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Abstract

In this brief note there are showed original formulations for
∑n

k=1
µ(k)
k ,

where µ (k) is the Möbius function, and Mertens function M (n) =∑n
k=1 µ (k) .

For any positive integer n, we de�ne de Möbius function µ (n) as having the
following values depending on the factorization of n into prime factors:

� µ (n) = 1 if n is a square-free positive integer with an even number of
prime factors.

� µ (n) = −1 if n is a square-free positive integer with an odd number of
prime factors.

� µ (n) = 0 if n has a squared prime factor.

Therefore, we have that∑
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Where k runs over the square-free integers.

It is straightforward from the de�nition of µ (n) to note that∑
k≤n

µ(k)

k
= 1−

∑
pi≤n

(
1

pi

)
+

∑
pi<pj≤ n

pi

(
1

pipj

)
−

∑
pi<pj<pk≤ n

pipj

(
1

pipjpk

)
+ . . .

(2)

Other hand, Merten's function M (n)is de�ned for all positive integers as

M (n) =

n∑
k=1

µ (k) (3)
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Starting from (2), applying the inclusion-exclusion principle term by term, it is
pretty straightforward to obtain that
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