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Abstract  
This paper explores ideas for new physics at both quantum and cosmological levels. It 

begins with proposals for building the fundamental particles from infinite 

superpositions that fit the SM, apart from infinitesimal differences, with possibly 

profound consequences including the possibility of both massive and infinitesimal 

mass spin 2 gravitons. All fundamental particles have at least an infinitesimal mass, 

always proportional to the inverse horizon radius times the Hubble flow velocity. The 

symmetry breaking of the SM remains essentially valid because, with masses almost 

zero and nearly light velocity, helicity is virtually fixed. Cosmic wavelength (kmin) 

gravitons vastly outnumber all other particles and the invariant action they require 

comes from the expansion of space inside the horizon. When mass is distributed 

evenly as dust, gravitons have uniform spatial density. In order to maintain the 

invariance of kmin action density, the metric undergoes changes around mass 

concentrations, consistent with Einstein’s equations. However, infinitesimal 

differences arise when the mass density of intergalactic voids falls below the cosmic 

average. This results in these voids exhibiting negative space-time curvature, 

contrasting with the positive curvature observed in galactic filaments. Over large 

regions of space this difference makes the values of the Einstein tensor components in 

the Freidman equations average zero. Space is always flat, and Quantum Mechanics 

(QM) controls the expansion of space regardless of Omega, with or without inflation. 

The scale factors in the radiation era, and the start of the matter era, are similar to 

Lambda-CDM cosmology. Massive spin 2 gravitons have galactic radii Compton 

wavelengths and spherically symmetric wavefunctions with inverse radius squared 

mass density, just as the proposed dark matter properties that give galaxies their 

observed behaviour. The rate at which massive gravitons form inside the cosmic 

horizon is related to the clustering of matter into galaxies and controls both the scale 

factor and accelerating space expansion with no need for dark energy. 
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1 Introduction 
The current formulation of the Standard Model (SM) of particle physics was finalised in the 

mid-1970s. However, although extremely successful in providing testable experimental 

predictions and currently the best description we have of the subatomic world, the theory still 

leaves a significant number of phenomena unexplained. In the last forty years or so there have 

been a number of theories seeking to move physics beyond the SM, including supersymmetry 

and string theory. However, none of the particles predicted by supersymmetry have yet been 

found, despite a decade of work at CERN’s Large Hadron Collider (LHC), and string theory, 

widely considered the most likely path for including gravity in the SM, is not yet supported by 

any direct empirical evidence. Further, dark matter has yet to be directly detected, and dark 

energy remains elusive. In contrast to these disappointments however, the ATLAS and CMS 

experiments at CERN's LHC announced in 2012 that they had each observed a new particle in 

the mass region around 126 GeV; a particle consistent with the Higgs boson predicted by the 

SM. 

String theory has been strongly criticised over its inability to make testable predictions [1-6].  

However, along with the multiverse theory, it has generated intense and important debate over 

the scientific standing of non-testable theories in physics. In 2009 Dawid, a theoretical 

physicist turned philosopher, noted substantial conflict between supporters and critics of 

string theory in assessing its status and success [7]. Dawid argued that this disagreement could 

best be understood in terms of a paradigmatic rift between the two sides over their 

understandings of theory assessment. Critics on the one hand believed that “it is a core 

principle that scientific theories must face continuous empirical testing [emphasis added] to 

avoid going astray” (p988). In contrast, supporters of string theory placed importance on 

theoretical criteria for theory assessment. In an interview several years later Dawid [8] 

suggested this emergence of non-empirical theory assessment, or post-empirical science, 

represented a Kuhnian paradigm shift in physics and that it would become increasingly 

important due to the difficulties associated with experimentally testing new theories. In 

Nature, Ellis and Silk in 2014 [9] made an appeal to “Defend the integrity of physics.” They 

expressed concern that when faced with the difficulties of applying fundamental theories to 

the observed universe, some researchers had begun explicitly advocating a change to how 

theories should be assessed, viz., if deemed sufficiently elegant and explanatory, experimental 

testing was unnecessary. Ellis and Silk disagreed, insisting that empirical testability is a 

necessary condition for a theory to be considered scientific, and concurred with Hossenfelder 

[10] that the concept of post-empirical science was an oxymoron.  

Another important issue relating to the testability of theories in physics has been highlighted 

recently by the astrophysicist David Merritt [11]. In regard to the lambda cold dark matter 

model ( CDM ), which contains Einstein’s theory of gravity, Merritt notes that dark matter, 

dark energy and inflation were all added to the theory in response to observations that would 

falsify it, i.e. they are ad hoc, or auxiliary hypotheses. Further, he argues that they are 

conventionalist hypotheses in that they add no empirical content and hence are unfalsifiable in 

the sense defined by the philosopher Karl Popper.  Popper had set specific criteria for 

preserving falsifiability (or testability) when such “conventionalist stratagems” are employed, 

https://home.cern/about/experiments/atlas
https://home.cern/about/experiments/cms
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i.e., the modified theory had to make some new, testable predictions, and at least some of the 

new predictions should be verified.  Further, Popper’s student Imre Lakatos, tested and 

refined these criteria to distinguish between “progressive” and “degenerating” research 

programs. A progressive research program is one in which “its theoretical growth anticipates 

its empirical growth, that is, as long as it keeps predicting novel facts with some success.” The

CDM , according to Merritt, fails to meet such requirements as the auxiliary hypotheses 

(dark matter, dark energy and inflation) have yet to be confirmed, and the CDM  is notably 

lacking in successful predictions. Steinhardt [12] one of the founders of inflationary 

cosmology, now also views that theory untestable and has become one of its sharpest critics. 

The failure to progress significantly beyond the SM during the past four decades, the 

increasing prominence of highly theoretical, mathematically elegant but difficult to test or 

untestable theories, and threats to undermine testability as a sine qua non for a theory to be 

considered scientific, all appear responsible for a succession of popular books expressing 

concern at the current state of physics [1-5]. In her recently published Lost in Math: How 

Beauty Leads Physics Astray, Hossenfelder [3] contends that the search for beauty has led 

physicists astray, giving wonderful mathematics but bad science; belief that the best theories 

are beautiful, natural and elegant has resulted in theories that are untestable. Lamenting the 

lack of a major breakthrough in the foundations of physics during the last forty years, she 

advocates physicists need to rethink their methods. In reviewing her book Wilczec [13] 

contends that Hossenfelder presents an overly pessimistic view, but concedes that “the 

malaise expressed...is not baseless and is widely shared among physicists” (p57). 

In view of these concerns over the current state of physics we offer an alternative approach, 

but one which still uses very simple basic principles of quantum mechanics (QM) and special 

relativity (SR). Apart from infinitesimal differences it is (almost) consistent with the SM. It 

suggests the possibility of massive spin 2 gravitons emitted by baryons, with galactic radii 

Compton wavelength spherically symmetric wavefunctions, causing similar effects in the 

metric as dark matter. It proposes that the acompanying massive gravitons control both the 

scale factor and cosmic acceleration.  

We contend our theory is both simple and capable of making testable predictions; at the 

cosmological level, if not the quantum level. It is, however, radical in its proposals and 

implications. Consequently, it will require a significant shift in thinking, not only in regard to 

the fundamental particles, but also the evolution of the cosmos. Such a shift, however, may 

facilitate progress beyond the SM and/or the CDM . 

Because these proposed ideas are so radical, we start with some preliminary explanatory 

notes. Part 1 of the paper follows and includes the forming of fundamental particles from 

infinite superpositions (section 2), their properties (section 3), and high energy superposition 

cutoffs (section 4). Part 2 looks at the cosmological consequences of these infinite 

superpositions. We end with a discussion about the overall implications of this paper, 

particularly the possibility of massive virtual gravitons forming galaxy halos consistent with 

the counter intuitive behaviour of QM, and the slightly different way of looking at the 

warping of spacetime which could lead to a QM expansion model as an alternative to the 

.CDM  
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1.1 List of Some Abbreviations, Acronyms and Symbols Used in the 

Text 
 

CDM     The Lambda Cold Dark Matter Model of Cosmology. 

CMB         Cosmic Microwave Background. 

EM            Electromagnetic. 

FLRW       Friedmann-Lemaitre-Robertson-Walker metrics. 

GR            General Relativity. 

ICM          Intracluster Medium. 

MOND      Modified Newtonian Dynamics. 

SM            Standard Model.  

SR             Special Relativity. 

QCD         Quantum Chromodynamics 

QED         Quantum Electrodynamics 

QM           Quantum Mechanics. 

 

,   & s.N n  Integers 3,4,5,6 & 7n   are used in 3 2 2 2
exp( /18) ( , )

nk nk
C r n k r Y     virtual 

primary ( 3)l   wavefunctions at wavenumber .k  Their probability is ,
sN dk

k

 
 
 

 where s  is 

spin, and 1N   for all massive 1/ 2s   fermions, as well as 1s   and 2s    massive bosons.  

 

2N   for all spin 1 and spin 2  infinitesimal mass bosons. 

 

C
  is the primary to secondary coupling ratio 1

3
 

  at the Planck energy superposition cutoff. 

min
k  is the wavenumber of the maximum cosmic wavelength but cuts off exponentially. 

OH
R  is the observable horizon radius.  

min OH
k R   radians. 

minGk
  is the normal three dimensional density of min

k gravitons 

minGk
K  is the min

k graviton invariant as in 
min min minGk Gk

K dk  where  min
0.12 .

Gk G
K   

mink
  The maximum or min

k wavelength. 

G
m  is the symbol used for massive gravitons. 

MG
  is the coupling constant between baryons for massive gravitons. 

0.018
G

   is the graviton coupling constant between Planck masses used in our models. 

  with no subscript is the usual electromagnetic coupling constant. 

U
  is the average density of both baryonic and massive graviton mass/energy in the universe. 

T
  is the infinitesimally modified Einstein tensor where (Local) (Cosmos).T T T  

    

(Cosmos)T  is the Einstein tensor averaged over the whole universe.  

1   in the CDM  at critical density for flatness.  
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1.2 Preliminary Explanatory Notes  

1.2.1 Summary flow chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Different groups of 8 preons (with no weak charge) couple to the electromagnetic and 8 colour ground 

state fields, forming 3l   spatially dependant wave functions. Infinite superpositions of these wave 

functions form all the spin ½ & spin 1 standard model particles, as well as spin 2 gravitons. The 

frequencies of these wavefunctions start at 1

min
(Horizon radius)k


            up to Planck scale maximum. 

This paper starts with the assumption that all “fundamental particles” are built from combinations of 

“virtual preons”. There are three preons, coloured red, green and blue, and their antiparticles. All preons 

are spin zero and electrically charged.  

 

Cosmic wavelength zero point densities are very limited. Because 

spin zero preons are born with zero momentum and infinite 

wavelength they can couple to modes anywhere inside the extra 

space generated by the  expanding Hubble flow horizon.  

High frequency coupling is  

to local ground state fields 

where the available densities 

are plentiful. 

Low frequency coupling controls the average universe density 
2

Total mass/Baryonic mass
 in Planck units,

  
U

OH
R V

 


where  OH
R  is the observable horizon radius, V   is  the Hubble flow velocity. 

 

When mass is distributed evenly as a dust there is a uniform density of 
min

k gravitons throughout a 

horizon radius sphere, space and spacetime is flat everywhere. If any of this mass is moved to a central 

location it increases the spatial density of 
min

k  gravitons surrounding it, distorting spacetime locally, and 

restoring density in agreement with Einstein’s equations, but with infinitesimal differences effective at 

cosmic radii: 4 4
(Local

1 8
) (Cosmos)

8

2
.T

G G
G R R

c c
T Tg     

 
       In large regions 

of space the average values of  0 .GT  
    Space is flat and the Freidman equation components 

average zero. QM controls the expansion of space regardless of .  with or without inflation. 

Intergalactic voids have (Local)< (Cosmos)T T   with negative G  and .R  

Massive spin 2 gravitons are emitted by baryons with a mass that is always 5
10  times the mass of 

infinitesimal mass gravitons and always proportional to the inverse horizon radius. They currently have 

galactic radii Compton wavelengths and spherically symmetric wavefunctions mimicking dark matter 
2

r 
  radial density behaviour. They give galaxies their observed MOND-like behaviour, and control 

both the scale factor and acceleration of spatial expansion. The domain in which GR is true, is retricted 

to the spatial location in which it is applied. Extremely low frequency zero point energy 1
( )

OH
R


  from 

the extra space generated by the expanding Hubble flow horizon can be borrowed for greater than the 

age of the cosmos and is equal to energy density of the Higgs field. 
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1.2.2 General relativity as an initial guide 

GR informs us that all forms of mass, energy and pressure are sources of the gravitational 

field. Thus to create gravitational fields, all spin ½ leptons & quarks, spin 1 gluons, photons, 
0

W & Z
 particles etc. emit virtual gravitons, except possibly gravitons themselves (section 

6.2.6), as gravitational energy is not part of the Einstein tensor.  

The starting point of this paper assumes there is a common thread uniting these fundamental 

particles making this possible. Equations are developed that unite the amplitudes of the colour 

and electromagnetic coupling constants with that of gravity. The precision required by 

quantum mechanics for half integral and integral angular momentum allows gravity to be  

included, despite the vast disparity in magnitude between gravity and the other two. This 

combination of colour, electromagnetic and gravitational amplitudes in the same equation is 

possible because of a radically different approach taken in this paper: an approach using 

infinite superpositions of positive and negative integral  angular momentum virtual 

wavefunctions for spin ½, spin 1 and spin 2 particles. The result is almost identical to the SM, 

with infinitesimal but important differences. The total angular momentum can be summed 

over all wavenumbers ;k  from 0k   to some cutoff value 
cutoff

k . We will assume (as with 

many unification theories) that the cutoff for these infinite superpositions is somewhere near 

Planck scale. Firstly, imagine a universe where the gravitational constant 0G  . As 0G  , 

the Planck length 0
P

L  , the Planck energy  and
P

E    
cutoff

k  also. If we sum the 

angular momentum of these infinite superpositions when 0G   (i.e. from 0k   to

)
cutoff

k   we get precisely half integral or integral  for the fundamental spin ½, spin 1 & 

spin 2 particles in appropriate m  states. If we now put 0G   the infinitesimal effect of 

including gravity can be balanced by an equal but opposite effect due to the non-infinite cutoff 

value in .k  A near Planck scale superposition cutoff requires gravity to be included to get 

precisely half integral or integral . (Section 4.2) 

 

These infinite superpositions have another very relevant property relating to the fact that all 

experiments indicate that fundamental particles such as electrons can behave as point 

particles. Each wavefunction with wavenumber k , which we label as k
 , has a maximum 

radial probability at 1/r k  and they all look the same (Figure 1.1.1). Every wavefunction 

k
  of these infinite superpositions, interacts only with virtual photons (for example) of the 

same ;k  if superpositions representing say an electron are probed with such photons (that 

interact only with wavefunction k
 ) the resolution possible is of the same order as the 

dimensions of ,
k

 both have 1/ .r k  The higher the energy of the probing particle the 

smaller the k


 
it interacts with; the resolution of an observing photon can never be fine 

enough to see any k
 dimensions. Even if this energy approaches the Planck value, with a 

matching k
  radius near the Planck length it is still not possible to resolve it. This behaviour 

is consistent with the quantum mechanical properties of point particles. 
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1.2.3 Primary and secondary interactions 

Supposing that superpositions can in fact build the fundamental spin ½, spin 1, and spin 2 

particles, then what builds the superpositions? Answering that question requires dividing all 

interactions into two categories: primary and secondary. 

Secondary interactions are those we are familiar with, and are covered by the SM; but with 

the addition of gravity, which is not included in the SM. They take place between the 

fundamental spin ½, spin 1 and spin 2 particles formed from infinite superpositions. They are 

the quantum electrodynamics/quantum chromodynamics (QED)/(QCD) etc, interactions of all 

real world experiments. 

Primary interactions we conjecture on the other hand, are those that build virtual infinite 

superpositions. The base states of virtual infinite superpositions only last for time 

/ 2 ,T E    and the primary interactions that build them are completely hidden to the real 

world of experiments. Infinite superpositions cannot be decomposed into their base states, in 

the same way as base states of fundamental particles can be observed. The quantum world is 

always hidden until observation, even if we know base state probabilities. But virtual infinite 

superpositions are always hidden, and only fundamental particles can be observed.  

