a) = (8l + 5a) : (5l + 3a) 

(8l + 5a)
2
 = (13l + 8a)·(5l + 3a) 

64l
2
 + 80al + 25a

2
 = 65l

2
 + 39al + 40al + 24a

2
 

l
2
 – al – a

2
 = 0   resolving equation    
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If in the sequence S(a) we consider the coefficients of the Golden Section we have the numerical 

sequence :  

 

                                               {1; 1; 2; 3; 5; 8; 13; …; un-1; un; un+1;…} 

 

That is the sequence of Leonardo Pisano, known as Fibonacci.  

 

It is likely that the Italian mathematician has come to the succession above by the study of the 

Golden Section and applying it the theorem proved above. Indeed, it is to be assumed that he was to 

state and prove it. 

 

2. Properties of Fibonacci numbers 
 

Taking into consideration the general relation: un+1·l + un·a → un·l + un-1·a  from which the 

proportion : 

 

(un+1·l + un·a) : (un·l + un-1·a)  =  (un·l + un-1·a) : [(un+1·l + un·a) – (un·l + un-1·a)] →   

(un+1·l + un·a) : (un·l + un-1·a)  =  (un·l + un-1·a) : [(un+1 – un)·l +(un – un-1)] →  

(un+1·l + un·a) : (un·l + un-1·a)  =  (un·l + un-1·a) : (un-1·l + un-2·a)  

 

Hence : (un·l + un-1·a)
2
 = (un+1·l + un·a)· (un-1·l + un-2·a)  → … → 

                         (un
2
 – un+1·un-1)l

2
+ (un·un-1 – un+1·un-2)al + (un-1

2
 - un·un-2)a

2
  

Comparing with the resolving equation: l
2
 – al – a

2
 = 0 we have : 

 

𝑢𝑛
2 − 𝑢𝑛+1 ∙ 𝑢𝑛−1 = 1

𝑢𝑛 ∙ 𝑢𝑛−1 − 𝑢𝑛+1 ∙ 𝑢𝑛−2 = −1

𝑢𝑛−1
2 − 𝑢𝑛 ∙ 𝑢𝑛−2 = −1

      →  

(1)   

𝑎)  𝑢𝑛
2 − 𝑢𝑛+1 ∙ 𝑢𝑛−1 = 1

𝑏)  𝑢𝑛+1 ∙ 𝑢𝑛−2 − 𝑢𝑛 ∙ 𝑢𝑛−1 = 1

𝑐)  𝑢𝑛 ∙ 𝑢𝑛−2 − 𝑢𝑛−1
2 = 1

   if we consider the Golden Ratio. 

(2)   

𝑢𝑛
2 − 𝑢𝑛+1 ∙ 𝑢𝑛−1 = −1

𝑢𝑛+1 ∙ 𝑢𝑛−2 − 𝑢𝑛 ∙ 𝑢𝑛−1 = −1

𝑢𝑛 ∙ 𝑢𝑛−2 − 𝑢𝑛−1
2 = −1

   if we consider the Golden Section.  

In general, for four consecutive Fibonacci numbers result : 

(3)     

𝑢𝑛
2 − 𝑢𝑛+1 ∙ 𝑢𝑛−1 = ±1

𝑢𝑛+1 ∙ 𝑢𝑛−2 − 𝑢𝑛 ∙ 𝑢𝑛−1 = ±1

𝑢𝑛 ∙ 𝑢𝑛−2 − 𝑢𝑛−1
2 = ±1

  

 

Remembering :  

 

S(u) = {1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; …; un-2; un-1; un; un+1;…} 
 

 



5 
 

Check : 

 

a) 13
2
 - 21·8 = 169 - 168 = 1               a) 55

2
 - 89·34 = 3025 - 3026 = -1 

b) 21·5 - 13·8 = 105 - 104 = 1             b) 89·21 - 55·34 = 1869 - 1870 = -1    

c) 13·5 - 8
2
 = 65 - 64 = 1                     c) 55·21 – 34

2
 = 1155 - 1156 = -1 

 

 

If we choose a) b) of (1) and apply a linear combination for subtraction, we have : 

 

