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Abstract

We present a description of plane Poiseuille flow of non-Newtonian time-
independent fluid based on symmetric equations, which take into account
both the longitudinal motion and rotation of the vortex tubes. This model
has analytical solution in the form of the two-parametric velocity distribu-
tion, which is in good agreement with velocimetry data in microchannels.
The advantage of this approach is that, in contrast to the Ostwald-de Waele
power law, it provides a more accurate approximation of experimental veloc-
ity profiles for different Reynolds numbers by model profiles corresponding
to the same viscosity parameter. We believe that this simple model can be
useful for making adequate estimates for the parameters of non-Newtonian
time-independent fluids in engineering hydrodynamics.
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1. Introduction

Non-Newtonian fluids are characterized by a nonlinear shear stress - shear
rate dependence [1]. Conventionally, they can be divided into three main cat-
egories: time-independent, time-dependent and viscoelastic fluids, which are
described by different rheological models [1]-[6]. In particular, the rheological
behavior of time-independent fluids is often described by so-called Ostwald-
de Waele’s (OW) power law. In this model, the relationship between effective
(apparent) viscosity (νe) and shear rate is represented as a function of the
power law index (n) and the flow consistency (m) [2]. For a plane (x, y)
flow with velocity directed along the X axis, the OW law is written in the
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following form

νe = m

(
∂u

∂y

)n−1
, (1)

where u is the x-component of the velocity. Most real time-independent non-
Newtonian fluids are shear-thinning fluids and in this case 0 < n < 1. This
simple model is widely used to approximate experimental data in scientific
and engineering research.

Experimentally, the rheological properties of non-Newtonian fluids are
established using rheometers [7],[8] and by measuring the Poiseuille flow ve-
locity distribution in the middle section of microchannels [9]-[17]. In case of
plane Poiseuille flow the power law (1) gives the following simple relation for
the normalized velocity [9],[10]

u

umax

= 1−
(y
h

)n+1
n
, (2)

where 2h is the channel width. Expression (2) allows one to classify various
fluids in accordance with the index n. However, the experimental studies [9]
show that the normalized velocity profiles of real fluids are determined not
only by the index n, but also significantly depend on the Reynolds number
(Re). This leads to the fact that power law indexes measured from the
velocity profiles for the same fluid depend on the average flow velocity and
differ from the values measured using a rheometer [9].

In current paper, we propose an alternative model for describing the
rheological behavior of a non-Newtonian fluid based on a system of equations
for a vortex flow [18],[19]. These equations describe both the longitudinal
motion of the fluid and take into account the rotation of vortex tubes in a
shear flow. Within the framework of this model, we obtained an analytical
expression for the velocity profile of a plane Poiseuille flow. It is shown that
the velocity profile is determined by two parameters, which makes it possible
to fit model and experimental velocity profiles for different Reynolds numbers
using the same viscosity value. All calculated velocity distributions are in
good agreement with the experimental data.
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2. Vortex model of plane flow

A vortex flow of isentropic incompressible viscous fluid can be described
by the following symmetric system of equations [18]:

1

c

(
∂

∂t
+ (v · ∇)− ν∆

)
v +∇×w +

1

cρ
∇p = 0,

1

c

(
∂

∂t
+ (v · ∇)− ν∆

)
w −∇× v = 0,

∇ · v = 0,

∇ ·w = 0.

(3)

Here c is a speed of sound (c2 = (∂p/∂ρ)s), v is a local velocity, ν is a kine-
matic viscosity, ρ is a fluid density, p is a pressure. The vector w characterizes
the rotation of the vortex tube around its axis

w = 2cθ,

ω =
dθ

dt
,

(4)

where θ is the angular vector of rotation and ω is the angular velocity of the
vortex tube rotation.