Primary interactions are extremely simple. They are only one way; zero-point fields act on the 

particle, but the particle cannot act on, or influence, zero point fields. (Its invariance is 

guaranteed by Heisenberg’s uncertainty principle.) In contrast, secondary interactions involve 

all the excited modes above the ground state and are two way. These excited field modes both 

act on the particle which in turn acts back on the field. Quantum field theory (QFT) is all 

about these complicated two way interactions. Lagrangians are ideal for these two way 

interactions, predicting symmetries and conservations. However, Lagrangians are less relevant 

in primary interactions: the natural invariance of the ground state carries through into 

symmetries and conservation laws. In view of this, our proposals depart from the current 

practice of basing new theories on Lagrangians. In this regard, while acknowledging their 

enormous predictive power, Penrose [6] expresses unease with this modern trend, arguing 

against relying too strongly on Lagrangians in searches for improved fundamental theories (p 

491). History tells us progress can be inhibited by assuming that what has worked so well up 

to now must always be so. Newton reigned supreme for almost two centuries until superseded 

by Einstein. 

4
*R R

k


  

kr   

Figure 1.1.1  Radial probability of the dominant 6n   mode of a spin ½ wavefunction 6k
 . 
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The first half of this paper is about these primary interactions, and the superpositions they 

build representing the fundamental spin ½, spin 1 and spin 2 particles. Primary interactions 

are between spin zero particles borrowed from a Higgs type scalar field, and the zero-point 

vector fields. In the 1970’s models were proposed with preons as common building blocks of 

leptons and quarks [14-17]. In contrast with the virtual particles in this paper, some of these 

earlier models used real spin ½ building blocks. However, real substructure has difficulties 

with large masses if compressed into the small volumes required to approach point particle 

behaviour. It was probably because of this high mass/small volume problem that these earlier 

preon proposals fell out of favour. On the other hand our proposed virtual substructure 

borrows energy from zero point fields where the mass contribution at high k  values can be 

cancelled (section 3.2.1). As in earlier models this paper also calls the common building 

blocks preons, but here the preons are both virtual and spin zero. They also now build all spin 

½ leptons and quarks, spin 1 gluons, photons, W & Z particles, plus spin 2 gravitons, in 

contrast to only the leptons and quarks in the earlier models. (SeeTable 2.2.1) As these preons 

have zero spin they possess no weak charge. Primary interactions (section 2.2.1) can take 

place only with the zero point colour, electromagnetic and gravitational fields. The three 

primary coupling constants for each of these three zero-point fields are different from, but 

related to, secondary coupling constants.  

The behaviour of primary coupling is also entirely different from secondary coupling. 

Secondary coupling strengths vary (or run) with wavenumber k  (the electromagnetic 

increasing with k  and colour decreasing with k ). In contrast, we conjecture primary coupling 

strengths (or constants) do not run. In this paper virtual preons are continually born with mass 

out of a Higgs type scalar field, existing only for time / 2 .t E   At their birth, they interact 

while still bare with zero point vector fields; at this instant of birth 0t  . The primary 

coupling constants consequently are fixed for all ;k  there is no time for charge cancelling or 

reinforcing, which in secondary interactions forms around the bare charge progressively after 

its birth. The equations work only if this is true, and they also work only if the primary colour 

coupling constant is one. (Sections 2.2.2). The ratio between the primary and secondary 

colour coupling constants labelled C
  is thus (if primary colour coupling is one) the inverse 

of the secondary (or usual 1

3
  of QCD) colour coupling constant at the superposition cutoff at 

Planck Energy. (Sections 3.3 & 4.2.2) To enable the primary coupling to colour, 

electromagnetic and gravitational zero point fields, preons need colour, electric charge and 

mass. There are three preons, red, green & blue with positive electric charge, and their three 

anticounterparts. Their mass borrowed from some type of scalar Higg’s field, or the time 

component of zero-point fields must always be non-zero. This is discussed further in section 

1.2.4. As there are eight gluon fields, superpositions are built with eight virtual preons for 

each virtual wavefunction k
 . The nett sum of these eight electric charges is 0, 2, 4, 6   , 

and never 6  . This leads to the usual 0, 1/ 3, 2 / 3, 1    electric charge seen in the real 

world. Various combinations of these eight preons in appropriate superpositions can build 

leptons and quarks, colour changing and neutral gluons, neutral photons, neutral massive 0
Z  

photons and the charged massive W   photons. (Table 2.2.1) 
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1.2.4  Photons, gluons and gravitons with infinitesimal mass ( 34
10 eV


 ). 

Einstein taught us that regardless of how fast a particle with mass moves, a ray of light always 

passes it at the same velocity c. The SM builds on this principle with one group of particles 

travelling at less than c, and another group at c: massive and massless, with a clear division 

between them. In the SM the neutrino family was included in the massless group.  

However, towards the end of last century evidence slowly emerged that this was not true, and 

the family of three neutrinos must have masses somewhere in the electron volt range. There is 

no explanation for this in the SM.  

Due to their very low mass, and normal emitted energies, neutrinos invariably travel at 

virtually the velocity of light c . Photons also have always been included in the massless group 

traveling precisely at velocity ,c  except in the case of the massive W  & 0
.Z  Massless virtual 

photons have an infinite range, which has always been seen as an absolute requirement of the 

electromagnetic field. On the other hand, this paper requires some rest frame (even if this 

frame can move at virtually c) in which to build all the fundamental particles. Table 6.2.1 

suggests photons, gluons and gravitons have 34
10 eV


  mass with a range of approximately 

the inverse of the causally connected horizon radius, and velocities sufficiently close to that of 

light their helicity remains essentially fixed. This allows some form of Higgs mechanism to 

increase this infinitesimal mass to the various values in the massive set.  (These infinitesimal 

masses are also in line with some recent proposals [18,19] where gravitons have a mass of 
33

10 eV


  to explain accelerating expansion.)  

The virtual wavefunction we use is 3 2 2 2
exp( /18) ( , )

nk nk
C r n k r Y    , an 3l 

wavefunction. This virtual 3l   property is normally hidden. In the same way as scattering 

experiments on spin 0 pions show spin 0 properties, and not the properties of the two 

cancelling spin ½ component particles, this 3l   property of the virtual components of 

superpositions is not visible in the real world. Scattering experiments can exhibit only the spin 

properties of the resulting particle. The individual angular momentum vectors 2 3L  of 

the infinite superposition all sum to a resulting: ( 3 / 2)
Total

L , 2  or 6  for spin ½ , 

spin 1 or spin 2 respectively, in a similar way to two spin ½ particles forming spin 0 or spin 1 

states. We also use the fact that the angle ( / 6)  to the  z  axis of the angular momentum 

vector for 1 2, 1 2s m    is identical to 3, 2l m   . 

 

 

 

                                                                                       

                                                                                        

 

 

 

 

 

 

2

 2 3

 

3, 2l m    

 

3

2
 

2
 

Spim 1/2 

Figure 1.1.2  Spatially dependant 3, 2l m    wave functions have the same angle ( / 6)  to 

the z axis as 1 2, 1 2s m   . It is proposed that all fundamental particles are built  from 

infinite superpositions of  3l   spatially dependant wavefunctions in appropriate m  states. 
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The wavefunction 3 2 2 2
exp( /18) ( , )

nk nk
C r n k r Y     has eigenvalues 2 2 2 2

nk
n kP  with

nk
n kP , suggesting it borrows n  parallel k  quanta from zero point vector fields 

provided n  is integral. We can see this by letting k  allowing energy E n   by 

absorbing n  quanta   from the zero point vector fields (section 2.3.2). As spin 3 needs at 

least three spin 1 particles to create it, the lowest integral number n  can be is 3. The virtual 

3l   property can however be used to derive the magnetic moment of a charged spin ½, 

1/ 2m    state as a function of n . Section 3.5 shows 2g   Dirac electrons need an average 

(over integral n states) of 6.0135n  . Three member superpositions 
k n nk

n

c 
 

with 

5,6,&7n   achieve this, creating Dirac spin ½ states. We also find that 6n   is the dominant 

member and each superposition k
 needs at least three members to make all the equations 

consistent for Dirac particles. Secondary interactions at any wavenumber k  can occur with 

k
  if integers n  change by 1 , thus changing the eigenvalues n kP  by k  where this 

can be only a temporary rearrangement of the triplets of values of n . This is true, whether the 

interaction is with leptons, quarks, photons, gluons, W & Z particles, or gravitons. (Section 

3.3) 

 

1.2.5 Superposition wavefunctions require only squared vector potentials  

The wavefunction 3 2 2 2
exp( /18) ( , )

nk nk
C r n k r Y    requires an invariant in all coordinates 

spherically symmetric squared vector potential to create it: 
2 2 4 2 4 2

/ 81Q A n k r . There are no 

linear potential terms in contrast with secondary interactions. The primary interaction operator 

is 2 2 2 2 2ˆ ,P Q A     with no linear potential terms included and Q  simply represents a 

collective symbol for all the effective charges concerned. As an example, the dominant 6n   

wavefunction of a spin ½ Dirac k
  requires a squared vector potential of 

2 2 4 2 4 2
/ 81Q A n k r 2 4 2

16 k r  (section 2.3.1). Primary coupling between the eight virtual 

preons and the colour, electromagnetic and gravitational zero-point fields produces a vector 

potential squared value for all infinite superpositions which can be expressed as: 

 
2

2 4 2

02 2
8 8 / (2 ) ( ) ( )(1 )

 
3 ( )(1 )

EMP p
im G s c k r sN dk

Q A
sN k

 

 

     
    

 

 

(Where the length of the complex vector is simply squared here.) The significance of the 

cancelling top and bottom factors ( )sN  is explained in section 2.1.2. Also the cancelling 

(1 )  factors are due to gravity and explained in section 4.2. The primary colour coupling 

amplitude is conjectured to be 1 to each of the eight preons, and 
EMP

 the primary 

electromagnetic coupling. This equation applies regardless of the individual preon colour or 

electric charge signs, whether positive or negative (section 2.2.3). The primary gravitational 

coupling is to the particle mass 0
.m
 
The primary gravitational constant is P

G  divided by c  

to put it in the same form as the other two coupling constants. The magnitude of the total 

angular momentum vector of the infinite superposition is ( 1)
Total

s s L . This 
2 2

Q A  

without the gravity term generates superpositions with probability ( ) / ,N s dk k  where  s is 
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the superposition spin, 1N   for massive spin ½ fermion & massive boson superpositions, 

but 2N   for infinitesimal mass boson superpositions (Table 4.3.1 section 6 and its 

subsections cover this more fully). Section 4.2 includes gravity raising the superposition 

probability to (1 )( ) /N s dk k  where the infinitesimal   (not to be confused with 

infinitesimal mass) is 2

0
2 /m Spin   45

7 10


  for electrons, and 34
10 

 for a 0
Z in Planck 

units 1c G   . The k
  superpositions require at least three integral n  members. The 

following three member superpositions fit the SM best (see Table 4.3.1).  

        Spin ½ massive 1N   fermion superpositions                              
5,6,7

k n nk

n

c 


  .  

        Spin 1 massive 1N   boson superpositions                                  
4,5,6

k n nk

n

c 


  .  

        Spins 1 & 2 infinitesimal mass 2N   boson superpositions         
3,4,5

k n nk

n

c 


  .                                      

                  

Below are infinite superpositions 
, ,s m




 for only spins ½ & 1. The symbol   refers to the 

infinite sum, s  the spin of the resulting real particle, m  its angular momentum state, and ss  a 

spherically symmetric state. Section 3.1.3 explains this format. Also, square cutoffs in 

wavenumber k are used here for simplicity.  Infinitesimal mass superpositions are introduced 

in section 6.2. (Complex number factors are not included here for clarity.) 

 

 

 

( )

,1
,1/2, ,42

5,6,7 0

( )

,

,1, ,2

3,4,5 0

1
Massive             1 Spin , )

2

2 1
Infinitesimal mass 2 Spin 1,

k cutoff

nk ss

m n nk nk m

n nk

k cutoff

nk ss

m n nk nk m

n nk

N c dk
k

N c dk
k

 
  



 
  











  
   

  

  
   

  

 

 

 

 

(1.1. 1) 

 

 

 

In these infinite superpositions the probability that the wavefunction is spherically symmetric 

is always 2 2
1

nk nk
 

   and the probability that it is an m  state is 2
,

nk
  where nk

  is the 

magnitude of the velocity of the centre of momentum frame (see Figure 3.1.1), which is where 

the primary interactions that generate each nk
 take place.  This is similar to the superposition 

of time and spatially polarized virtual photons in QED. For example, spin ½ has probabilities 

of 2 2
1

nk nk
 

   spherically symmetric nk
  wavefunctions, and 2

nk
   ( , 2)

nk
m    

wavefunctions. Each k
  is normalized to one but the infinite superpositions 

, ,s m



are not 

normalized, diverging logarithmically with k ; the same logarithmic divergence that applies to 

virtual photon emission.  (Real wavefunctions must be normalized to one as they refer to 

finding a real particle somewhere, but this need not apply here.) Section 3.1 finds that 2m    

virtual wavefunctions have 2

nk
  probability of leaving an 2m    debt. Integrating over all k  

produces a total angular momentum for a spin ½ state of / 2 . (The procedures for spin 1 & 

spin 2 particles are covered in section 3.2.2.)  

The first half of this paper is about the primary interactions between spin zero preons and spin 

one quanta that build the fundamental particles. The SM is about the secondary interactions 

between them. (The weak force is only between spin ½ particles and thus a secondary 

interaction. It cannot be involved in primary interactions.) Apart from infinitesimal effects, 
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such as infinitesimal masses, the properties of fundamental particles covered in this paper 

should be consistent with their SM counterparts. All 1& 2N N  superpositions as in Table 

4.3.1  are conjectured to cutoff at Planck energy .
P

E  If this is so, both colour and 

electromagnetic interaction energies must cutoff at /
P

E n
18

2.03 10 .,GeV   or  1/ 6  of the 

Planck energy. (The expectation value  is 6.0135n   for spin ½ leptons and quarks Eq. 

(3.5.16)). The electromagnetic and colour coupling constants at this cutoff are consistent with 

SM predictions assuming three families of fermions and one Higgs field. (See Figure 4.1.1 & 

Figure 4.1.2).  

Part II of this paper looks at the consequences of infinite superpositions. Whereas the SM 

assumes massless and massive particles, infinite superpositions have an infinitesimal mass 

that, at all cosmic time, is approximately the inverse horizon radius. It proposes massive spin 

2 gravitons that, with inverse radius squared radial probability wavefunctions, give galaxies 

MOND-like properties and could behave as dark matter.  

 

It also proposes that if the fundamental particles are made from infinite superpositions: 

1. QM warps spacetime around mass/energy concentrations. 

2. Massive gravitons: 

 are always in the region of one hundred thousand times the mass of infinitesimal mass 

gravitons. 

  currently have Compton wavelength similar to galaxy halos. 

 are emitted by baryons with a probability considerably less than one per baryon. 

 have a total number related to the clustering of baryonic matter and control the 

acceleration of space expansion. 

3. Space is always flat with or without inflation. 

4. Because spin 2 graviton polarization vectors rotate at twice the rate of spin 1, they do 

not transmit force as spin 1 does. 

5. Gravity cannot unite with the other forces and is an emergent property of QM, as is 

accelerating expansion. 

6. At extremely low frequencies, which are approximately inversely proportional to the 

cosmic radius, all fundamental particles borrow energy from the Hubble flow 

expansion of space. This energy or mass can be borrowed for a duration approximately 

equal to the age of the cosmos. Just as the Higgs field in the SM is considered the 

source of all mass, the Hubble flow expansion of space is proposed as the source of the 

Higgs field. If we equate the energy density of the Higgs field with the mass density of 

the cosmos, because the total cosmic mass density depends on the ratio of massive 

graviton mass to baryonic mass, as baryons cluster into galaxies, they increase the 

cosmic density of massive gravitons. This additional mass density necessitates an 

increase in the Hubble flow velocity eliminating the need for dark energy.. 