𝑎)  𝑢𝑛
2 − 𝑢𝑛+1 ∙ 𝑢𝑛−1 = 1 

                                                            𝑏)  𝑢𝑛+1 ∙ 𝑢𝑛−2 − 𝑢𝑛 ∙ 𝑢𝑛−1 = 1   
 

 

(𝑢𝑛
2 − 𝑢𝑛+1 ∙ 𝑢𝑛−1) − (𝑢𝑛+1 ∙ 𝑢𝑛−2 − 𝑢𝑛 ∙ 𝑢𝑛−1) = 0  → 

 𝑢𝑛
2 − 𝑢𝑛+1 ∙ 𝑢𝑛−1 − 𝑢𝑛+1 ∙ 𝑢𝑛−2 + 𝑢𝑛 ∙ 𝑢𝑛−1 = 0  →  

 𝑢𝑛
2 + un−1 ∙  un − un+1 =  𝑢𝑛+1 ∙ 𝑢𝑛−2  

 

Bearing in mind that 𝑢𝑛+1 = 𝑢𝑛 + 𝑢𝑛−1 

  

 𝑢𝑛
2 + un−1 ∙  un − un − un−1 =  𝑢𝑛+1 ∙ 𝑢𝑛−2   →   𝑢𝑛

2 − 𝑢𝑛−1
2 =  𝑢𝑛+1 ∙ 𝑢𝑛−2  

 

Check :  

 

If we choose the four consecutive Fibonacci numbers: 3; 5; 8; 13  result: 64 - 25 = 13·3 

If we choose  144; 233; 377; 610  result: 142129 - 54289 = 144·610   

 

If we apply a linear combination for subtraction between a) c) of (1) we have : 

 

  
𝑎)  𝑢𝑛

2 − 𝑢𝑛+1 ∙ 𝑢𝑛−1 = 1 

𝑐)  𝑢𝑛 ∙ 𝑢𝑛−2 − 𝑢𝑛−1
2 = 1 

 

  𝑢𝑛
2 − 𝑢𝑛+1 ∙ 𝑢𝑛−1 −   𝑢𝑛 ∙ 𝑢𝑛−2 − 𝑢𝑛−1

2  = 0 →  … →  𝑢𝑛
2 + 𝑢𝑛−1

2 =  𝑢𝑛+1 ∙ 𝑢𝑛−1 + 𝑢𝑛 ∙ 𝑢𝑛−2  
 

And so on for many other properties.    

 

We list some properties of Fibonacci numbers.  

 

1) The sum of any ten consecutive Fibonacci numbers is always divisible by 11, and the 

quotient ranks seventh in the chosen sequence. 

2) By adding more consecutive numbers of the sequence, from the first one and adding 1 you 

get another Fibonacci number which follows by two places the last number in the sequence. 

3) Any number divided by the penultimate number preceding it in the sequence, you get 

quotient 2 and the remainder is the number preceding the divider. 

4) The square of any number in the sequence is equal to the number preceding it, multiplied by 

the number that follows it, plus or minus 1. 

5) The greatest common divisor of any two Fibonacci numbers is also a Fibonacci number. 

6) The sum of the squares of two consecutive numbers of the sequence is equal to the number 

that occupies the place obtained from the sum of the places of the considered numbers. 

7) The only square number in this sequence is 144. 

8) The only cubic number in the sequence is 8. 
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We list some examples for each of them. 

 

1)  un + un+1+ un+2 + un+3 + un+4 + un+5 + un+6 + un+7 + un+8 + un+9 = s/11 = un+6 

 

Examples : 

 

3 + 5 + 8 + 13 + 21 + 34 + 55 + 89 + 144 + 233 = 605/11 = 55 = u7 

8 + 13 + 21 + 34 + 55 + 89 + 144 + 233 + 377 + 610 = 1584/11 = 144 = u7 

… … 

 

2) u1 + u2 + u3 + … + un + 1 = un+2 

 

Examples : 

 

1 + 1 + 2 + 3 + 5 + 1 = 13 = u7 

1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 1 = 55 = u10 

… … 

 

3) un/un-2 = 2 and r = un-3 

 

Examples : 

 

u14/u12 = 377/144 = 2 and r = u11 = 89 

u20/u18 = 6765/2584 = 2 and r = u17 = 1597 

… … 

 

