A new formulation of Mertens function

Juan Moreno Borrallo

October 4, 2023
email: juan.morenoborrallo@gmail.com

Abstract

In this brief note there are showed original formulations for $\sum_{k=1}^{n} \frac{\mu(k)}{k}$, where $\mu(k)$ is the Möbius function, and Mertens function $M(n)^{k}=$ $\sum_{k=1}^{n} \mu(k)$.

For any positive integer n, we define de Möbius function $\mu(n)$ as having the following values depending on the factorization of n into prime factors:

- $\mu(n)=1$ if n is a square-free positive integer with an even number of prime factors.
- $\mu(n)=-1$ if n is a square-free positive integer with an odd number of prime factors.
- $\mu(n)=0$ if n has a squared prime factor.

Therefore, we have that

$$
\begin{equation*}
\sum_{k=1} \frac{\mu(k)}{k}=1-\frac{1}{2}-\frac{1}{3}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+\frac{1}{10}-\frac{1}{11}-\frac{1}{13}+\ldots \tag{1}
\end{equation*}
$$

Where k runs over the square-free integers.
It is straightforward from the definition of $\mu(n)$ to note that

$$
\begin{equation*}
\sum_{k \leq n} \frac{\mu(k)}{k}=1-\sum_{p_{i} \leq n}\left(\frac{1}{p_{i}}\right)+\sum_{p_{i}<p_{j} \leq \frac{n}{p_{i}}}\left(\frac{1}{p_{i} p_{j}}\right)-\sum_{p_{i}<p_{j}<p_{k} \leq \frac{n}{p_{i} p_{j}}}\left(\frac{1}{p_{i} p_{j} p_{k}}\right)+\ldots \tag{2}
\end{equation*}
$$

Other hand, Merten's function $M(n)$ is defined for all positive integers as

$$
\begin{equation*}
M(n)=\sum_{k=1}^{n} \mu(k) \tag{3}
\end{equation*}
$$

Starting from (2), applying the inclusion-exclusion principle term by term, it is pretty straightforward to obtain that

$$
\begin{gather*}
M(n)=1-\pi(n)+\sum_{p_{i} \leq \frac{n}{p_{i}}}\left(\pi\left(\frac{n}{p_{i}}\right)-i\right)-\sum_{p_{i}<p_{j} \leq \frac{n}{p_{i} p_{j}}}\left(\pi\left(\frac{n}{p_{i} p_{j}}\right)-j\right)+ \\
\sum_{p_{i}<p_{j}<p_{k} \leq \frac{n}{p_{i} p_{j} p_{k}}}\left(\pi\left(\frac{n}{p_{i} p_{j} p_{k}}\right)-k\right)-\ldots \tag{4}
\end{gather*}
$$