7. Intergalactic voids, (where ),
Local Cosmos

   expand more rapidly than the filament 

regions of galaxies. (where ).
Local Cosmos

   Galactic filaments will thus appear to 

compress relative to the greater rate of expansion of the intergalactic voids. 
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Part 1 

 

Fundamental Particles as Infinite Superpositions 

2 Building Infinite Virtual Superpositions 

2.1 The Possibility of Infinite Superpositions 

2.1.1 Early ideas 

After World War II there was still much confusion about QED. In 1947 at the Long Island 

Conference the results of the Lamb shift experiment were announced [21]. This conference 

was perhaps the starting point for the development of modern QED: perhaps the pinnacle of 

accurate theory supported by experiment. QED is also about what we have called secondary 

interactions. (See 1.2.3.) Part 1 of this paper is about the much simpler primary interactions 

and we start it with an oversimplified semi-classical way of explaining the Lamb shift. We are 

going to imagine that the Lamb shift involves primary interactions when, in fact, it doesn’t. It 

is a real world secondary interaction experiment, and therefore our illustration is not the 

correct QED way of handling this phenomenon. Picturing it as a primary interaction however, 

with zero point fields, may help illustrate the possibility of connections between fundamental 

particles and infinite virtual superpositions. Hopefully this is in a similar manner to the way 

Bohr’s original simple semi-classical explanation of quantized atomic energy levels played 

such a large part in the eventual development of full three dimensional wavefunction solutions 

of atoms, and quantum mechanics. 

The density of transverse modes of waves at frequency   is 2 2 3
/d c    and the zero point 

energy for each of these modes is / 2 . The electrostatic and magnetic energy densities in 

electromagnetic waves are equal, thus for electromagnetic zero point fields:  

The total average field energy 
2 2 2 2

0 0

2 3
2 2 2

E c B d

c

    



 
   

    

or  
4

2 2 2

0 0 2 3
.

2

d
E c B

c

 
 

 
 

 

For a fundamental charge e  using 2

0
/ 4 ,e c   and provided 1,   this gives an 

                                  

2 4

2 2 2

2

2
average force squared of    

d
F e E

c

  

 
   

   (2.1.1)  

 

Thinking semi-classically, for an electron of rest mass m  this can generate simple harmonic 

motion of amplitude r , where 2 2 4 2
F m r  (if 1  ). Solving for 2

r  (where 2
r  is 

superimposed on the normal quantum mechanical electron orbit, C
/ mc  is the Compton  

wavelength, and / ) :k c           

2

2 2

2 2

2 2
      .

C

d dk
r

m c k

  

  

 
      

   

Integrating 2
r  (as directions are random): 

max

2 2 2

max min

min

2 2
 log( / )

k

Total C C

k

dk
r k k

k

 

 
  . 
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The minimum and maximum values for k  can be chosen to fit atomic orbits, and a root mean 

square value for r  can be found. Combining this with the small probability that the electron 

will be found in the nucleus, this small root mean square deviation shifts the average potential 

by approximately the Lamb shift. This can also be thought of as simple harmonic motion of 

amplitude ,
C

  occurring with probability (2 / ) /dk k  . It can also be interpreted as the 

electron recoiling by ,
C

  (provided
Recoil

1  ) in random directions due to virtual photon 

emission with a probability of (2 / ) /dk k  .   

 

 

2.1.2 Dividing probabilities into the product of two component parts 

This probability (2 / ) /dk k  can be thought of as the product of two terms &A B , where A  

includes the electromagnetic coupling constant  , B  includes /dk k , and

(2 / ) / .AB dk k   This suggests that this same behaviour is possible if we have an 

appropriate superposition of virtual wavefunctions occurring with probability B , which emits 

virtual photons with probability A  (by changing eigenvalues nk
n kp

 
by 1n   ).  For 

example, if a virtual superposition occurs with probability B  ( ) /N s dk k , and has a virtual 

photon emission probability for each member of these superpositions of A 
1

( ) (2 / )N s  
 , 

then the overall virtual photon emission probability remains as above at AB  (2 / ) /dk k  . 

This applies equally whether it is virtual gluon/photon/W&Z/graviton etc. emission. Provided 

A includes the appropriate coupling constant this same logic applies regardless of the type of 

boson emitted. As is usual to get integral or half integral total angular momentum 2s  has to 

be integral and section 6.2 argues that N must also be integral.  (This paragraph is simplified 

to illustrate the principle and will later be modified in section 3.3.) 

 

In section 1.2.5 we said that these wavefunctions are built with squared vector potentials. If 

superpositions of them are to represent real particles they must be able to exist anywhere. This 

is possible only if they are generated by invariant fields. The only fields uniform in space-time 

are the zero point fields and looking at the electromagnetic field first we can use section 2.1.1 

above. Consider a vector r  from some central origin O  and a magnetic field vector B  

through origin ,O  then the vector potential at point r  is   / 2 A B r  and the vector 

potential squared is  2 2 2 2
sin / 4A B r  where the angle between vectors &B r  is  .                         

2 2 2 2
As  averages 2/3 over a spheresin  : / 6  A B r 

  

                (2.1.2) 

This requires the source of these fields to be spherically symmetric, where 2
B  here is the 

magnetic field squared at any point due to the invariant cubic intensity of zero point 

electromagnetic fields, also as in section 2.1.1. This is only true at higher frequencies, and we 

will find later that at cosmic wavelengths we need a similarly invariant spherically symmetric 

source redshifted from the receding spherical horizon.  Putting Eqs.   (2.1.1) and (2.1.2) 

together the vector potential squared is 

                                               
2 2

e A
2 2 2 2 4 2

2 4 2

4
6 3 3

e B r r d dk
k r

c k

   

  
    

 

                    (2.1.3) 
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As in section 2.1.2 we can divide this into two parts, noting the inclusion of spin s and integer 

N in the numerator and denominator:   

                                                            
2 2 2 4 2

.
3

sN dk
e A k r

sN k





   
    
   

                       

(2.1.4) 

But here a vector potential squared term  
2 4 2

3
k r

sN





 
 
    

occurs with probability 
sN dk

k

 
 
 

. 

Another way of looking at this is that a wavefunction 
k

  that is generated by a vector 

potential squared term 
2 4 2

3
k r

sN





 
 
 

 can occur with 
sN dk

k

 
 
 

probability.  

This is similar reasoning to that used in the semi-classical Lamb shift explanation of section 

2.1.1. In the first bracketed term of Eq. (2.1.4),  is the electromagnetic coupling constant, 

but the same logic applies for the eight gluon and gravitational zero point vector fields where 

we will sum appropriate amplitudes of these and square this total as our effective coupling 

constant in Eq. (2.1.4). But first we need to look at groups of spin zero preons that could build 

these wavefunctions. What mixtures of colours and electrical charges end up with the 

appropriate final colour and electrical charge for each of the fundamental particles or at least 

the ones we know of? 

 

2.2 Spin Zero Virtual Preons from a Higgs Type Scalar Field 

2.2.1 Groups of eight preons that form superpositions 

In this paper preons have zero spin and can have no weak charge. The only fields they can 

interact with (via primary interactions that build superpositions as in section 1.2.3) are colour, 

electromagnetic and gravity. In the simplest world there would be just one type of preon that 

comes in three colours, always positively charged say, with their three anti colours all 

negatively charged. We will indeed find that this seems to work. Looking at Table 2.2.1 we 

see that a minimum of 6 preons is required to get the correct charge ratios of 3:2:1 between 

electrons, and up and down quarks. To get vector potential squared values that make all our 

equations work however, we need to couple to all eight gluon fields requiring a total of eight 

preons. Table 2.2.1 has all the basic properties required to build infinite superpositions for the 

fundamental particles. We need to remember when looking at this table that from section 1.2.3 

the effective secondary charge is much less than the primary charge and we have no idea yet 

of the effective value of the primary preon electric charge. Particles only are addressed in the 

groups of preons in Table 2.2.1. The first point to notice, however, is that both the electron 

and the W


are predominantly antipreons, yet they are both defined as particles. Have we got 

something wrong? When we look at relativistic masses in section 3.2.1 we get the usual plus 

and minus solutions and Feynman showed us how to interpret the negative solutions as 

antiparticles. 
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Table 2.2.1 Groups of eight virtual preons forming the fundamental particles. The electric 

charges we measure in the real world are one sixth of the group electric charges in this table. 

The Higgs boson is discussed in section 0, if it is a superposition it would be in the neutral 

group at the top. 

Fundamental 

Particles 

Preon colour Preon electric 

charge 

Group colour Group electric 

charge 

Spin ½  

Neutrino family 

Spin 1 photons, 0
Z   

Neutral gluons 

Spins 1 & 2 gravitons  

Possibly Higgs boson 

Any colour + 

its Anticolour 

Red 

Antired 

Green 

Antigreen 

Blue 

Antiblue 

 1 

-1 

 1 

-1 

  1 

-1 

 1 

-1 

 

 

 

 

Colourless 

 

 

 

 

0 

 

 

Spin ½ 

Electron family 

 

Spin 1  W   
 

Any colour + 

its Anticolour 

Antired 

Antired 

Antigreen 

Antigreen 

Antiblue 

Antiblue 

 1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

 

 

 

Colourless 

 

 

 

-6 

 

 

Spin ½ 

Blue up quark 

Family 

Red 

Antired 

Green 

Antigreen 

Green  

Blue 

Blue 

Red 

 1 

-1 

 1 

-1 

 1 

 1 

 1 

 1 

 

 

 

Blue 

 

 

 

+4 

 

 

Spin ½ 

Red down 

Quark family 

Green 

Antigreen 

Red 

Antired 

Green 

Antigreen 

Antiblue 

Antigreen 

 1 

-1 

 1 

-1 

 1 

-1 

-1 

-1 

 

 

 

Red 

 

 

 

-2 

 

 

Spin 1 

Red to Green 

Gluons 

Red 

Antigreen 

Red 

Antired 

Green 

Antigreen 

Blue 

Antiblue 

 1 

-1 

 1 

-1 

 1 

-1 

 1 

-1 

 

 

Red plus 

Antigreen 

 

 

 

0 
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If this also applies in anti preons then because they are zero spin, and the weak force 

discriminates between particles and antiparticles by their helicity, this discrimination can 

apply only in secondary interactions. The preon antipreon content of the groups in Table 2.2.1 

does not necessarily tell us whether they produce particles or antiparticles. We will discuss 

this further in section 3.2.1; also, as of now, there is still no good understanding of the 

predominance of matter over antimatter in our universe.  In Table 2.2.1 only one example of 

colour is given for quarks and gluons. Different colours can be obtained by simply changing 

appropriate preon colours. Various combinations of eight preons in this table are borrowed 

from a scalar field for time / 2T E   , this process continually repeating in time. 

Conservation of charge normally allows only opposite sign pairs of electric charges to appear 

out of the vacuum. Let us imagine that these virtual preons are building an electron, for 

example, whose electric charge exists continually unless it meets a positron and is annihilated. 

This charged electron is thus due to a continuous appearance out of and back into the vacuum 

of virtual charged preons in a steady state process existing for the life of the superposition, 

and not conflicting with conservation of charge. If the electron itself does not conflict, then 

neither do the borrowed preons that build it. 

 

2.2.2 Primary coupling constants behave differently and are constant 

QED informs us that the bare (electric) charge of an electron, for example, increases 

logarithmically inversely with radius from its centre. Polarizations of the vacuum (of virtual 

charged pairs) progressively shield the bare charge from a radius of approximately one 

Compton radius C inwards towards the centre. When an electron (for example) is created in 

some interaction the full bare charge is exposed for an infinitesimal time.  

Instantaneously after its creation, shielding due to polarization of the vacuum builds 

progressively outward from the centre of its creation at the velocity of light.  For radii ≥ C

we measure the usual fundamental charge e . There are similar but more complicated 

processes that occur to the colour charge. Camouflage is the dominant one where the colour 

charge grows with radius as the emitted gluons themselves have colour charge. At the instant 

of their birth the preons are bare and at this time, 0t   say, all the zero point vector fields can 

act on these bare colour and electric charges as there is simply no time for shielding and other 

effects to build. The primary coupling constants that we use must consequently be the same 

for all values of ,k  in complete contrast to those for secondary interactions. We don’t know 

what this primary electromagnetic coupling constant is, so we will just call it EMP
 . Also, we 

will find that to get any sense out of our equations the primary colour coupling has to be very 

close to 1. A coupling of one is a natural number and simply reflects certainty of coupling. 

Provided the secondary colour coupling can be in line with the SM, and there does not seem 

to be any other good reason to pick a number less than 1, we will make the (apparently 

arbitrary) assumption that the bare primary colour coupling is exactly 1. (In section 4.1.1 we 

will find that this seems to be consistent with the SM.) 
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2.2.3 Primary interactions also behave differently 

Let us define a frame in which the central origin of the wavefunctions 
k

  of our infinite 

superposition is at rest. The laboratory or rest frame we will refer to as the LF. The preons that 

build each 
k

 are born from a Higg’s type scalar field with zero momentum in this frame. 

This has very relevant consequences as their wavelength is infinite in this rest frame at time 

0t  , and after they become wavefunction k
 their wavelength is of the order 1/ k  for times 

0 / 2t E  .  This implies that there could possibly be significant differences in the way 

amplitudes are handled between primary and secondary interactions. 

 

Let us consider secondary interactions first with an electron and positron, for example, located 

approximately distance r  apart. For photon wavelengths r  both the electron and the 

positron each emit virtual photons with probabilities proportional to  , but for wavelengths 

r  their amplitudes cancel. Returning to primary interactions, zero momentum preons must 

always have an infinite wavelength which is greater than the wavelengths (or1/ k values) of 

the zero point quanta they interact with, for all 0.k  This implies that we cannot simply add 

or subtract amplitudes algebraically as the charged preons can be always further apart than the 

wavelength of the interacting quanta (except when 0,k   but we will see there is always a 

minimum k value, i.e. min
0k   in sections 5 & 6). In fact, if algebraic addition of amplitudes 

did apply in primary interactions, infinite superpositions for colourless and electrically neutral 

neutrinos would be impossible. So how can infinitely far apart preons of differing charge 

generate wavefunctions of all dimensions down to Planck scale? This can happen only if the 

amplitudes of all eight preons are somehow linked over infinite space, all at the same time 

0t   contributing to generating the wavefunction k
 . This non-local behaviour is not new. 

All experiments confirm that what Einstein struggled to come to terms with is, in fact, true; he 

called it “spooky action at a distance”.  While these experiments are currently limited in the 

distance over which they demonstrate entanglement, there is now wide acceptance that it can 

reach across the universe. In the same manner wavefunctions covering all space can instantly 

collapse. We want to suggest that this same non-locality applies in primary interactions; our 

eight virtual preons all unite instantaneously at time 0t   across infinite space in generating 

each k
 . Also, the vector potential squared equations that they generate must always be the 

same for all the preon combinations in Table 2.2.1. This can happen only if the amplitudes of 

all eight are added, regardless of charge sign for primary interactions. This applies to both 

colour and electric charge.  

The opposite is true for the secondary interactions. At time 0t   all eight preons 

instantaneously collapse into some sort of virtual composite particle that for times 

0 / 2t E   obeys wavefunction k
 . The dimensions of k

  are of the same order as the 

wavelength of the interacting quanta, and the usual algebraic total electric charge and nett 

colour charge must now apply as in the group charges in Table 2.2.1. All of this may seem 

contrary to current thinking which has gradually been built up over several centuries of 

secondary interaction experiments; however, it may not be so out of place when viewed in the 

context of the counter intuitive results of entanglement experiments. The key point to bear in 

mind is that the predictions of this paper must agree or at least be able to fit the SM, or 
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secondary interaction experiments; as we may never be able to look into virtual primary 

interactions, but only observe their effects.   

Amplitudes to interact are complex numbers which we can draw as a vector. This applies to 

both colour and electric coupling, where these two vectors can be at the same complex angle 

or at different angles. The simplest case is if they are in line and we will assume this is true for 

both colour and electromagnetic primary interactions which are both spin 1. This seems to 

work and when we later include gravity, a spin 2 interaction, we find that the spin 2 vector 

only works if it is at right angles to the two in line spin 1 vectors. Let us start in a zero gravity 

world by simply adding the eight preon colour vectors of amplitude one and the eight primary 

electromagnetic vectors of amplitude 
EMP

  together, as all this only works if they are all in 

line.        
           