4) un
2
 = un-1·un+1 ± 1 

 

This property is a) of (3) 

 

Examples :  

 

u5
2
 = 21

2
 = 441 = 13·34 – 1 = u4·u6 – 1  

u15
2
 = 610

2
 = 372100 = 377·987 + 1 = u14·u16 + 1 

… … 

 

5) MCD(ui;uj) = uk ∈ 𝑆(𝑢) 

 

Examples : 

 

MCD(u9;u12) = MCD(34;144) = u3 = 2 

MCD(u15;u20) = MCD(610;6765) = u5 = 5 

MCD(u18;u24) = MCD(2584;46368) = u6 = 8 

… … 

 

6) un-1
2
 + un

2
 = u2n-1 

 

Examples : 

 

u4
2
 + u5

2
 = 3

2
 + 5

2
 = 9 + 25 = 34 = u9 



7 
 

u7
2
 + u8

2
  = 13

2
 + 21

2
 = 169 + 441 = 610 = u15 

u13
2
 + u14

2
 = 233

2
 + 377

2
 = 54289 + 142129 = 196418 = u27 

 

… … 

 

The properties 7) and 8) may be considered as conjectures. 

 

3. Pythagorean tern  

 

For four consecutive Fibonacci numbers un-2; un-1; un; un+1 is valid the property exposed in 1948 by 

mathematician Charles Raine: 

 

The product of extremes terms, twice the product of the mean terms, the sum of squares of the mean 

terms, form a Pythagorean tern, and the sum of squares of middles  𝑢𝑛
2 + 𝑢𝑛−1

2   it is a Fibonacci 

number. 

 

i. e. :                            𝑢𝑛−2 ∙ 𝑢𝑛+1 
2 +  2 ∙ 𝑢𝑛−1 ∙ 𝑢𝑛 

2 =  𝑢𝑛
2 + 𝑢𝑛−1

2  2 

 

 

Here is the general proof of this important property : 

 

𝑢𝑛−2
2 ∙ 𝑢𝑛+1

2 + 4 ∙ 𝑢𝑛−1
2 ∙ 𝑢𝑛

2 =   𝑢𝑛−1
2 + 𝑢𝑛

2 2  
 

𝑢𝑛−2
2 ∙ 𝑢𝑛+1

2 =  𝑢𝑛−1
4 + 𝑢𝑛

4 +  2 ∙ 𝑢𝑛−1
2 ∙ 𝑢𝑛

2 − 4 ∙ 𝑢𝑛−1
2 ∙ 𝑢𝑛

2    
 

𝑢𝑛−2
2 ∙ 𝑢𝑛+1

2 =  𝑢𝑛−1
4 + 𝑢𝑛

4 − 2 ∙ 𝑢𝑛−1
2 ∙ 𝑢𝑛

2   
 

Bearing in mind: un+1 = un + un-1 

 

 𝑢𝑛 + 𝑢𝑛−1 
2 ∙ 𝑢𝑛−2

2 =  (𝑢𝑛−1
2 − 𝑢𝑛

2 )2  

 

 𝑢𝑛 + 𝑢𝑛−1 
2 ∙ 𝑢𝑛−2

2 =   𝑢𝑛 + 𝑢𝑛−1 
2 ∙  𝑢𝑛 − 𝑢𝑛−1 

2  
 

Bearing in mind : un – un-1 = un-2 

 

𝑢𝑛−2
2 =  𝑢𝑛−2

2   →  1 = 1 → QED 

 

Checks : 

 

{…; 5; 8; 13; 21; …} : 5·21 = 105; 2·8·13 = 208; 8
2
 + 13

2
 = 233 

(105; 208; 233) : 105
2
 + 208

2
 = 233

2
 in fact: 11025 + 43264 = 54289 

And 233 is present in Fibonacci sequence. 

 

{…; 13; 21; 34; 55; …} : 13·55 = 715; 1·21·34 = 1428; 21
2
 + 34

2
 = 441 + 1156 = 1597 

(715; 1428; 1597) : 715
2
 + 1428

2
 = 1597

2
 in fact: 511225 + 2039184 = 1550409 

And 1597 is present in Fibonacci sequence. 