Let us consider the steady-state plane flow parallel to the plane xy with
the velocity directed along the X axis. In this case the velocity v has only
x component and depends only on the y coordinate vx = v = v(y, t). Sim-
ilarly, in plane flow the vector of rotation angle w has only z component
and depends only on y coordinate wz = w = w(y, t). Also we assume that
1
cρ

∂p
∂x

= −g = const. Then in the projection on the X and Z axes, the system

of equations (3) for the plane flow takes the following form

1

c

∂v

∂t
− λ∂

2v

∂y2
+
∂w

∂y
− g = 0,

1

c

∂w

∂t
− λ∂

2w

∂y2
+
∂v

∂y
= 0.

(5)

Here we introduced the characteristic length λ = ν/c .
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To describe a steady-state flow, we introduce the time-averaged values.
For any value a(y, t), averaging over time is carried out as follows:

a(y) = lim
T→∞

1

2T

T∫
−T

a(y, t)dt. (6)

Also we will consider the uniform tubes rotation with angular velocity ω(y)
and different phases ϕ(y)

w(y, t) = 2cω(y)t+ ϕ(y). (7)

Then the for steady-state flow we have

∂v

∂t
= 0,

w(y) = ϕ(y),

∂w

∂t
= ω(y).

(8)

Taking into account (6)-(8) we obtain the following time-averaged equations:

−λ∂
2v̄

∂y2
+
∂w

∂y
− g = 0,

−λ∂
2w

∂y2
+
∂v̄

∂y
+ 2ω(y) = 0.

(9)

3. Plane Poiseuille flow

In case of plane Poiseuille flow in a channel with fixed walls (Fig. 1), the
fluid moves under the action of the pressure gradient.

Let us consider fully developed steady-state Poiseuille flow. We assume
that angular speed of vortex tubes rotation is the linear function of y coor-
dinate ω(y) = κy . In this case the equations (9) take the following form:

−λ∂
2v̄

∂y2
+
∂w

∂y
− g = 0,

−λ∂
2w

∂y2
+
∂v̄

∂y
+ 2κy = 0.

(10)
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Figure 1: Sketch of plane Poiseuille flow in a channel between two infinite plates under
the gradient of pressure.

Figure 2: Normalized velocity profiles for Polyacrylamide solution with different concen-
tration and different Reynolds numbers. Experimental data are shown with circles [10].
The results of fitting according to formula (12) are shown by a solid red line. Fitting
parameters (a) λ/h = 0.172, σ = 0.98; (b) λ/h = 0.17, σ = 0.7.

We consider the boundary conditions corresponding to the complete adhesion
of the fluid to the plate surface

v̄(h) = v̄(−h) = 0,
ϕ(h) = ϕ(−h) = 0.

(11)

The solutions of the system (10) are

v̄ = σgh
cosh(h/λ)− cosh(y/λ)

sinh(h/λ)
+ gh2

(1− σ)

2λ

(
1− y2

h2

)
, (12)
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ϕ = −σgh
(

sinh(y/λ)

sinh(h/λ)
− y

h

)
, (13)

where σ is a certain parameter connected with pressure gradient and trans-
verse gradient of angular velocity

σ = 1− 2λκ

g
. (14)

For comparison with experiment, we normalized the velocity distribution
(12) to the maximum velocity v̄0 (v̄0 is the velocity at y = 0). As an exam-
ple, Fig. 2 demonstrates the fitting of the experimental velocity profiles for
Polyacrylamide solution with different concentration and different Reynolds
numbers [10] by the normalized distribution (12). As one can see, there is
good agreement between the simulated curves and experimental data.

4. Discussion

In distribution (12) the parameter σ describes the relationship between
the parabolic and hyperbolic velocity profiles.

For σ = 0 the velocity distribution has the purely parabolic profile

v̄ =
gh2

2λ

(
1− y2

h2

)
. (15)

On the other hand, when σ = 1 we have the purely hyperbolic profile:

v̄ = gh
cosh(h/λ)− cosh(y/λ)

sinh(h/λ)
. (16)

The normalized distribution (16) is

v̄

v̄0

=
cosh(h/λ)− cosh(y/λ)

cosh(h/λ)− 1
, (17)

where v̄0 is the velocity in the maximum at y = 0. This profile is very
close to the profile described by OW power law (2). For comparison, Fig. 3
demonstrates several OW profiles (2) for different indexes n and the profiles
(17) for corresponding parameters λ/h. Additionally, the correspondence
between the index n and parameter λ/h is represented graphically in Fig.
4. One can see that there is an unambiguous correspondence between the
parameter λ/h and the index n.
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Figure 3: The velocity profiles of
Poiseuille flow described by distribu-
tions (2) and (17). Symbols and lines
correspond to: triangles n = 1, dashed
green line λ/h = 1; squares n = 0.4,
dotted blue line λ/h = 0.24; circles
n = 0.1, solid red line λ/h = 0.08.