The total colour plus electromagnetic primary amplitude is   8 8
EMP

       

                    

            (2.2.1) 

This equation is always true regardless of signs as in section 2.2.3  

         
2

The colour plus electromagnetic primary coupling constant is        8 8  
EMP

     (2.2.2) 

Inserting this into Eq. (2.1.4) we get                                       

                                   

2

2 2 2 4 2
8 8

.
3

EMP sN dk
Q A k r

sN k





           
  

  

                  (2.2.3) 

 

Again we interpret this just as we did in section 2.1.2 and Eq. (2.1.4) as a vector potential 

squared term  

 

                

2

2 2 2 4 2
8 8

 occurring with probability    
3

EMP sN dk
Q A k r

sN k





   
   

   (2.2.4) 

 

                       

 

Where Q  is a symbol representing the entire eight colour and eight electric amplitudes 

combined, with s the spin and 1N   for massive superpositions, but 2N   for infinitesimal 

mass superpositions. (Table 4.3.1, section 6 and its subsections cover this more fully.) 

 

 

 

 

2.3 Virtual Wavefunctions that form Infinite Superpositions  
 

2.3.1 Infinite families of similar virtual wavefunctions 

 

Consider the family of wave functions where ignoring time:   
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2 2 2

( ) ( )

( ) exp( /18)

nk

l

nk

U nrk Y

U nrk C r n k r

 

 
  

                             

                                  (2.3.1) 

    

 U nrk  is the radial part of n k
 ,  Y   the angular part, nk

C a normalizing constant, and we 

will find that l  is the usual angular momentum quantum number. There is an infinite family of 

nk
 , one for each value k  where 0 k   in a zero gravity world.    

  

                                      
1 2 2 2

( ) ( ) exp( /Now put 18 )
l

nk
R nrk rU nrk C r n k r


                         (2.3.2) 

 

As we are dealing with zero spin preons we use Klein-Gordon equations [22]. The Klein-

Gordon equation is based on the relativistic equation 2 2 2 2 2

0
/E c m c p  and in a spherically 

symmetric squared vector potential the time independent Klein Gordon Equation is 

 

                                         

2

2 2 2 2 2 2 2

02
ˆ E
P Q A m c

c
   

 
      

 
                                      

 

(2.3.3) 

Using                                   
2 2

2 2

1 ( 1)R l l

R r r





  
 


        we get the time independent  

2 2 2 2

2 2 2 2

02 2 2
radial Klein Gordon equation   

(
 

1)R l l E
Q A m c

R r r c

  
    

  
  

    

   (2.3.4) 

For each nk
  the energy is nk

E a function of &n k , and we will label the rest mass as 0snk
m

 
a 

function of spin s , & ,n k  but also a function of the particle rest mass 0
m . Using different 

colours to more clearly compare the next two equations this becomes  

 

                                              

2

2 4

02

2 2

2 2 2

2 2

( 1)
nk

snk
Q A

E
m

r
c

R l

R r c

l 






 

 
   

    

                  (2.3.5) 

Differentiating ( )R nrk ( )rU nrk

2 2 2

1
exp( )

18

l

nk

n k r
C r

 
  twice with respect to r , multiplying 

by 2 and dividing by R            

                                                  

42 2 2

2 2

2 2 2 24 2
(

81

)

9

1 (2 3)nR l l

R r

lr k

r

nk  
  


                        

 

 (2.3.6) 

 

Comparing Eqs. (2.3.5) & (2.3.6) we see that l  is the usual angular momentum quantum 

number and the vector potential squared required to generate these wavefunctions is      
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44 2 4 2

2 2 2 4 2

81 3

n k r n
Q A k r

 
   

 
  

                             

 (2.3.7) 

   

2 2 2 2

2 2 2

02
The momentum squared i   

( 3)

9
s

2
 nk

nk snk

E l n k
m c

c


  p                     

 

(2.3.8) 

 

2 2 2 2
For  3 wavefunctions this beco &   me  s

nk nk
n k nl k  p p   

 

 (2.3.9) 

 

2.3.2 Eigenvalues of these virtual wavefunctions and parallel momentum vectors 

From Eqs. (2.3.8) &  (2.3.9) as k  , the energy squared 
2 2 2

nk nk
E c p 2 2 2

n  and thus 

  energy  considering onlif  3 y the positive solutio when n .    
nk

l k E n          (2.3.10)         

This suggests that n must be integral. If it is integral when k  , we will conjecture that it 

must be integral for all values of k. This is a virtual or “off shell” process, where energy can 

depart from 
2 2 4 2 2

0
E m c c  p  for time / 2T E   .We can also perhaps think of Eq. (2.3.9) 

as integral n  parallel momentum vector kp  quanta, transferring total momentum

nk
n kp  and energy E n   from the zero point fields

 
to generate the virtual 

wavefunction .
nk

  Using different colours for both operator and wavefunction, we can say 

that provided 2 2 4 2 4 2
( / 3)Q A n k r  as in Eq. (2.3.7) the operator 2 2 2 2 2ˆ ( )P Q A     applied 

to the virtual wavefunction 
3 2 2 2
exp( /18) ( )

nk nk
C r n k r Y    produces                        

2 22 2 2 2 2 2ˆ ( )
nk nk nk

P Q A n k     , where n is integral, but k is continuous as for 

free particles. Thus, we conjecture that: 

 

                      

3 2 2 2

2 2 2 2
eigenvalues 

exp( /18) ( ) are eigenfunctions with

 with continuous   but integral    . 

nk nk

nk
n

C r n k r Y

n k k

  

p
                  

             (2.3.11) 

Also, there are no scalar potentials involved, only squared vector potentials, so this is a 

magnetic or vector type interaction. Particles in classical magnetic fields have a constant 

magnitude of linear momentum which is consistent with the squared momentum eigenvalues 

of Eq.  (2.3.11). This also implies that each nk
 is formed from quanta of wave number k  

only and that secondary interactions with nk
 emit or absorb k  virtual quanta if n  changes 

by 1.  The wavefunction nk
 is virtual and in this sense both the energy nk

E  and rest mass 

0snk
m  in Eq. (2.3.8) are also virtual quantities borrowed from zero point vector fields and its 

time component or a scalar Higgs type field. We use these virtual quantities to calculate the 

amplitude that the wavefunction nk
  is in an m  state of angular momentum in section 3.1, 

and in section 3.2 to calculate the total angular momentum and rest mass. As in section 2.3.2 

above, we can think of nk
n kp  as n  parallel momentum vectors kp . As spin 3 (or 

3l  ) needs at least three spin 1 quanta to build it, n  must be at least 3. When 3n   we can 

think of  this as three of the eight preons each absorbing quanta k  at time 0.t   We will 

find that a spin ½ state has a dominant 6n   eigenfunction where six of the eight preons each 
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absorb quanta k . It needs at least two smaller side eigenfunctions 5n   & 7n   with 

either five or seven respectively, of the eight preons each absorbing quanta k  respectively at 

0t  . (Figure 3.1.4 illustrates the three n modes of a positron superposition.) 

From Eq. (2.3.7)  2 2
Q A 

4

2 4 2

3

n
k r

 
 
 

 2 4 2
16 k r  for this dominant 6n   mode. 

Thus using Eq.   (2.2.4) 

2

2 2 2 4 2
8 8

3

EMP

Q A k r
sN





 
 


2 4 2

16 k r for an 6n   mode. 

Now 1/ 2 & 1s N   for spin ½ fermions and 

2

2 8 8
16

3

EMP




 
 

  if we have only an 6n   

mode. Thus 8 8 24
EMP

     and
1

EMP
 

137.1, but this is true for an 6n   eigenfunction 

only, and we have a superposition where the amplitudes of the smaller side eigenfunctions 

5n   & 7n   determine the ratio between the primary to secondary (colour and 

electromagnetic) coupling amplitudes or the value of 
1

3
@

cutoff
k


 (Section 3.3).  The 2 2

Q A

required to produce this superposition with amplitudes n
c  is, using Eq. (2.3.7) 

 

                                                            

4 2 4 2

2 2

5,6,7

*
81

n n

n

n k r
Q A c c



   

                                          (2.3.12)                                                                               

Repeating the same procedure as above for three member superpositions using Eq. (2.3.12) 

we find the strength of EMP
  required increases considerably (see section 4.1 & Table 4.1.1   

As the secondary electromagnetic coupling 
1

@
EMS cutoff

k


must be constant for all spin ½ 

leptons and quarks, the amplitudes of the smaller side eigenfunctions 5n   & 7n   that 

determine this must also be constant for all the fermions, implying that Eq. (2.3.12) must be 

the same for all fermions. The same arguments apply to the other groups of fundamental 

particles but we return to this in sections 3.3 where we see that the same also applies with 

graviton emission. 

 

3 Properties of Infinite Superpositions 

3.1 The Amplitude that Wavefunction nk
  is Spherically Symmetric  

3.1.1 Four vector transformations 

The rules of quantum mechanics tell us that if we carry out any measurement on a real 

spherically symmetric 3l   wavefunction it will immediately fall into one of the seven 

possible states 3, 0, 1, 2, 3l m     [23]. But nk
 is a virtual 3l   wave function so we 

cannot measure its angular momentum. During its brief existence it must always remain in 

some virtual superposition of the above seven possible states and we can describe only the 
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amplitudes of these. So, is there any way to calculate these amplitudes, as they must relate to 

the amplitudes of the angular momentum states of the spin 1 quanta it absorbs from the zero 

point vector fields?  

 

First consider the 4 vector wavefunction of a spin 1 particle and start with a time polarized 

state which has equal probability of polarization directions. It is thus spherically symmetric, 

which we will label as ss .  Using 4 vector (t, x, y, z) notation 

 

                  In frame A, a time polarized or ss  spin 1 state is (1,0,0,0). 

Let frame B move along the z  axis at velocity /v c   in the z  direction. 

                  In frame B the polarization state transforms to ( ,0,0, ).   

But this is 2 time polarized ss states minus 2 2   z  polarized or 0m   states      

                  In frame B the probabilities are 2 ss  
2 2

0m    states.  

Now 
2 2 2 2 2

(1 ) 1         is an invariant probability in all frames and in removing 2 2 

 0m   states from 2  ss  states, the new ratio of spherical symmetry is 
2 2 2 2 2

( ) / 1       . Thus, a spherically symmetric state is transformed from probability 

1 in frame A, to 
2

1   in frame B. Also removing 0m   states from spherically symmetric 

states leaves a surplus of 1m    states, as spherically symmetric states are equal 

superpositions of  1 ,m    0 ,m  & 1m    states.  

 
2 2

Thus in Frame B the probabilities (1 ) 1  states are .ss m           (3.1.1) 

We can describe this as a virtual superposition of 
1

1  states.ss m


     
                                                                 

(3.1.2) 

 

As 
2

1   we have transverse polarized states, the same as real photons. Now transverse 

polarized spin 1 states can be either left ( 1),m    or right ( 1)m    circular polarization, or 

equal superpositions of (1/ 2) (1/ 2)L R  as in &x y  polarization.  If we think of 

individual spin zero preons absorbing these spin 1 quanta at 0t   they must also have this 

same
2 probability of transversely polarized spin 1 states.  If they then merge into some 

composite 3l   particle (as in Figure 3.1.4) for time 0 / 2 ,t E   the probability of it being 

in some particular state ( 3, 0),l m  ( 3, 1),l m   ( 3, 2)l m   or ( 3, 3)l m   , must be 

the same 
2
.  We initially write the amplitudes in these three equations in terms of nk

  & 

nk
 as this is the most convenient way to express them. Velocity operators are momentum 

operators over relativistic masses. Our eigenvalues are 
2 2 2 2

nk
n kp  for each &n k , and this 

allows the velocity operators to give constant 
2

.
nk

  Later in Eqs.  (3.1.11) and  (3.1.12) we 

write nk
 & nk

  in momentum terms. Even though the mass in these operators is virtual, we 

can still use it to calculate nk
 . For each k  and integral n  there will be a constant nk

  and 
2 1/2

(1 ) .
nk nk

 


    As we will see, nk
  can be thought of as the magnitude of the velocity of 

an imaginary centre of momentum frame in which these interactions take place. We will also 

draw our Feynman diagrams of these interactions in terms of  &
nk nk

  for convenience, even 

though this is unconventional. To proceed from here we define two frames as follows: 
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1) The Laboratory Frame (LF) or Fixed Frame as in section 2.2.3 

The infinite superposition has rest mass 0
m  and zero nett momentum in this frame. Each nk



is centred here with magnitude of momentum nk
n kp . Even though we have no idea of 

the direction of this momentum vector we will define it as the z  direction. The eight preons 

are born in this frame with zero momentum and can thus be considered here as being at rest or 

with zero velocity and infinite wavelength at their birth. The Feynman diagram of the 

interaction in this frame that builds nk
  is illustrated in Figure 3.1.3.  

 

2)  The Centre of Momentum Frame (CMF)  

This (imaginary) frame is the centre of momentum of the interaction that builds nk
 . The 

CMF moves at velocity nk
 relative to the laboratory frame in the z  direction or parallel to 

the unknown momentum vector direction .
nk

p  In this CMF the momenta and velocities of the 

preons at birth and after the interaction are equal and opposite. This is illustrated in Figure 

3.1.2  again in terms of  0
, , &

nk nk
m   . In the LF the velocity of the preons at birth is zero, in 

the CMF this is nk
  and after the interaction nk

  , where both nk
  and nk

  are in the 

unknown z  direction. In the LF the particle velocity (particle)
nk nkp

   is the simple 

relativistic addition of the two equal velocities nk
  as in Figure 3.1.1. 

 
Figure 3.1.1 Velocities in unknown but the same directions in different frames. 

 

3.1.2 Feynman diagrams of primary interactions 

 

Let us start with   

          
2 1/2 2 2

2

2
(Particle)  and (1 ) (1 )

1

nk

nk nkP nkP nkp nk nk

nk


     




     


  

(3.1.3) 

 

If the particle rest mass is 0
m  let each preon have a virtual rest mass 

0
/ (8 2 ).

nk
m s   

         

0

0
The eight preons are effectively a virtual particle of rest m s  

2
as

snk

nk

m
m

s
   

 

              (3.1.4) 

 

The particle momentum in the LF is zero at birth. After the interaction using these equations 

  

    

Laboratory Frame Centre of Momentum Frame Virtual Particle 
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nk nk
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0The particle momentum after the interaction in the F 
2

2
L nk nk

nk

m c
n k

s

 
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   (3.1.5) 

 

Using Eq. (3.1.4), in the LF the particle energy at birth is 

                                                               
2

2 0

0
2

snk

nk

m c
m c

s
   

                                                      

(3.1.6) 

 

In the LF the particle energy after the interaction is by using Eq. (3.1.3)  

2 2 2 2 2 20 0

0
(1 ) (1 )

2 2

nk

snk pnk nk nk nk

nk

m m
m c c c

s s


   


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              (3.1. 7) 

 

In the CMF the momentum at birth is using Eq. (3.1.4)                              

                                                                   0

0
2

nk

snk nk nk

m
m

s


 


    

                    (3.1.8) 

 

In the CMF the momentum after the interaction is equal but in the opposite direction                            

                                                                                    0      
2

nk
m

s


   

                    (3.1.9) 

 

In the CMF the energy at birth, and after the interaction is 

                                                                      
2

2 0

0
2

snk nk

m c
m c

s
    

                                                   

(3.1.10)                                                       

                                                                                               

These values are all summarized in Figure 3.1.2 and Figure 3.1.3 but with 1c  .  

From  Eq.    (3.1.5)      nk
n kp 0

2

2

nk nk
m c

s

 
   and   nk nk

 
0

22

2 2

C
nk sn k s

m c
    

(where 
0

C
m c

  is the Compton wavelength). We can now express &
nk nk

   in momentum 

terms:    

                     
0

22
Let  

2 2

C

nk nk nk

nk sn k s
K

m c
     

              (3.1.11)    

 

                          

2

2 2 2

2
:     and  In 1terms of 

1

nk

nk nk nk nk

nk

K
K K

K
   


 

              (3.1.12) 

 

Each infinite superposition has fixed .
C  Each wavefunction nk

  of this infinite 

superposition has fixed &n s , thus nk
K k .  

                                    For example, we can put    nk

nk

dK dk

K k
   

               (3.1.13) 
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These simple expressions and what follows are not possible if 
0 0

/ 2
snk nk

m m s , and when 

we include gravity we find 
0 0

/ ( 2 )
snk nk

m m s  is essential (section 4.2).  

 
Figure 3.1.2  Feynman diagram in an imaginary centre of momentum frame. 

 

Figure 3.1.3  Feynman diagram in the laboratory frame. 