  

4. The Golden Ratio 
 

From the first proportion l : a = a : l – a  →  a
2
 = l

2
 – al  → a

2
 + al – l

2
 = 0  →  
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                                               a = 
 5 − 1

2
 = 0,6180398875 … 

 

and the Golden Ratio               A = 1/a = 1,6180398875 … 

 

We note that a and A have the same decimal part.  

 

From the resolving equation a
2
 + al – l

2
 = 0  →  l

2
 – al = a

2
  →  l

2
/a

2
 – l/a = 1 ;  put l = 1 we have : 

 

                                                         A
2
 = A + 1    

 

If we consider the relation l + a → l and the relative proportion l + a : l = l : a the resolving 

equation is  l
2
 – al – a

2 
 = 0  →  l

2
/a

2
 – l/a = 1 ;  put l = 1 we have : 

 

                                                         A
2
 = A + 1   

 

Check : 

 

 
 5+1

2
 

2

= 
 5+1

2
+ 1 →  

2 5+6

4
=  

 5+3

2
 →  

 5+3

2
=  

 5+3

2
  →  QET 

 

Summary : 

 

A = A 

A
2
 = A + 1 

A
3
 = A

2
·A = (A+1)·A = A

2
 + A 

A
4
 = A

3
·A = (A

2
 + A)·A = A

3
 + A

2
 

A
5
 = A

4
·A = (A

3
 + A

2
)·A = A

4
 + A

3
 

A
6
 = A

5
·A = (A

4
 + A

3
)·A = A

5
 + A

4
 

A
7
 = A

6
·A = (A

5
 + A

4
)·A = A

6
 + A

5
 

A
8
 = A

7
·A = (A

6
 + A

5
)·A = A

7
 + A

6
 

… …  

A
n
  = A

n-1
·A = (A

n-2
 + A

n-3
)·A = A

n-1
 + A

n-2
 

A
n+1

  = A
n
·A = (A

n-1
 + A

n-2
)·A = A

n
 + A

n-1
 

 

Or : 

 

A = A 

A
2
 = A + 1 

A
3
 = A

2
·A = (A+1)·A = A

2
 + A = (A+1) + A = 2A + 1  

 

Iterating the procedure we have : 

 

A
4
 = A

3
·A = (2A+1)·A = 2A

2
 + A = 2(A+1) + A = 3A + 2 

A
5
 = A

4
·A = (3A+2)·A = … = 5A + 3 

A
6
 = A

5
·A = (5A+3)·A = … = 8A + 5 

A
7
 = … = 8A

2
 + 5A = 8(A+1) + 5A = 13A + 8 

A
8
 = … = … = 21A+13 

A
n
  = … =  un·A + un-1 

A
n+1

  = … =  un+1·A + un  
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Summarizing : 

 

                                                A = A = u1·A 

                                                A
2
 = A + 1 = u2·A + u1 

                                                A
3
 = 2A + 1 = u3·A + u2  

                                                A
4
 = 3A + 2 = u4·A + u3 

                                                A
5
 = 5A + 3 = u5·A + u4  

   S(A)                                      A
6
 = 8A + 5 = u6·A + u5 

                                                A
7
 = 13A + 8 = u7·A + u6  

                                                A
8
 = 21A + 13 = u8·A + u7 

                                                 … … 

                                                A
n
 = un·A + un-1 

                                                A
n+1

 = un+1·A + un 

 

 

Bearing in mind: S(u) = {1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; …; un-2; un-1; un; un+1;…} 

 

The coefficients of the Golden Ratio A give again the Fibonacci sequence. 

 

Test  A
4
 = 3A + 2 = u4·A + u3 

 

 
 5+1

2
 

4

= 3 ∙  
 5+1

2
 + 2 → … →  

3+ 5

2
 

2

=  
3 5+7

2
 →  

6 5+14

4
=

3 5+7

2
  →  

3 5+7

2
 = 

3 5+7

2
 → QET 

 

Test  A
5
 = 5A + 3 = u5·A + u4 

 

A
5
 = A

3
·A

2
 =   

 5+1

2
 

3

∙  
 5+1

2
 

2

= 5 ∙  
 5+1

2
 + 3 → … →   5 + 2 ∙  

3+ 5

2
 =  

5 5+11

2
 → … →   

                        
5 5+11

2
 = 

5 5+11

2
 → QET 

 

