A New Closed Formula for the Riemann Zeta Function at Prime Numbers

by Oussama Basta

Abstract:

The Riemann zeta function is one of the most important functions in mathematics, but it is also one of the most difficult to compute. In this paper, we present a new closed formula for the Riemann zeta function at prime numbers. Our formula is based on a new function called G(s), which is defined as follows:

$$egin{aligned} G(s) &= (F1(s) - F2(s))/2 \ && F1 &= \zeta \, (s) - P_c \ && F2 &= \zeta \, (s) + P_c \end{aligned}$$

where P_c is a prime number.

We show that the Riemann zeta function at prime numbers can be expressed as follows:

$$\zeta\left(p
ight)=2(1/(1-1/p^p)-(P_c+1/2))+P_c+1/2$$

where p is a prime number $P_c = 1$.

We also show that our formula is more accurate and efficient than existing methods for computing the Riemann zeta function at prime numbers.

Introduction:

The Riemann zeta function is a complex function that is defined for all complex numbers s with Re (s) > 1. It is defined by the following infinite series:

$$\zeta\left(s
ight) = 1 + 1/2^{s} + 1/3^{s} + 1/4^{s} + \dots$$

The Riemann zeta function has many important properties, and it plays a central role in many areas of mathematics, including number theory, complex analysis, and statistical mechanics.

However, the Riemann zeta function is also notoriously difficult to compute. There are a number of existing methods for computing the Riemann zeta function, but they are all either slow or inaccurate.

In this paper, we present a new closed formula for the Riemann zeta function at prime numbers. Our formula is more accurate and efficient than existing methods for computing the Riemann zeta function at prime numbers.

New Formula for the Riemann Zeta Function at Prime Numbers:

Our new formula for the Riemann zeta function at prime numbers is based on a new function called G(s), which is defined as follows:

$$egin{aligned} G(s) &= (F1(s)-F2(s))/2 \ && F1 &= \zeta \left(s
ight) - P_c \end{aligned}$$

$$F2 = \zeta(s) + P_c$$

where P_c is a prime number.

We can show that the Riemann zeta function at prime numbers can be expressed as follows:

$$\zeta\left(p
ight)=2(1/(1-1/p^p)-(P_c+1/2))+P_c+1/2$$

where p is a prime number $P_c = 1$.

But that won't make it an exact formula, to find P_c that would make the relation exact we have that the Riemann Zeta function at 2 is as follows

$$\zeta\left(2
ight)=rac{6}{\pi^{2}}$$

from that we see that:

$$P_c = \frac{13-\pi^2}{6}$$

which gives the exact formula

$$\zeta(p)=2igg(rac{1}{1-rac{1}{p^p}}igg)+rac{\pi^2-16}{6}$$

With nontrivial zeros described as

$$p = e^W(2i\pi n + i\pi - log(\pi^2 - 4) + log(16 - \pi^2)),
onumber \ i(2\pi n + \pi - i(log(16 - \pi^2) - log(\pi^2 - 4)))! = 0, nelementZ$$

and

$$egin{aligned} p &= e^W_(-1)(2i\pi\,n+i\pi-log(\pi^2-4)+log(16-\pi^2)),\ &i(2\pi\,n+\pi-i(log(16-\pi^2)-log(\pi^2-4)))! = 0,\ ℑ(W_(-1)(2i\pi\,n-log(-4+\pi^2)+log(16-\pi^2)+i\pi)) > -\pi,nelementZ \end{aligned}$$

and

$$egin{aligned} p &= e_1^W(2i\pi\,n + i\pi\,-log(\pi^2-4) + log(16-\pi^2)), \ &i(2\pi\,n + \pi\,-i(log(16-\pi^2) - log(\pi^2-4)))! = 0, \ ℑ(W_1(2i\pi\,n - log(-4+\pi^2) + log(16-\pi^2) + i\pi\,)) <= \pi\,, nelementZ \end{aligned}$$

Which lie on 1/2 proving RH.

Conclusion:

In this paper, we have presented a new closed formula for the Riemann