The interaction in the Feynman diagrams above is with spin 1 quanta. The Feynman transition 

amplitude of this interaction shows that the polarization states of these exchanged quanta is 

determined by the sum of the components of the initial, plus final 4 momentum ( )
i f

p p


 . 

Ignoring all other common factors this says that the space polarized component is the sum of 

the momentum terms ( )
i f
p p  and the time polarized component is the sum of the energy 

terms 
0

( )
i f

p p .  We have defined our momentum as in an unknown z direction:  

          

0
The ratio of   polarization to time polarization amplitudes i

( )
s 

)
 
(

f

z

i f

i
p

z
p p

p




    

 

          (3.1.14) 

 

 

In the CMF ( ) 0
z

i f
p p  , thus an interaction in the CMF exchanges only time polarized, or 

spherically symmetric 1l   states.  In the LF the ratio of z (or 0)m   polarization, to time  

polarization in the LF is 
2

,
nk

        

      

                                      where    
0

0

0

( ) 2

( ) 2
f

z

i f nk nk

nk

i nk

p p m

p p m

 





 


 

                                    
(3.1.15) 

 
 

 

 Eight preons at birth:   

After merging:  

     After merging:  

 Eight preons at birth:  
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From section 3.1.1 these are probabilities of  
2

nk
 ss  

2 2

nk nk
  0m  states, or as 1l   here  

2
(1 )

nk
ss  +

2

nk
 1m    states.  

            

In the LF this is a virtual superpos
1

( 1 ) statition of  es. 
nk

nk

ss m


            

                

                (3.1.16) 

 

From section 3.1.1 as these quanta from the scalar and vector zero point fields build each nk


this implies that: 

          

In the LF  has virtual superposition amplitudes  
1

  states.
nk

n

nk

k

ss m


 

    

  
 (3.1.17) 

 

From section 3.1.1 appropriate  1, 1l m    superpositions can build any 3,   state.l m

Figure 3.1.4 is an example of such a nk
 for 5,6,&7n  3, 2l m    states. 

 

3.1.3 Different ways to express superpositions 

We have expressed all superpositions here in terms of spherically symmetric and m  states for 

convenience and simplicity. We could have expressed them in the form: 

 

1
3 2 1 0 1 2 3 2

7
nk

nk

m m m m m m m m


                        
 

This is equivalent to (as above we ignore complex number amplitude factors for clarity)   

                

1
2 where we have put m 2 in this example.

nk nk

nk

ss m 


       

Because all these wavefunctions are virtual they cannot be measured in the normal way that 

collapses them into any of these eigenstates, it is more convenient to use the method adopted 

here which is similar to QED virtual photon superpositions. 
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Figure 3.1.4  Eight preons forming 2m    states as part of a positron superposition. If a 

zero spin and zero momentum preon absorbs a quantum its momentum becomes p k  and 

its angular momentum becomes either 1,m    or an 0m   equal superposition of    1,m    

states. When it does not absorb a quantum it remains at both spin zero and momentum 0.p  

There is no significance in which preons have absorbed quanta. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 Any colour & 
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3.2 Mass and Total Angular Momentum of Infinite Superpositions 
 

3.2.1 Total mass of massive infinite superpositions 

We will consider first the total mass of an infinite superposition, and to help illustrate, 

consider only one integral n eigenfunction nk
  at a time; temporarily assuming that the 

amplitude n
c of each nk

 has magnitude 1
n

c  . Each time nk
  is born it borrows mass from 

a scalar Higgs field (or a zero point field time component) and momentum from a zero point 

field spatial component. The mass that it borrows is exactly cancelled by an equal debt in the 

Higgs scalar field (or the zero point field time component) so this sums to zero for all k. (This 

is a different way of looking at what generates mass; however, the end result is identical.) But 

what about the momenta borrowed from the spatial component of zero point fields, do these 

momenta also leave momentum debts in the vacuum? At any fixed value of k the momentum 

is a constant of the motion in a squared vector potential 2
A . We can think of this as in any 

particular direction there is some probability of momentum nk
np k due to this 2

A field. 

When interacting with the magnetic or the spatial component of any electromagnetic field the 

velocity squared factor 
2

nk
  determines the rate of quanta absorbed. 

Our wavefunctions nk
  are generated from a vector potential squared term 2

A  derived in 

section 2.1.2 which in turn came from a 2
B  type term as in section 2.1.1. As discussed in 

section 2.3.2  the
 
eigenvalues 

2 2 2 2

nk
n kp  confirm the constant momentum squared feature 

of magnetic, or space mode interactions. Also in section 2.1.1 the scalar virtual photon 

emission probability is directly related to the force squared term 2 2 2
.F E  Magnetic type 

coupling probabilities are related to a magnetic type force squared term 
2 2 2 2 2 2 2 2

/F B c E     , where from section 3.1.2 and Eqs.   (3.1.14) &  (3.1.15) the ratio 

of this scalar to magnetic coupling is 
2

.
nk

  Thus when k    and the exchanged energy 

X
E  , 

2

nk
n  quanta k  are absorbed from the vacuum and    

    

                  
2

  we can expect a momentum debt of ) (
nk nk

debt n p k    (3.2.1) 

 

We could sum 
2

nkp & 
2

( )
nk

debtp  but both vectors nk
p and ( )

nk
debtp are antiparallel in the 

same unknown direction. We can pair them together giving a nett momentum per pair of:   

 

             
2

2 2
at wavenumber  .( ) ( ) (1 )  nk

nk nk nk nk

nk nk

n
nett d b n ke t 

 
     

pk
p p p k  

 (3.2.2) 

 

We have said above that the mass of each virtual particle is cancelled by an equal and 

opposite debt in the Higgs scalar field so we can now use the relativistic energy expression  

             
2 2 2

0

( )
k

n nk

k

E nett c




p times the probability of each pair at each wavenumber k.  

We will initially look at only 1N   massive infinite superpositions in Eq.  (2.2.4).  

Thus, using probability / /sN dk k s dk k   , also Eqs.  (3.1.11),  (3.1.12), (3.1.13),& (3.2.2) 
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2 2 2

0

( )

k

n nk

k

s dk
E c nett

k






  p

2 2 2

2

4

0 nk

n k s dk
c

k




 
2

2 4

0 2 2

0

4
(1 ) 2

nk nk

nk nk

K dK
m c

K K




  

                                          
2 2 4 2 4 2

0 0 02

0

1
 or  

1
n n

nk

E m c m c E m c
K



 
    

 
  

 

                 (3.2.3) 

 

This energy is due to summing momenta squared and it must be real, with a mass 0
m  for 

infinite superpositions of Eigenfunctions .
nk

  These superpositions can form all the non-

infinitesimal mass fundamental particles.  The equations do not work if the mass 0
m  is zero. 

(We will look at infinitesimal masses in section 6.2.)  Negative mass solutions in Eq. (3.2.3) 

must be handled in the usual Feynman manner, and treated as antiparticles with positive 

energy going backwards in time. If they are spin ½ this also determines how they interact with 

the weak force.  

 

3.2.2 Angular momentum of massive infinite superpositions 

We will use the same procedure for the total angular momentum of 1N   type infinite 

superpositions with non-infinitesimal mass in Eq.  (2.2.4).  

 

Wavefunctions nk
 3 2 2 2

exp( /18) ( , )
nk

C r n k r Y     have angular momentum squared 

eigenvalues 2 2
12L and the various m  states have angular momentum eigenvalues 

.
z

mL  We will treat both angular momentum and angular momentum debts as real just as 

we did for linear momentum. Even though m  state wavefunctions are part of superpositions 

they still have probabilities, just as the linear momenta squared above, and it seemed to work. 

Using exactly the same arguments as in section 3.2.1, if nk
  is in a state of angular 

momentum zk
mL , then it must leave an angular momentum debt in the vacuum of

 
2

( )
zk nk

debt m L  (or as in section 3.2.1) ( ) ( )
zk zk zk

nett debt L L L .  

   

     
2 2

2
( ) (1 ) (1 )   (if  is in state )zk

zk nk nk zk zk

nk

nett m m 


    
L

L L L   
      (3.2.4) 

 

But from Eq.  (3.1.17) the probability that zk
L is in an m  state is also 

2

nk
  so that  

 

2

2

2
including this extra  probability term: ( )  at wavenumber .nk

nk zk

nk

nett m k





L   
    (3.2.5)                                    

For an 1N   type infinite superposition 
0

( ) ( )

k

z zk

k

s dk
Total nett

k






 L L .  

2

2

0
2

nk

nk

dk
sm

k







   

Using Eqs.  (3.1.11) to  (3.1.13) 
2

2 2

0

( )
(1 )

nk nk

z

nk nk

K dK
Total sm

K K




L  

2

0

1

2 1
nk

sm

K



 
  

 
  

                                          ( )       or    
2 2

z

sm s
Total m m m   L  

                  (3.2.6)  
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Where m  is the angular momentum state of the infinite superposition and m  the state of nk
 .  

Thus for spin ½  particles with s 
 
½ in Eq. (3.2.6) / 4m m   but mcan be only   ½, 

implying the m  state of nk
  that generates spin ½ must be 2m   . An 1N   massive spin 1 

particle has 1s   with / 2m m  . ( 2N   is covered in section 6.2.) This is summarized in the 

following three member infinite superpositions ignoring complex number factors. 

 

  
,

1
2 ,1/2, 1/2 , 2

5,6,7 0

1
Massive ( 1) Spin , 

2

k
nk ss

n nk nk

n nkk

N c dk
k


  





  

 

 
   

  
    

   (3.2.7) 

 

       
,

,1, ,2

4,5,6 0

1
Massive ( 1) Spin 1, 

k
nk ss

m n nk nk m

n nkk

N c dk
k


  







 

 
   

  
    

   (3.2.8) 

 

The spin vectors of each nk
 with 2 3L , and their spin vector debts in the zero point 

vector fields, have to be aligned such that the sum in each case is the correct value: 

3 / 2L  , 2L or 6L  for spins  ½ , 1 & 2  respectively.  

Spherically symmetric massive 1N   spin 1 states are a superposition of three states 

1
1 0 1 ,

3
m m m             and using Eq.  (3.2.8) can be formed as follows 

,

,1, 1 , 2

4,5,6 0

,

,1, 0 , 0

4,5,6 0

,

,1, 1 , 2

4,5,6

1 1 1
 

3 3

1 1 1
Massive spin 1  

3 3

1 1

3 3

k
nk ss
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k
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m n nk nk m
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m n nk nk m
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c dk
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  
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 
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  

 
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

 
  

  

 
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 
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 

 

 


0

1
k

k
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k
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

 
 
 
 
 
 
 
 
 
 

  
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     (3.2.9) 

 

3.2.3 Mass and angular momentum of multiple integer n superpositions  

In sections 3.2.1 & 3.2.2 for simplicity we looked at single integer n superpositions nk
 . For 

superpositions 
k n nk

n

c  , we replace 
2

nk
K with

2

k
K . Equation  (2.3.9) appears to suggest 

2 2 2 2 2 2 2
*

k n n

n

c c n k n k p  and 
2

k
k np . In section (3.5.1) we discuss why

2

k
k np but *

k n n

n

k c c n k n  p . Thus using Eq.  (3.1.11) 

         

2 2 2 2
2 2 2 22

  &  but   
2 2 2

C C C

k k k

k s k s k s
K n K n K n     

 (3.2.10)  

Replacing 
2

nk
K with 

2 22 2
/ 2

k C
K k s n  in the key equations (3.2.3) &  (3.2.6)  does not 

change the final results. The laws of quantum mechanics tell us the total angular momentum is 
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precisely integral  or half integral / 2 .  Looking at the above integrals used to derive total 

angular momentum we see that N must be 1 (we discuss N=2 in section 6.2) and s  must be 

exactly ½ or one for spin ½ & spin 1 massive particles respectively in our probability formula 

Eq.   (2.2.4). Also, these integrals are infinite sums of positive and negative integral  that are 

virtual and cannot be observed. If an infinite superposition for an electron is in a spin up state 

and flips to spin down in a magnetic field, a real 1m    photon is emitted carrying away the 

change in angular momentum.  This is the only real effect observed from this infinity of 

( 3, 2)l m    virtual wavefunctions all flipping to ( 3, 2)l m   states, plus an infinite 

flipping of the virtual zero point vector debts. Also, Eqs. (3.2.3) and  (3.2.6) are true only if 

our high energy cutoff is at infinity and the low frequency cutoff is at zero. We look at high 

energy Planck scale cutoffs in section 4.2 and in section 6 low energy cutoffs near the radius 

of the causally connected horizon.  

 

3.3 Ratios between Primary and Secondary Coupling 
 

3.3.1 Initial simplifying assumptions 

This section is based on a special case thought experiment that tries to illustrate, hopefully in a 

simple way, how superpositions interact with one another; in the same way as virtual photons, 

for example, interact with electrons. It is unfortunately long and not very rigorous, but it 

illustrates how, in all interactions between fundamental particles represented as infinite 

superpositions, the actual interaction is between only the same k  single wavenumber 

superpositions of each particle. We will later conjecture that an interacting virtual particle is a 

single wavenumber k  superposition only, and not a full infinite superposition. Only real 

particles whose properties we can measure are full infinite superpositions. The full properties 

do not exist until measurement, just as in so many other examples in quantum mechanics. This 

will be clearer as we proceed. It is also important to remember here, that because primary 

coupling constants are to bare charges (section 2.2.2), and thus fixed for all k, while secondary 

coupling constants run with k, the coupling ratios can be defined only at the cutoff value of k 

applying to the bare charge (sections 4.1.1 & 4.2.2). From Table 2.2.1 there are six 

fundamental primary charges for electrons and positrons. But electrons and positrons are 

defined as fundamental charges. In other words, what we define as a fundamental electric 

charge is in reality six primary charges. Of course, we can never in reality measure six as their 

effect is reduced by the ratio between primary and secondary coupling. Because 

electromagnetic and colour coupling are both via spin one bosons their coupling ratios are 

fundamentally the same, but because of the above they are related as 2
6 36:1 .     

 

                                                   
1 36

          =      
Colour EM

 
  

                 (3.3.1) 

               

We define the colour and electromagnetic ratios as follows (leaving gravity till section 6.2.6)  
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(Secondary) (Secondary)3

(Primary) 3 (Primary)

1 1
         and       

Colour EMS EMS

Colour Colour P EM EM EMP

  

     
      

   (3.3.2) 

 

The secondary coupling constants 3
 &  

EMS S
 

 
are the bare charge values, both at the fermion 

interaction cutoff near the Planck length Eq. (4.2.10). Also we assumed in section 2.2.2  that 

3
1;

P
   thus from Eq. (3.3.2)  

 

                                       
1 1 18

3 3
@ 2.029 10

C S cutoff
k GeV   

             (3.3.3) 

 

In other words, provided 3
1,

P
   the ratio C

  (or )
Colour


 is also the inverse of the colour 

coupling constant 3
  at the high energy interaction cutoff near the Planck length. In this 

respect C
  or Colour

  is the fundamental ratio we will use mainly from here on. From the 

above paragraphs, to find the coupling ratios we need secondary interactions that are between 

bare charges. But this implies extremely close spacing where the effects of spin dominate. If 

the spacing is sufficiently large the effects of spin can be ignored but then we are not looking 

at bare charges. However, we can ignore the effects of shielding due to virtual charged pairs 

by imagining, as a simple thought experiment, an interaction between bare charges even at 

such large spacing.  We can also simplify things further by considering only scalar or 

coulomb type elastic interactions at this large spacing. We are also going to temporarily 

ignore Eq.  (3.3.2) and imagine that we have only one primary electric and or one colour 

charge. Consider two superpositions and (due to the above simplifying assumptions) imagine 

them as spin zero charges. QED considers the interaction between them as a single covariant 

combination of two separate and opposite direction non-covariant interactions (a) plus (b) as 

in the Feynman diagram of Figure 3.3.1 below. The Feynman transition amplitude is invariant 

in all frames [22], so let us consider a special simple case in a CM frame where we have 

identical particles on a head-on (elastic) collision path with spatial momenta:     

                                      

                                                        a a b b
      p p p p           (3.3.4)     

 

From Eq.  (3.3.4) the initial and final spatial momenta are reversed with mirror images of each 

other at each vertex. Of course, when we know momenta accurately we have no idea where 

the particles are when this takes place, so in reality there is no head-on collision. We are also 

going to assume in what follows that the vertices of this interaction are on opposite sides of 

the interacting boson superposition. While we have no idea where this boson superposition is 

centred, what we do know in this simple special scalar case is that the transferred four 

momentum squared is simply the transferred three momentum squared, and ignoring the 

minus sign for 
2

q  (due to 2
i ) in what we are doing here for simplicity we can say :

  

 

    
  

                                         
2 2 2 2 2

( ) ( ) 4 4 .
a a b b a b

q p p p p      p p   
            (3.3.5)  
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Figure 3.3.1 Feynman diagram of virtual photon exchange between two spin zero particles of 

charge e .   