In general we can write : 

 

A
n
 =  

 5+1

2
 
𝑛

=   
 5+1

2
 ∙ 𝑢𝑛 + 𝑢𝑛−1 =  

𝑢𝑛 ∙ 5+𝑢𝑛+2𝑢𝑛−1

2
 

 

Examples : 

 

A
5
 =  

𝑢5 ∙ 5+𝑢5+2𝑢4

2
=

5 5+11

2
            

A
6
 =  

𝑢6 ∙ 5+𝑢6+2𝑢5

2
= 4 5 + 9             

A
7
 =  

𝑢7 ∙ 5+𝑢7+2𝑢6

2
=  

13 5+29

2
     

A
8
 =  

𝑢8 ∙ 5+𝑢8+2𝑢7

2
=  

21 5+47

2
 

A
9
 =  

𝑢9 ∙ 5+𝑢9+2𝑢8

2
= 17 5 + 38 

… … 

… … 

… … 
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5. The property of Keplero 

 

A = A
3
/A

2
 = (2A+1)/(A+1) ≈ u3/u2 = 2 

A = A
4
/A

3
 = (3A+2)/(2A+1) ≈ u4/u3 = 3/2 

A = A
5
/A

4
 = (5A+3)/(3A+2) ≈ u5/u4 = 5/3 

A = A
6
/A

5
 = (8A+5)/(5A+3) ≈ u6/u5 = 8/5 

A = A
7
/A

6
 = (13A+8)/(8A+5) ≈ u7/u6 = 13/8 

A = A
8
/A

7
 = (21A+13)/(13A+8) ≈ u8/u7 = 21/13 

… … 

 

A = A
n+1

/A
n
 = (un+1·A+un)/(un·A+un-1) ≈ un+1/ un  

 

In other words:  The ratio of two consecutive Fibonacci numbers is approximately the Golden 

Ratio. 

 

This property was noted by Johannes Keplero (1571 – 1630). 

This method allow us to replace the procedure of continuous fractions.   

 

By theorem previously illustrated, now we are able to confirm this important property of Fibonacci 

numbers. 

 

One test  

 

𝐴8

𝐴7 = 𝐴 ∶  
21𝐴+13

13𝐴+8
=  

21∙ 
 5+1

2
 +13

13∙ 
 5+1

2
 +8

  = … = 
21∙ 5+47

13 5+29
=  

 21∙ 5+47 ∙ 13 5−29 

845−841
=  

1365−609∙ 5+611 ∙ 5−1363

4
 

= 
2∙ 5+2

4
=  

 5+1

2
= 𝐴   →  QET  

 

Or  

 
𝐴8

𝐴7 =
𝑢8 ∙𝐴+𝑢7

𝑢7 ∙𝐴+𝑢6
 = 

 𝑢7+𝑢6 ∙𝐴+𝑢7

𝑢7 ∙𝐴+𝑢6
 = 

𝑢7 ∙𝐴+𝑢6 ∙𝐴+𝑢7

𝑢7 ∙𝐴+𝑢6
=  

𝑢7 ∙ 𝐴+1 +𝑢6 ∙𝐴

𝑢7 ∙𝐴+𝑢6
=  

𝑢7 ∙𝐴
2+𝑢6 ∙𝐴

𝑢7 ∙𝐴+𝑢6
=

 𝑢7 ∙𝐴+𝑢6 ∙𝐴

𝑢7 ∙𝐴+𝑢6
= 𝐴  →  QET   

 

General test : 

 
𝐴𝑛+1

𝐴𝑛
= 𝐴 ∶  

𝑢𝑛+1 ∙𝐴+𝑢𝑛

𝑢𝑛 ∙𝐴+𝑢𝑛−1
=  

 𝑢𝑛+𝑢𝑛−1 ∙𝐴+𝑢𝑛

𝑢𝑛 ∙𝐴+𝑢𝑛−1
=  

𝑢𝑛 ∙𝐴+𝑢𝑛−1 ∙𝐴+𝑢𝑛

𝑢𝑛 ∙𝐴+𝑢𝑛−1
 = 

 