Figure 4: Diagram of the correspon-
dence between power law index n and
parameter λ/h.

The OW law (2) describes the stationary velocity profiles of a non-
Newtonian fluid quite well. However, in case of approximating the velocity
profiles for flows with different Re, the different indexes n are obtained [9]. In
this sense, the index n characterizes not so much the viscous properties of the
fluid itself, but rather the dynamic properties of the flow. On the contrary,
the two-parametric model of vortex flow (12) allows one to approximate the
velocity profiles at different Re with the same parameter λ/h, which is de-
termined by the kinematic viscosity of the fluid. Fig. 5 shows several model
velocity profiles corresponding to the same parameter λ/h = 0.08 but differ-
ent values of the parameter σ. As one can see, the parameter σ varies the
velocity profiles over a wide range that can be used to match the modeling re-
sults and experimental data. As an example, Fig. 6 demonstrates the results
of fitting experimental profiles [9] for flows of Polyacrylamide solution (0.4%)
with different Re. One can see good agreement between the calculated and
experimental profiles for the same values of parameter λ/h, but for different
values of parameter σ.
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Figure 5: Velocity profiles (12) in dependence on parameter σ. Solid red line σ = 1;
dotted blue line σ = 0.8; dashed green line σ = 0.1.

Figure 6: Velocity profiles for the flow of Polyacrylamide solution (0.4%) with different
Re. Experimental data [9] are shown by circles, the results of fitting according to formula
(12) are shown by solid lines. (a) n = 0.34, λ/h = 0.45, σ = 1.85. (b) n = 0.4, λ/h =
0.45, σ = 1.69.

5. Concluding remarks

Thus, we have considered the model of time-independent non-Newtonian
fluid based on equations that take into account the rotation of vortex tubes
in the shear flow. It is shown that the obtained two-parametric velocity
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distribution well describes the experimentally measured velocity profiles. The
advantage of this model is that the agreement with experimental data is
achieved at the fixed parameter λ/h (determined by the viscosity of the
fluid) by fitting the parameter σ, which actually takes into account the effects
associated with changes in Reynolds numbers. In addition, this model can
be simply generalized to the case of purely shear Couette flow and combined
Couette-Poiseuille flow.
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[14] G. Degré, P. Joseph, P. Tabeling, S. Lerouge, M.l Cloitre, A. Ajdari,
Rheology of complex fluids by particle image velocimetry in microchan-
nels, Applied Physics Letters, 89, 024104 (2006).

[15] C.D. Meinhart, S.T. Wereley, J.G. Santiago, PIV measurements of a
microchannel flow, Experiments in Fluids, 27(5), 414–419 (1999).

[16] G. Silva, N. Leal, V. Semiao, Micro-PIV and CFD characterization
of flows in a microchannel: Velocity profiles, surface roughness and
Poiseuille numbers, International Journal of Heat and Fluid Flow, 29,
1211–1220 (2008).

[17] N. Erkan, K. Shinohara, S. Someya, K. Okamoto, Three-component ve-
locity measurement in microscale flows using time-resolved PIV, Mea-
surement Science and Technology, 19(5), 057003 (2008).

[18] V.L. Mironov, S.V. Mironov, Generalized sedeonic equations of hydro-
dynamics, European Physical Journal Plus, 135(9), 708 (2020).

[19] V.L. Mironov, S.V. Mironov, Vortex model of plane Couette flow, Fluids,
8(6), 165 (2023).

10