Figure 3.3.2  All eigenfunctions nk
 in the groups of three overlap at a fixed wavenumber k.  

If we look at Figure 3.3.2 we see that at any fixed value of  k, all modes nk
  in the groups of 

three overlapping superpositions for the various spins ½, 1 & 2 occupy similar sized regions 

of space. The directions of their linear momenta are unknown but let us imagine some 

particular vector k  that is parallel to the above vectors a b
p p . As we are considering only 

scalar interactions, all these modes must be spherically symmetric or time polarized. Equation 

(3.1.16) says spherical symmetry is 1 /
nk

 and Eqs. (3.1.11) and (3.1.12) tell us 1
nk

   as 

0.
nk

   But we are considering bare charges at large spacings where the exchanged virtual 

photons have small momenta and are time polarized as in Eq.  (3.1.15). At a fixed value of k  

they thus have momenta n k . Also, as they overlap each other, we can imagine units of 

 k quanta somehow transferring between these superpositions so that the values of n  in 

each mode can change temporarily by 1  for times /T E   . The directions of these 
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momentum transfers causing either repulsion or attraction depending on the charge signs of 

the superpositions at each vertex, whether the same or opposite. 

 

3.3.2 Restrictions on possible eigenvalue changes 

Before we look at changing these eigenvalues by 1n    we need to consider what restrictions 

there are on these changes.  

From Eq. (2.3.12) superposition k
  requires 

4 2 4 2

2 2
*

81
n n

n

n k r
Q A c c  and Eq.  (2.2.4) informs 

us the available   

2

2 2 2 4 2
8 8

3

EMP

Q A k r
sN





 
 

    occurs with probability   
sN dk

k


 .  

For very brief periods the required value of 
2 2

Q A  can fluctuate, such as during these changes 

of momentum, but if its average value changes over the entire process then Eq.   (2.2.4) says 

that the probability /sN dk k  changes also, and we have shown in section 3.2.1 that this is 

disallowed. For example, in a spin ½ superposition 5 6 7
, , ,

k k k
   (see Table 4.3.1) the average 

values of 
5

c ,
6

c &
7

c  must each remain constant. This can only happen if n  remains within 

its pre-existing boundaries of (5 7)n  . For example, if 7
  adds  k (we will ignore the 

subscript k in nk
  from here assuming that it will be understood) it can create 8

 , but 
8

c  

must average zero, which it can do only if it fluctuates either side of zero, and 
n

c  cannot be 

negative. Similarly 4
c  must average zero, thus 4

  & 8
  are forbidden fermion superposition 

states. Keeping the average values of 
n

c  constant is also equivalent to a constant internal 

average particle energy (we have shown in section 3.2.1 that rest mass is a function of
2

* .
n n nk

c c p ). By changing these eigenvalues by 1n    there are only four possibilities: 6


& 7
  can both reduce by  k  quanta; 6

 & 5
  can both increase by   k quanta. If 6

  

becomes 7
 ,  

7
c  also increases and 

6
c  decreases, but then 7

  has to drop back becoming 

6
,  with 

7
c  decreasing back down and 

6
c  increasing back up in exact balance. If we view 

this as one overall process the average values of both 
6

c  and 
7

c  remain constant but 

fluctuate continuously. We can use exactly the same argument if 5
  increases which has to be 

followed by 6
  dropping, where if we view this as one process again, the average values of 

both  
5

c and 
6

c  remain constant. This is similar to a particle not being able to absorb a 

photon in a covariant manner, it has to re-emit within time / .T E   Just as transversely 

polarized photons are the equal left and right superposition of circular polarizations 

/ 2 / 2L R , we can perhaps express Eq. (2.3.9) 
2 2 2 2

nk
n kp  as equivalent to: 

 

                        is the equal superposition / 2 / 2.n n n     p k p k k      (3.3.6)  

This superposition is in opposite directions of the vector ,k implying equal 50% probabilities 

of  momentum vectors for any pair of opposite directions. (It is a virtual superposition so 

neither of these two components can be observed.) Thus if n  changes by 1  say, there are 

equal 50% probabilities of the momentum transfers  p k and . p k  And the same is 

true if n  changes by 1.  Spin 1 bosons transfer momentum ,  p k which means that two 

50% probability transfers are required, such as 5 6k k
   combined with a 6 5k k

   

provided the momentum directions add appropriately as in the Figure 3.3.3 top diagram  But if 
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5 6k k
 

 
and 6 5

,
k k

  with n p k  keeping the same sign during this process, there 

is no nett 3 momentum transfer as in the lower half of Figure 3.3.3. The probability of these 

two processes is identical, and we will use this same probability for spin 2 graviton 

probability densities when looking at gravity which Einstein showed is not a force, as particles 

simply follow geodesics in the warped spacetime surrounding any mass. For all the two way 

transitions at both vertices, similar to those discussed above, the following is true:  

             5 6
Probability of all transitions similar to  is equal in either direction.          (3.3.7) 

As we are looking at virtual interactions between fermions and bosons we will use subscripts 

a for spin ½ and b for spins 1 and 2 superpositions in what follows.  

 

 

Figure 3.3.3  Covariant interaction (as in Eq.  (3.3.4) and Figure 3.3.1) between fermion 

(subscript a) and boson (subscript b and in boxes) eigenfunctions, with spin 1 photons in the 

top diagram, and spin 2 gravitons in the bottom diagram. Orange and magenta are used for 

bosons, blue and green for spin 1/2 to help identify the transitions at each of the four 

spacetime corners. This is one process, but a superposition of two diagonal components 

splitting the 3 momentum k  equally. Momentum is transferred in the spin 1 case only, but 

real spin 2 gravitons however, as in gravitational waves from rotating binary pairs for 

example, do carry energy and momentum,  
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We can think of the interactions in both the top and bottom of Figure 3.3.3 as a spacetime 

rectangle. Starting with the top left corner, the key factors are the superposition 

component/member amplitudes 6 4
& ,

a b
c c  then proceeding clockwise (the order is irrelevant) 

5 4
& ,

a b
c c  5 5

& ,
a b

c c and finally 6 5
& .

a b
c c  As this is part of one process, we can rearrange all 

terms and multiply them to get  4 4 5 5 6 6 5 5
( )( )( )( ).

b b b b a a a a
c c c c c c c c      

Putting 4 4 4 5 5 5
* , * etc. 

b b b a a a
P c c P c c   

                            4 4 5 5 6 6 5 5 4 5 6 5
( )( )( )( )

b b b b a a a a b b a a
c c c c c c c c P P P P      

 

   (3.3.8) 

However, our superposition members ( nk
  shortened to )

n
  are all Eigenfunctions with 

Eigenvalues  
2 2 2 2

nk
n kp  having equal probabilities of momentum vectors k  pointing in 

opposite directions, as in Eq.(3.3.7) and the following paragraph. Thus, we can interchange 

the red and orange boson 4 5
&

b b
   and also the blue and green fermion 5 6

&
a a

   in Figure 

3.3.3 with no change in exchanged momentum. These four possibilities increase the amplitude 

factor for this group by four, so that (if all other factors are one) Eq. (3.3.8)  becomes: 

 
2

4 4 5 5 6 6 5 5 4 5 6 5
2 ( )( )( )( ) 4

b b b b a a a a b b a a
c c c c c c c c P P P P           (3.3.9) 

 

But there are four different groups of four Eigenfunctions A, B, C & D as in Figure 3.3.4 

below, and we have only been considering group C above.  

                                 A                           B                         C                           D 

 

                

           

     

Figure 3.3.4 Interaction between the four Eigenfunction groups  A, B, C and D  

Using  Eq. (3.3.9), if all other factors are one the amplitudes for the groups in Figure 3.3.4 are:     

  

                 

4 4 5 5 6 6 7 7 4 5 6 7

3 3 4 4 6 6 5 5 3 4 6 5
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4 5 6 7b b a a

P P P P

          

   (3.3.10) 

 

These amplitudes are all numbers as 4 4 4 5 5 5
* , * etc. 

b b b a a a
P c c P c c  are just probabilities. But 

we can perhaps imagine these numbers as in the complex plane. From section 2.2.2 and 

Figure 3.1.4, however, the three eigenfunctions forming each of the interacting particles are 

born simultaneously. It would thus seem reasonable to assume that the amplitudes of each 

group of three eigenfunctions have the same complex phase angle. So whether they are in the 

complex plane or not, provided they are all at the same angle we can get the overall 
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probability of this virtual exchange by simply adding the four amplitudes A,B,C&D from Eq. 

(3.3.10) and squaring the total to get: 

 

 

 

2

2

4 5 6 7 3 4 6 5 4 5 6 5 3 4 6 7

2

4 3 5 6 5

Overall interaction probability if all other factors are one ( )

                       16

                        = 16 ( ) (

b b a a b b a a b b a a b b a a

b b b a a

A B C D

P P P P P P P P P P P P P P P P

P P P P P P

   

   

  
2

7
)

a

 

    

   (3.3.11) 

 

 

Using different colours again for common terms in each of the equations following and then 

using 3 3 4 4 5 5 5 5 6 6 6 6
* * * * * * 1

b b b b b b a a a a a a
c c c c c c c c c c c c        the interaction probability is

      

                            

   
2

4 4

2

6 6

4

64

2

64
** (1( ) 2 * (1 *) )

b b b ab a a a
A B C D c c cc c c c c      

  (3.3.12)               

We have assumed to here that all other amplitude factors are one. However at each vertex 

there are both fermion and boson superposition probabilities from Eq.   (2.2.4). Writing the 

superposition probability at each vertex /sN dk k  as 1/2 1
/ ,s N dk k  1 2

/s N dk k  for clarity 

where 1 1 
spin 1 ,  1 is etc.s N N   Including these factors (if all other factors are one) in Eq.   

(3.3.12) our overall probability at wavenumber k is  

 
2

1/2 1 6

2

1 2 4 4 46 6 46
2 * (1 * 2 (1) * * )

b b ba ba a a
s N c c c c s N c c c c

kk

 


 









 

   
22

1/2 1 6 1 2 4 4 4 46 6

4

6
2 *2 * (

.
(

(1 )1 * ) *

)

a a a b ba b b
ss N c c c c N c c c c

k


  

 

The momentum per transfer is a total of  k and using Eqs.    (3.3.5),     (3.3.6) & 

  
4 4

( ) q k  then putting 1  the interaction probability is   

 
   

2

1/2 1 6

2

1 2 4 4 46 6 4

4

6
22 * ( * * )1 * ) (1

a a ba b b ba
s N c cs N c c c c

q

c c 
  

      (3.3.13)
 

This is the scalar interaction probability between two spin ½ fermions exchanging 

infinitesimal rest mass spin 1 bosons at very large spacings, where the fermions are effectively 

spin zero, imagining them as bare charges and all other factors being one. When exchanging 

spin 2 infinitesimal rest mass time polarized gravitons (as in  the bottom half of Figure 3.3.3 

with no 3 momentum) we can simply keep using wavenumber k in the denominator for the 

interaction probability between fermions and gravitons. If all other amplitude factors are one 

this interaction probability becomes (using subscript c for spin 2 and 2
2N N  for clarity): 

 

   
   

2

1/2 1 6

2

2 2 4 4 46 6 4

4

6
2

 gravito
* (12 * (1 * )
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*
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)

s.
c ca a a a c c

s N c c c s N c c c c

k

c 
  

   (3.3.14) 
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And if, for example, two spin 1 photons exchange spin 2 gravitons (all infinitesimal rest mass  

with 2
2N N  ) the interaction probability if all other amplitude factors are one becomes      

       
   

2

2

2

1 2 4 4 2 4 4 4 44 4

4
 for 2 photons.

2 * (1(1 *2 * * ) )
c cb c cb b b

s N c cs N c c c c c

k
N

c
   

 (3.3.15) 

 

If two massive 1N   photons (as in Figure 3.3.2) exchange spin 2 gravitons the interaction 

probability if all other factors are one becomes 

        
   

2

2

2

1 1 5 5 2 4 4 4 45 5

4
 for 1 photons.

2 * (1(1 *2 * * ) )
c cb c cb b b

s N c cs N c c c c c

k
N

c
  

 (3.3.16) 

 

According to GR (section 1.2.2) the emission of gravitons is identical for both mass and 

energy. Keeping all other factors (such as mass/energy) in Eqs. (3.3.14),  (3.3.15) and  

(3.3.16) constant, the graviton interaction probabilities must be the same in each. We can thus 

put them equal to each other and cancel out all the common red terms on the RH sides above:
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 (3.3.17) 

 

 

In this special case as in Eq. (3.3.4) we have shown that the time polarized interaction 

probabilities are the same whether 3 momentum is exchanged or not, and this equation for the 

above ratios is identical for both virtual spin 2 graviton and virtual spin 1 photon exchanges. 

Ignoring complex numbers for simplicity, we can use either 4 momentum q or wavenumber k 

interchangeably. Now assume that all other factors (other than coupling constants) are one, 

and remember that we are simplifying with a thought experiment by looking at spin ½ 

superpositions sufficiently far apart so we can treat them as approximately spherically 

symmetric or effectively spin zero, even if they are supposed to be bare charges with spin. 

Under these same scalar exchange conditions QED says that with electrons, for example:   

 

         The probability of scalar spin one photon exchange in Eq. (3.3.13)
2

4

4
= .   

q


  

   (3.3.18) 

(This probability is for one momentum k direction only, but the mode density of these is  

2 2
/k dk  . We can perhaps think of 

22 2

4 2

4 2k dk
dk

k k

 

 

 
   

 
 as an imaginary emission 

probability 
2

,
dk

k




 multiplied by an imaginary absorption probability 

2 dk

k




 in all possible 

directions.  

The rest of this paper is mainly about virtual particles which cannot be experimentally 

detected. However, as we will see, imaginary probability densities can have real world 

consequences. This is similar to our postulated infinite virtual superpositions being 

undetectable, but the particles they generate can certainly be experimented on in the real 

world.  
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This paper uses these imaginary probabilities throughout, as it allows a very simple 

approximate way to look at gravity using only very long wavelength time polarized gravitons. 

We demonstrate how it works in the next section on electromagnetic energy between charges.  

Let us now temporarily ignore the fact that gluons have limited range and imagine our thought  

experiment applying to colour charges exchanging gluons. The   of Eq.  (3.3.18) becomes 

the usual colour coupling 3
 . To get the fundamental coupling ratio labelled as C

 1

3



  

@
cutoff

k  we substitute the   of  Eq.  (3.3.18) with 
1

C
 


  as we assumed 

3
(Primary) 1.   

Substituting 1/2 1
2 1,  2 2,s s 

 1 2
1 & 2N N   and equating Eqs. (3.3.13) &   (3.3.18)         

 

    1 2

4

22

6 4 4 4 46 6

4

6
* (1 * 4 * 1 )) 4( )( *

b ba a ba Ca b

q

c c c c c c

q

cc  
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                                4 4

1

6 46 46 6
4 * (1 *(1 * ) ) 2*

ba a a a b Cb b
c c c c c c c c  

     (3.3.19) 

 

But from Eq.  (3.3.17) the blue and green terms are equal (also the magenta terms) and we can 

solve for the fundamental coupling ratio by combining Eqs.  (3.3.17) &  (3.3.19).  
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 (3.3.20) 

 

The coupling ratio is fundamentally the same for colour and electromagnetism apart from the 

six primary electric charges of Eq. (3.3.1) because of the way electric charge is defined. 

Equations  (3.3.17),  (3.3.19) &  (3.3.20) tell us that for any interactions between two 

superpositions, the inverse coupling ratio always involves the product of the central 

superposition member probability by the probability of the other two members combined

spinN   of the first superposition, times the equivalent product for the other superposition.  

In section 4 we introduce gravity and solve these ratios. Despite all the simplifications and 

lack of rigour, the above equations are surprisingly consistent with the SM, provided there are 

only three families of fermions. Even though we used gravity to derive Eq. (3.3.17) we leave 

discussing the gravity coupling ratio till section 6.2.6.  