 
𝑢𝑛 ∙ 𝐴+1) +𝑢𝑛−1 ∙𝐴

𝑢𝑛 ∙𝐴+𝑢𝑛−1
=

𝑢𝑛 ∙𝐴
2+𝑢𝑛−1 ∙𝐴

𝑢𝑛 ∙𝐴+𝑢𝑛−1
=  

𝐴∙ 𝑢𝑛 ∙𝐴+𝑢𝑛−1 

𝑢𝑛 ∙𝐴+𝑢𝑛−1
= 𝐴  →  QET 

                                                         

General proof  

 

A generic Fibonacci number can be write : 𝑢𝑛 =
𝐴𝑛−  1−𝐴 𝑛

 5
  

 

But 1 − 𝐴 = 1 −  
 5+1

2
 =  

2− 5−1

2
=

1− 5

2
=  − 𝑎   

 

So: 𝑢𝑛 =
𝐴𝑛−  1−𝐴 𝑛

 5
=  

𝐴− −𝑎 𝑛

 5
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Applying the formula we have the following list : 

 

𝑢1 =
𝐴+𝑎

 5
 =  

 5+1

2
+

 5−1

2
 ∙

1

 5
 = … = 

 5

 5
= 1 

 

𝑢2 = 
𝐴2−𝑎2

 5
 = … = 1 

 

𝑢3 = 
𝐴3+𝑎3

 5
 = … = 2 

 

𝑢4 = 
𝐴4−𝑎4

 5
 = … = 3 

 

𝑢5 = 
𝐴5+𝑎5

 5
 = … = 5 

 

𝑢6 = 
𝐴6−𝑎6

 5
 = … = 8 

 

… … 

 

𝑢𝑛  = 
𝐴𝑛− −𝑎 𝑛

 5
=  

𝐴𝑛−𝑎𝑛

 5
  (if n ∈ 𝐸) or  

𝐴𝑛+𝑎𝑛

 5
  (if n ∈ 𝑂) 

 

𝑢𝑛+1 = 
𝐴𝑛+1− −𝑎 𝑛+1

 5
=  

𝐴𝑛+1+𝑎𝑛+1

 5
  (if n ∈ 𝐸) or  

𝐴𝑛+1−𝑎𝑛+1

 5
  (if n ∈ 𝑂) 

 

 

Bearing in mind that 1 – A < 1  →  

lim
𝑛→+∞

 1 − 𝐴 𝑛 = 0 

 

 

Hence : 

                                               𝑢𝑛 =
𝐴𝑛−  1−𝐴 𝑛

 5
= ≈

𝐴𝑛

 5
 

 

 

𝑢𝑛+1 =
𝐴𝑛+1 −   1 − 𝐴 𝑛+1

 5
= ≈

𝐴𝑛+1

 5
 

 

 

So : 

 
𝑢𝑛+1

𝑢𝑛
= ≈

𝐴𝑛+1

 5
·
 5

𝐴𝑛
 = ≈

𝐴𝑛+1

𝐴𝑛
= 𝐴   →  QED 

 

Test 

 

If we indicate with x the ratio of two consecutive Fibonacci numbers: 

 
𝑢𝑛+1

𝑢𝑛
=

𝑢𝑛
𝑢𝑛−1

= 𝑥 →
𝑢𝑛−1

𝑢𝑛
=

1

𝑥
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Then : 
𝑢𝑛+1

𝑢𝑛
=
𝑢𝑛 + 𝑢𝑛−1

𝑢𝑛
= 1 +

𝑢𝑛−1

𝑢𝑛
= 1 +

1

𝑥
 

 

Hence : 

 

𝑥 = 1 +
1

𝑥
→ 𝑥2 − 𝑥 − 1 = 0 

 

So : 𝑥 =  
 5+1

2
= 𝐴   →  QET 

 

6. Golden Section series 

 

If we consider the geometrical series :  

 

 𝑎𝑛
+∞

0

= 1 + 𝑎 + 𝑎2 + 𝑎3 + ⋯+ 𝑎𝑛 + ⋯ 

 

The sum is  𝑠 𝑎 =  
1

1−𝑎
=

1

𝑎2 =  
1

 
 5−1

2
 

2 = ⋯ =
2

3− 5
=  

3+ 5

2
= 𝐴2 

 

So :  𝐴2 =
1

𝑎2 → 𝐴 =
1

𝑎
  we find the relation between a and A. 