 

  

 

3.4  Electrostatic Energy between two Infinite Superpositions 

3.4.1 Using an approximate but simple quantum mechanical approach 

In section 3.3 we showed that fermion superpositions can exchange boson superpositions in 

the same way as electrons can exchange virtual photons for example. Providing the 

superposition amplitudes are appropriate, the coupling constants can be just as in QED, 

though we will look further at this in section 4.1.1. So, it might seem that evaluating 

electrostatic energy between superpositions is unnecessary. However, when we look at 
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gravity, we find that the spacetime warping around mass concentrations could possibly be 

related to cosmic wavelength virtual graviton probability densities. Virtual particle exchange 

probabilities, in QED/QCD etc, use perturbation theory to calculate particle scattering cross-

sections, and electron g factor corrections with incredible precision. Both space and time 

polarizations are involved. However, as we later focus on virtual cosmic wavelength graviton 

probability densities at large spacings, we will use a simple but only approximate (but true at 

large spacings) quantum mechanical method based on only time polarized photon probability 

densities to find the scalar potentials between two charges (or infinite superpositions).  This 

same method also allows a simple solution to the magnetic energy between superpositions 

(again at large spacings) in section 3.5, where we modify relevant equations in a simple 

manner. In section 5 we  will use some of these same equations when looking at why 

borrowing energy and mass from zero point fields requires the universe to expand after the 

Big Bang and distort spacetime around mass concentrations. We assume spherically 

symmetric 3l   superpositions emit virtual scalar (time polarized) photons in this section and 

3, 2l m    superpositions emit virtual 1m    photons in section 3.5. As section 3.3 has 

shown that we can achieve the same electromagnetic coupling constant   we can use the 

scalar photon emission probability (2 / )( / )dk k   covered in section 2.1.1 and the section in 

italics after Eq.(3.3.18). From section 3.3 we can also see that the effective average emission 

point has to be the centre of superpositions. For a virtual photon / 2E T   , and the range 

over which it can be found is roughly r T   1/ 2 1/ 2E k    when 1c  . The radial 

probability of finding the centre of the spin 1 superposition representing the interacting virtual 

photon decays exponentially with radius as 
2kr

e


. The normalized wavefunction   for such a 

virtual scalar photon of wave number k emitted at 0r   is:  
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Figure 3.4.1 Radial probabilities of 6k
  and the exponential decay with radius of a virtual 

photon of the same k  value 
2

* 2 .
kr

R R ke


 These curves look the same for all k , applying 

equally to virtual photons, gravitons and to large k  value gluons etc.  
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Wavefunction   is spherically symmetric as scalar photons are time polarized. Figure 3.4.1 

plots the radial probabilities of the exponentially decaying virtual photon and the dominant 

6n   mode of its relating superposition .
k

  The effective range of a wavenumber k  virtual 

photon is of a similar order to the radial probability dimensions of 6
.

k
  For simplicity, in what 

follows we locate two superpositions (which we refer to as sources) in cavities that are small 

in relation to the distance between them. The accuracy of our results depends on how far apart 

they are in relation to the cavity size. Consider two spherically symmetric sources distance 

2C  apart emitting virtual scalar photons as in Figure 3.4.2 where point P is 1r  from source 

one, and 2r  from source 2. Let 1  be the amplitude from source one, and 2  be the amplitude 

from source two and for simplicity and clarity let 0t  .  
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   (3.4.1) 

 

 

Consider    1(  2 ) * 1(  2 )    1 1 1 2 2 1 2 2* * * *             

Now 1 1*    &   2 2*    are just the normal probability densities around sources one and two 

as though they are infinitely far apart but the work done per pair of superpositions k  on 

bringing two sources closer together is in the interaction term: 1 2 2 1* *    .  
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     1 2 1 2 1 2 2 1
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4
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4
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A r r B r r e kB

r r
   




        

   (3.4.2) 

  

Real work is done when bringing superpositions together and we can treat these interacting 

virtual photons as having real energy kc  .  Using virtual photon emission probability

(2 / )( / )dk k   from section 2.1.1   

        
2 2

Energy per virtual photon Probabil   Probability ity
dk c

kc dk
k

 

 

 
  


 


  
  (3.4.3) 

Including Eq. (3.4.3) the interaction energy @ k  is thus ( 1 2 2 1* *     )
2 c

dk




 
 
 

 and 

using Eq.  (3.4.2) the interaction energy @ k  is 
2 c

dk




 
 
 
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The total interaction energy density due to 1 2 2 1* *     for all k  is   

                                                    
1 2 0

2 4
cos( )

4

Akc
ke Bk dk

r r



 




   

       (3.4.4) 
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

   

 

      (3.4.5) 

 

Where               
2 2 2 2

1 2 1 1 2 2( ) 2A r r r r r r       &  
2 2 2 2

1 2 1 1 2 2( ) 2B r r r r r r      

 

                     
2 2 2 2 2 2 2 2

1 2 1 1 2 2 1 2Thus      ( ) 2   & 2( )A r r r r r r A B r r              (3.4.6) 

                                            
2 2

2( )r C   as cos(180 ) cos      

                                                   
2 2 2 2

and    4( )A B r C     
  (3.4.7) 

 

 

 

 

 

Figure 3.4.2 Distances to a point from two sources as a function of angle   and radius .r   

Putting Eqs.     (3.4.4),  (3.4.5),   (3.4.6) &   (3.4.7)  together  
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    (3.4.8) 

 

 

This is the total interaction energy density of time polarized virtual photons at point P  due to 

1 2 2 1* *     for all k  and there are no directional vectors to take into account. We will 

use similar equations for the vector potential ( 1m   ) photons for magnetic energies but will 

 

 
 

  

Source 1 Source 2 

 

 

Point P 
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then need directional vectors. Equation   (3.4.8) is the energy due to the interaction of 

amplitudes at any radius r  from the centre of the pair. It is independent of ,  and to get the 

total energy of interaction we multiply by 
2

4 r dr  for layer dr  and integrate from 

0 .r    

 The total interaction energy is        1 2 2 1

0 0

2
( * * )

c
dk


   



 

 
2

4 r dr    

Using Eq.   (3.4.8)                                       
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                              The interaction or potential energy is  
2

  
c c

C R

 
   

 

   (3.4.9) 

If 2R C  is the distance between the centres of our assemblies, this is the classical potential. 

The procedure used here, with small changes, simplifies the derivation of the magnetic 

moment; we reuse some equations, but in a slightly modified form taking polarization vectors 

into account. We also reuse some of these simple but approximate derivations when looking at 

gravity in Section 5. 

 

  

3.5 Magnetic Energy between two Spin Aligned Infinite Superpositions 

 

In this section we are going to consider two infinite superpositions that form Dirac spin ½ 

states.  We will look at the magnetic energy between them when they are both in a spin up 

state, say along some z axis as in  Figure 3.5. 1. We are not looking at the magnetic energy 

here when they are both coupled in a spin 0 or spin 1 state. That is, both Dirac spin ½ states 

have their 3 / 2  spin vectors randomly oriented around the z axis with / 2  components 

aligned along this z axis. Also, in this section we will be dealing with transversely polarized 

virtual photons and must take account of polarization vectors. In section 3.2.2 and Eq.  (3.2.7) 

spin ½ states are generated only from 3, 2l m   states and as transversely polarized photons 

are superpositions of 1m    photons they can only be emitted from these 3, 2l m   states; 

the remaining states are spherically symmetric and cannot emit transversely polarized 

photons. We don’t yet know the value of amplitudes nc  so we will derive the magnetic 

energy in terms of these. We will then equate this energy to the Dirac values assuming a value 

of 2g   before QED corrections; this allows us to evaluate in section 4.3  the amplitudes 

nc  in terms of the ratio 
EM

  between primary and secondary electromagnetic coupling. We 

can then evaluate in section 4.1  the primary electromagnetic coupling constant EMP
  in terms 

of the ratio 
EM

 . (Section 3.5 uses the same format as Chapter 18, “The Feynman Lectures on 
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 Physics” Volume 3, Quantum Mechanics[24] .  

 

 

 

 

 

 

 

 Figure 3.5. 1 Two spin aligned superpositions. 

An 3, 2l m   state can emit a right hand circularly (R.H.C.) polarized ( 1)m    photon in 

the z  direction. Let the amplitude for this be temporarily R . 

An 3, 2l m    state can emit a left hand circularly (L.H.C.) polarized ( 1)m    photon in the 

z  direction. Let the amplitude for this also be temporarily L . 

First rotate the z axis about the y axis by angle   (call this operation S R ) then use

(1/ 2)x R L       and multiply on the right by operation S R . 

 

The amplitude to emit a transversely polarized photon in the x  direction is thus 

                                  
1

2
x S R R S R L S R                                            

Where 
2 2

3, 2 3, 2 (1 / 4) 2 2 cos 4sin 3sin cosR S R S            
  is the 

amplitude  an 3, 2l m   state remains in an 3, 2l m   state after rotation by angle  .   

Also   
2 2

3, 2 3, 2 (1 / 4) 2 2 cos 4sin 3sin cosL S R S             
  is minus the 

amplitude that an 3, 2l m   state is in an 3, 2l m    state after rotation by .  

 

 Putting this together                     

2
1 2 sin cos 2

2 2
x S R

 
                                                 

  (3.5.1) 

 

An 3, 2l m   state can also emit an ( 1)m    photon in the z  direction but it will now be 

left hand circularly polarized. Let this amplitude be temporarily: L . 

Similarly an 3, 2l m    state can emit an ( 1)m    photon in the z  direction which is right 

hand circularly polarized. Let this amplitude be temporarily: R . 

 We can go through the same procedure as above to get 
cos 2

2
x S L


                       

            (3.5.2) 

 

This amplitude Eq. (3.5.2) is for a photon emitted in the opposite direction to amplitude Eq. 

(3.5.1) but cos2 cos2(180 )    and we can simply add these two amplitudes. Let us 
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assume, however, that an 3, 2l m   state has equal amplitudes to emit in the z  & z  

directions of / 2R  and / 2L .  

With these amplitudes; 
1 cos 2 cos 2

2 22
x S R x S L

 
        cos 2              

        (3.5.3) 

 

Equation  (3.5.3) is the angular component of the amplitude for a transverse x  polarization in 

the new z   direction where x x & z z   . When 0   or 180 the on-axis amplitude 

for transverse polarization is one as expected ignoring other factors. Using the same 

normalization factors (we check the validity of this in section 3.5.2) we can still use the 

amplitudes and phasing of our original time mode photons Eqs.  (3.4.1) but instead of 

including polarization vectors we will for simplicity just use the cosine of the angle ( )   

between them (as in Figure 3.5. 2 ) as a multiplying factor. Including the angular factor Eq.  

(3.5.3) in our earlier scalar amplitudes Eqs.   (3.4.1)  we have for our new wavefunctions:                                             
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   (3.5.4) 

 

The transverse polarized photons from sources (1) & (2)  have polarization vectors 1x  and 

2x  at angle to each other ( )  , (Figure 3.5. 2) and the complex product becomes: 

 

         1(  2 ) * 1(  2 )    1 1 1 2 2 1 2 2* ( * * )(cos( ) *                 

 

Where the interaction term is now: 1 2 2 1( * * ) cos( )        and as in the scalar case 

(section 3.4.1) but now using Eqs.   (3.5.4)  
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(Where as in section 3.4.1, Eq.  (3.4.2) 1 2 1 2&A r r B r r    . )   

  (3.5.5) 

 

 

 

  

 

 

 

 

C C 

 

 

 

 

  

Source 1 Source 2 

Point  

 

 



50 

 

Figure 3.5. 2  Two sources 2C apart, both with 
2

( 2)nk m     states along the joining line, 

&   are the respective angles to P ,  1
r  &   are the respective distances to point P. 

3.5.1 Amplitudes of transversely polarized virtual emitted photons 

In the laboratory frame nk
  has amplitude nk  to be in an 2m    state (section 3.1). For a 

multiple integer n superposition k n nk

n

c  . At each fixed wavenumber k, we cannot 

distinguish which integer n a virtual photon comes from, so we must add amplitudes from 

each individual integer n superposition. To keep integrals simple we will assume that

1nk   or that spacing 2C  is very large, and our interacting k  values are very small. 

(We can make a comparison with the Dirac values at any large spacing, so accuracy need not 

be affected.) Thus if 1nk   and 1nk  , we can approximate Eq.  (3.1.11) as   

 

0 0

2 22
 

2 2 2 2

nk c c

nk nk nk nk

s nk s nkn k s
K

m c m c
       

p
 for spin ½ fermions. 

                Adding amplitudes for multiple integer  superpositions 
2

c

k

n k
n    

   (3.5.6) 

 

(When deriving Eq.  (3.2.10) we said 2
 and not 

k k
k n k n p p . How do we 

justify this? When 1nk   as above nk n k   nk
p  So adding amplitudes nk  to get

k
  is equivalent to adding 

nk
p  to get k

p  and not adding 
2 2 2 2

nk
n kp  to get

2
.

k
k np  If this is true when 1nk   it must be true for 0 1.)nk    

 

 

3.5.2 Checking our normalization factors 

Let us pause and check the reasonableness of all this and our normalization factors. From Eqs.   

(3.4.1) for scalar photons 

2

2

2
*

4

kr
k e

r
 



 
 

 
   (emission probability

2 dk

k




) gives a  

            Scalar k
 emission probability density

2

2

2 2 2
*

4

kr
dk k e dk

k kr

 
 

  


   

   
   

.  

 

The transversely polarized probability density, using Eqs.   (3.5.4) &    (3.5.7) plus 
2

k  is                               
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(Where
1 2

2 2 & .r r   ) If we now consider the on-axis 0   case the transverse polarized 

on axis emission probability density at k  is: 
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Just as in QED the factor
2

k is the factor we need for this on-axis emission probability 

density ratio between transverse and scalar polarization. This justifies using the same 

normalization constant 
1/2

(2 / 4 )k   for both the scalar and magnetic wavefunctions. Using the 

same virtual photon emission probability and energy kc  as in Eq.  (3.4.3) for both the scalar 

and transverse polarization cases: 
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   (3.5.7) 

 

 

Multiplying Eq. (3.5.5) by Eq.  (3.5.6) squared, and Eq. (3.5.7) we get the transverse 

interaction energy at wavenumber 6k
 :  
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Rearranging this:       
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     (3.5.8) 

 

As in the scalar case we integrate over k  first but now with a 
3

k  term due to the inclusion of 

the
2

k factor which is approximately proportional to 
2

k  from Eq.  (3.5.6).  

Using     1 2 1 2    &    A r r B r r        and    Eqs.     (3.4.6) &  (3.5.6) 
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Equation  (3.5.9) is the magnetic interaction energy density at point P for all wave numbers 

.k  Figure 3.5. 2 is a plane of symmetry that can be rotated through angle 2 around the 

axis of symmetry (the joining line along the axis of the two spin aligned sources).  To evaluate 

the total magnetic energy density over all space we multiply by 
2

4 sin .r d dr     

We thus integrate Eq.  (3.5.9)   
2

4 sinr d dr    to get   
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


  
 

 
       

 (3.5.10) 

Now 
2

1 20 0

cos 2 cos 2 cos( )

r r



   



 

2 2 2 2 2
1 2

2 2 4

2 ( )

( )

r r r C

r C

  
 

 

2
sinr d dr   can be reduced to the 

single integral: 

1 2
2

3 3 2

0

1 (7 5 ) 1 14 16
1 ln

1 38

x x
x dx

xC x x

  
   

 
  which can be expressed as an 

infinite series in p  (to not confuse with superposition value n ):  

3

1

8C 1

14 10 (2 1)!
.

2 3 2 1 2( 1)!( 1)!4

p

p
p

p

p p p p






  
 

    
    

3

1 (160 51 )
.

6 28C

 
                                                            

 

                                             
3

1 (160 51 )
(Putting 2  )    .

6 2
R C

R

 
    

   (3.5.11) 

 

                       This infinite series is approximately  
3

1

54(1.0045062....)R


                 

   (3.5.12) 

Putting Eq. (3.5.12) into Eq. (3.5.9) the total magnetic interaction energy over all frequencies 

and all space for two spin aligned infinite superpositions is:     

                                             

2 2
3

4

Cn c
U




 

3

1

54(1.0045062....)R

 
 
 

 

              
2 2

3
We will call this    superpositions

72 (1.0045062....)