 

 

7. Historical notes 

 

Note 1 

 

Leonardo Pisano, known as Fibonacci (Pisa, b. 1170-1240 (?)), introduced in Europe the zero and 

the Hindu-Arabic numeral system and so he started the development of arithmetic as we know it 

today, when, in 1202, he published his most famous book Liber Abaci. In the incipit of this book he 

writes: “The nine Indian figures are: 9 8 7 6 5 4 3 2 1. With these nine figures, and with the sign 0, 

that the Arabs call Zefiro, any number may be written, as shown below”. Interestingly, he indicates 

zero as a sign and not as a digit (i.e. a number) and calls it Zephyr, that for the Arabs indicates the 

concept of nothing. Yet, despite this defectiveness, he has the distinction of having introduced in 

our continent the Hindu numeral system, also called Hindu-Arabic. Fibonacci was the son of a spice 

merchant, Guglielmo Bonacci. At the end of the twelfth century, the heart of his business was in 

North Africa in the town of Bugia (the present-day Algerian town of Behaia). So it was that his son 

Leonardo, said “di Bonacci”, hence Fibonacci, following his father in his trade, learnt Arabic and 

developed a passion for the study of mathematics. He examined Islamic and Greek texts and 

travelled in Egypt, Syria, Asia Minor and Greece. He was one of the first great European 

mathematicians. With him began the revival of the study of mathematics in Europe. In his long stay 

in North Africa he was in contact with the Islamic mathematics culture, which had in the Persian 

Musa al- Khwàrizmì his most distinguished exponent along with the Egyptian Abu Kamil.  Arabic 

mathematics was closely related to that of India, but it is to be assumed that at the time they were 

not aware that, beyond the Indus River, and with a bold logical step, they had raised the zero to a 

“real number”. So, while the Arabs were still speaking about a numbering based on nine digits and 
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the symbol of zephyr (zero), in India they were already referring to a positional numbering system 

based on ten digits, including zero. 

Some historians argue that Fibonacci was not the first to have the cognition of Hindu-Arabic 

numeral system, and that before him, it had been known by the French Benedictine monk Gerberto 

de Aurillac (950-1003), who, however, didn’t publish anything about it. It is therefore Fibonacci 

that has officially the historical merit of having brought in the European mathematics culture the 

Hindu-Arabic numeral system. Fibonacci conducted interesting studies on the golden section, and 

probably stated and proved the theorem mentioned above. As already mentioned, it’s likely that it 

was from this theorem he deduced his famous sequence in which each number is the sum of the 

previous two: un = un-1 + un-2.  

 

S(u) = {1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233; 377; 610; 987; 1597; 2584; 4181; 6765; 

10946; 17711; 28657; 46368; 75025; 121393; 196418; 317811; 514229; 832040; 1346269; 

2178309; 3524578; …} 

 

Note 2 

 

The denomination Golden Section was used for the first time by German mathematician Martin 

Ohm (1792 – 1872) in his book Die Reine Elementar Mathematik, for to pay homage to the 

aesthetic characteristic of this particular division of a segment. Euclid, in VI book of Elementi 

called it “divisione del segmento in estrema e media ragione” (“division of a segment in extreme 

and mean ratio”). Before him was known by the Pythagoreans, who did not study it in depth 

because was an irrational number. The Golden Ratio was used  by famous Greek architect Phidias 

in the construction of the Parthenon. For this reason some scholars say that in ancient Greece it was 

called Phidias Section. After a long period of oblivion it was discovered again by Leonardo Pisano 

(Fibonacci). During Renaissance the Italian mathematician Luca Pacioli ( 1445 (?) – 1517), in his 

book Summa de Arithmetica, Geometria, Proportioni e Proportionalità (1496) called it divina 

proportione. After him Keplero defined it Sectio Divina. The architect Le Corbusier (1887 – 1965) 

confirmed that Golden Section and Golden Ratio was present in the single parts or in the whole of 

many art works and in the finest architectures of all times.  
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