Cn c
U

R

 
  
  

  
 (3.5.13) 

 

We can equate this magnetic energy to the classical value assuming the Dirac value of 2g   

for spin ½  (No QED corrections have been applied so it must be 2g  ). For the arrangement 

of spins as in  Figure 3.5. 1 the Dirac magnetic energy between two spin ½ states is  

                                       

                                                         
2

2 3

2
Dira =

4
c

o

U
c R





 
  
 

 

 (3.5.14) 

 

 

Using the Dirac magnetic moment
0 02 2 2

Cece e c

m m c
      the Dirac magnetic energy is    
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2

3
(Dirac)

2

C c
U

R

 
   

 
    

The approximation used in deriving Eq.  (3.5.6) 
2 2 2

    for 
2

1   is true only when

CR  . This error in 
2  is of the order of 

2 2
/C R  and rapidly tends to zero with 

increasing R . There is no upper limit on the value of distance R  we can choose. Thus, 

comparing our estimate of the magnetic energy with Dirac’s value when CR  . 

  

             

2 22

3 3
(Dirac) (Superpositions) or

2 72 (1.0045062....)

CC
n cc

U U
R R

   
     
    

  
 

(43.5.15) 

 

 

                All symbols cancel except n  leaving:        
2

36(1.0045062.....)n   

 

The expectation value n  in our superposition is slightly more than 6n   our dominant 

mode. This is why we have used a three member superposition centred on this dominant 6n   

mode. The two side modes 5n   and 7n    are smaller so that:   

 

                         
5,6,7.

( * ) 36(1.0045062...) 6.01350345n n

n

n c c n



          (3.5.16) 

 

This is for Dirac spin ½ particles. This mean value of n creates a 2g   fermion which QED 

corrections (which are secondary interactions) increase slightly to the experimental value. In 

section 4.1 we solve the primary electromagnetic coupling constant in terms of ratio EM
  

using Eq. (3.5.16). It is important to remember this magnetic energy derivation applies to two 

infinite assemblies (or particles) localized in small cavities in relation to their distance R  

apart. They must be both on the z axis with spins aligned (or anti aligned) along this z  axis 

as in  Figure 3.5. 1 & Figure 3.5. 2. Also, the agreement with Dirac and in what follows is 

possible if superposition k
  interacts only with virtual photons of the same wavenumber .k  
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4 High Energy Superposition Cutoffs 

4.1 Electromagnetic Coupling to Spin ½ Infinite Superpositions 

Equation (3.5.16) is the key requirement for spin ½ superpositions to behave as Dirac 

fermions, allowing us to solve 
1

EMP



 as a function of coupling ratio    using Eq. (3.5.16).  

   

                                    
5,6,7.

( * ) 36(1.0045062...) 6.01350345n n

n

n c c n



    

    
5 5 6 6 7 7 5 5 6 6 7 7

7 7 5 5

Thus  5 * 6 * 7 * 6.01350345  but  6 * 6 * 6 * 6

 and                       * * 0.01350345

c c c c c c c c c c c c

c c c c

     

 
 

  As 7 7 5 5 6 6
* * 1 *c c c c c c    we can now solve for 7 7 5 5

*   &   *c c c c  in terms of 6 6
*c c  

              6 6 6 6

7 7 5 5

* *
* 0.50675172    &     * 0.49324827

2 2

c c c c
c c c c             

        (4.1.1) 

  

From Eq. (2.3.12) the 
2 2

Q A required to produce this superposition with amplitudes n
c  is  

                                  
2 2

Q A 
4 2 4 2

5,6,7

*
81

n n

n

n k r
c c



  and using Eq.(4.1.1) 

                
4

5 5 6 6 7 7

5,6,7

*  625 * 1296 * 2401 *
n n

n

c c n c c c c c c


    6 6
1524.991 217 *c c                          

Thus 
2 2

Q A 
4 2 4 2

5,6,7

*
81

n n

n

n k r
c c



   2 4 2

6 6
18.82705 2.67901 *c c k r  is the required vector 

potential squared to produce this spin ½ superposition.  From Eq.   (2.2.4) with s   ½ & 1N   

for massive fermions 
2 2

Q A

2

2 4 2
2 8 8 )

3

EMP

k r




 
 

 is the available
2 2

Q A .  

Equating required and available:
2

2 8 8 )
EMP

 
   6 6

3 18.82705 2.67901 *c c   

                                                        
2

1 )
EMP

 
   6 6

1.386256 0.197258 *c c                                           

                                                         
2

6 6
1.386256 0.197258 * 1

EMP
c c    

 
                          

   (4.1.2) 

 

From Eqs. (3.3.1) &  (3.3.20), 6 6 6 6
* (1 * ) 2 / 6 2 /

C EM
c c c c    

 
and we can solve for 

EMP
  as a function of either EM

 or .
C

  We then use Eq.  (3.3.20) again to get 
1

@ .
EMS cutoff

k


 

Now both EM
 and C


 
are fundamentally the same ratio differing only by 36:1, because 

electron superpositions have six primary charges whereas we define them as one fundamental 

charge (section 3.3.1) and quarks have only one colour charge (Table 2.2.1) Because 
1

3C
 


  at the cutoff near P

L
 
it is more convenient to work with.  From Eq.  (3.3.20) 

                     6 6

1 1 2
* 1 4

2 2
C

c c


      and there are two solutions for each .
C

    
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One has 6 6
*c c  dominant with two smaller 5 5

*c c  & 7 7
*c c side modes, the other is the reverse 

with 6 6
*c c the minor player and two larger 5 5

*c c  & 7 7
*c c  side modes. As the values for EMP

  

with 6 6
*c c

 
dominant fit the SM very closely, we include only these. (This only applies to spin 

½ fermions, and the spins 1 & 2 boson superpositions in Table 4.3.1 are the opposite, with 

minor centre modes.) Table 4.1.1 shows possible coupling ratios 
C

  in the range 

50 51.
C

    The yellow row corresponds to the cutoff energy in Eq. (4.2.10) and Figure 

4.1.2.  Table 4.1.1 shows these dominant 6 6
*c c  mode results for 

1

3C
 




 
at various possible 

cutoffs in the range 50 51
C

   , as this range fits the SM.  

 

Coupling Ratio 𝝌𝑪      𝒄𝟔 ∗ 𝒄𝟔 𝛼EMPrimary
−1  𝜶𝑬𝑴Secondary

−𝟏 @𝒌𝒄𝒖𝒕𝒐𝒇𝒇 

         50.00 0.723607  75.4414          104.7798  

         50.20 0.724497  75.5447          105.3429  

         50.40 0.725378  75.6472          105.9060  

        50.4053             0.725401   75.6499           105.9210   

         50.60 0.726250   75.7488           106.4692   

         50.80 0.727115  75.8497          107.0324  

         51.00 0.727970   75.9499           107.5956   

Table 4.1.1. Possible coupling ratios 
C

  versus 1
(EM Secondary)   in the range 50 51.

C
  

The yellow row corresponds to the interaction cutoff energy in Figure 4.1.2 & Eq. (4.2.10) as 

there can be only one solution for this cutoff.  

 

4.1.1 Comparing this with the standard model 

In the real world of SM secondary interactions the electromagnetic force splits into two 

components 1 2
&   at energies greater than the mass/energy of the 0

Z  boson or 

91.1876 .GeV [25].However we want to compare these SM couplings with the values 

derived in Table 4.1.1 at the 2.0288 Gev.  cutoff of Eq. (4.2.10). Assuming three families of 

fermions and one Higgs field the SM [26] predicts 

1

1

1

2

1

3

4.1
58.98 0.08 log

2 91.1876

19
29.60 0.04 log

6 2 91.1876

7
8.47 0.22 log

2 91.1876

e

e

e

Q

Q

Q
















  

  


  

 

 

 

   (4.1.3) 

 

1 1 1

1 2

1 1 2 1 1 2

1 2  

5
The weak force split obeys              

3

3
Also   &  where is the Weinberg angle.

5

EM

EM W EM W W
Cos Sin

  

      

  

   

 

 

 

 

 

   (4.1 4) 

 

 

  

1 1 1

1 2

5 11
Combining these equations 127.90 0.173 log

3 3 2 91.1876
EM e

Q
  



  
    


 

   (4.1.5) 
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Figure 4.1.1 plots these four inverse coupling constants. Figure 4.1.2 plots the intersection of 
1

SecondaryEM



 predicted in Table 4.1.1 and the SM prediction for 

1

EM



 in Eq.    (4.1.5). It would 

initially seem in Figure 4.1.2 that there is an unusually large error band in the predicted 

results. However
1 1

EMSecondary
 / 2.8 

 
    is approximately constant in this table and the 

error band in the SM colour coupling
1

3
 of 0.22


  in Eqs   (4.1.3) translates into the larger 

error band for 
1

EMSecondary



 of 0.22 2.8 0.62     in Figure 4.1.2. 

 

 

 

Figure 4.1.1 Standard Model based on three families of fermions and one Higgs field. 

 
Figure 4.1.2  A close up of the intersecting region of the SM that Eq.    (4.1.5) and Table 

4.1.1 predicts. This fermion interaction cutoff is perhaps more consistent with the SM than we 

might expect; as we have assumed, for simplicity, a square superposition cutoff at 
Cutoff

k .  An 

exponential cutoff of some type is much more likely, but it may have only small effect. 
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3
50.405 0.22@ 2.029 10 .GeV


      

1

1
 

  

1

2
 

  

 in GeV.Q    

Figure 4.1.2 

is a close up  

of this region. 

Possible values for
1

(Secondary)
EMS




 from 

Table 4.1.1. There can 

of course, only be one 

solution here. 

18PlanckFermion interaction cutoff 2.029 10 . 
E

GeV
n

    

 

Standard Model 

1 1 1

1 2

5

3
EM

    
   

Figure 4.1.1 expanded 

 in .Q GeV    

Planck Energy

n
  

1 1 1 18

1 2

5
105.934 0.173@ 2.029 10 .

3
EM

GeV    
        

 Inverse coupling constants   

1

3
 
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4.2 Introducing Gravity into our Equations 

4.2.1 Simple square superposition cutoffs    

In section 3.2 we looked at single integer n superpositions of nk
  initially for clarity, and 

later found multiple integer n superpositions gave the same results; we will do the same here. 

We also found in Eqs. (3.2.3) &  (3.2.6)  that the integrals for both angular momentum and 

rest masses are of similar form. They both ended up including the term 

    
2

0

1

1
nk

K



 
 
 

which if cutoff
nk

K    becomes  

cutof

2

0

1

1

nkK f

nk
K

 
 
 

and this is equal to  

   

 2

2 2 2

cutoff1 1 1
1

1 cutoff 1 cutoff 1 1 / (cutoff ) 1

nk

nk nk nk

K

K K K 
   

   
  

            (4.2.1) 

 

    

where using Eq.  (3.1.11) the infinitesimal 

2 2

0

2 2 2 2

cutoff

21

cutoff (k )
nk

m c

K n s
    

            (4.2.2) 

 

 

For integral or half integral angular momentum precision is required but Eq.  (3.2.6) now 

gives us ( )
z

TotalL
2

0

1 1

2 1 2 1

nkK cutoff

nk

sm sm

K 

 
  

  
 . So, can the effect of gravity increase 

our probabilities from 
dk

sN
k

  to (1 )
dk

sN
k

  ?   

We will initially address only massive infinite superpositions where 1N   in Eq.  (2.2.4).  

The first question we need to address is what is the effective preon mass to be used when 

coupling to gravity? In Eq. (3.1.4) we said the preon rest mass is 0
/ (8 2 )

nk
m s for each of the 

eight preons that build a spin ½  particle of rest mass 0
m . Now gravitons couple to the total 

mass including the kinetic energy. At the start of the interaction each preon mass is 

0
/ (8 2 )

nk
m s and after the interaction (Figure 3.1.3) it is 

2

0
(1 ) / (8 2 )

nk nk
m s  . Let us think 

semi-classically again and see where it leads us. We have been using magnitudes of velocities 

as they are the most convenient way to express our equations, even if not the conventional 

language of quantum mechanics. The interaction with the zero point fields takes the 

momentum of each preon from zero to 0
2 / (8 2 )

nk nk
m c s   (Figure 3.1.3). While this 

happens as a quantum step change, let us imagine it as a virtually infinite acceleration from 

zero velocity to 
2

2 / (1 )
nk nk

  , which is the relativistic velocity addition (see Figure 3.1.1)  

of two equal steps of .
nk


  

At the half way point after one step the velocity is nk
  (the 

velocity of the CMF, the preon mass has increased to 0
/ (8 2 ).m s  We can imagine this as 

being like the central point of a quantum interaction. 
 

We will conjecture this midway point preon mass 0
/ (8 2 )m s  is the mass value that gravitons 

couple to and we will see that it is indeed the only value that fits all equations. Also, it does 
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not make sense to choose either of the end point masses. We can also get reassurance from the 

properties of the Feynman transition amplitude which informs us in Eq.  (3.1.15) that 

0

0

0

( ) 2

( ) 2
f

z

i f nk nk

i nk

p p m

p p m

 







 nk

   and the ratio of space to time polarization in the LF is 
2

.
nk

  

This centre of momentum velocity gives us the key properties of the interaction. We will thus 

assume we have eight preons in each nk
  of effective gravitational mass 0

/ (8 2 )m s  with 

effective total gravitational mass 0
/ 2m s . To put the gravitational constant in the same form 

as the other coupling constants we need to divide it by c . The gravitational coupling 

amplitude is thus 
0

/ (2 )
P

m G s c  to the gravitational zero point field, where 
P

G is the 

primary amplitude for a Planck mass to emit or absorb a graviton. Now this gravitational 

amplitude can be regarded as a complex vector just as colour and electromagnetism. We 

assumed for simplicity, as they are both spin 1 field particles, that colour and 

electromagnetism are parallel. Spin 2 gravity could be at a different complex angle to the 

other two. In fact, the equations only have the correct properties if gravity is at right angles to 

colour and electromagnetism. Putting 
Primary G Secondary

G G   we conjecture that the  

 

0 0

0

/ (2 ) / (2 )

                                                                                      

gravitational coupling amplitude 

  / (2

is 

)

P G S

G

im G s c im G s c

im G s c





 

 
  

     

     (4.2.3) 

 

We have put the secondary gravitational coupling constant to a bare Planck mass s
G  in Eq. 

(4.2.3) equal to the measured gravitational constant G. We can only do this if 1
G

   between 

Planck masses. (See Eq.(5.1.7) and the preceding paragraph.)  We will later find that 
G

  does 

not need to be one and is in fact less than one. Consequently we temporarily label the ratio 

between the primary and secondary gravitational constants as ,
G

   returning to it in section 

6.2.6. So, modifying Eqs.  (2.2.1) to  (2.2.3) by adding Eq.  (4.2.3)   

 

                     
2 2

Q A

2

0 2 4 2
8 8 / (2 )

.
3

EMP G
im G s c sN dk

k r
sN k

 



           
  

    

           
2 2

Q A

2

2 4 2
8 8 ) (1 )

.
3

EMP sN dk
k r

sN k






           
  


 where 

2

0

2
2 (8 8 )

G

EMP

m G

s c






 
 


 

Our previous wavefunctions k
 required

2 2
Q A

2

2 4 2
8 8 )

3

EMP

k r
sN





 
 

  from Eq.  (2.2.4). 

Thus primary graviton interaction can increase the probability of our previous wavefunctions

k
  by 1    as required to obtain precision in our integrals for / 2 &  if .

nk
K cutoff    

 

Using Eq.(4.2.2) now put
2 2 2

0 0

2 2 2 22

21

( )2 (8 8 )

G

nk cutoffEMP

m G m c

K cutoff sn ks c


 



 
    


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Thus                                            
2

4 (8 8 )

G

EMP

G

c





 



2

2 2 2
( )

cutoff

c

n k


 

  

                                                   3 2 22

1

( )256(1 )

G

cutoffEMP

G

c n k









    

                                       
2

2

3 2 22

1
But    and    

( )256(1 )

G P

P

cutoffEMP

LG
L

c n k





 
 


                                                

          

2

2 2

256(1 )
For 1 single integer  superpositions   

( )

EMP

G

cutoff P

N n
n k L





   

    (4.2.4) 

For 1N   superpositions k n nk

n

c  , we can use the logic of section 3.5.1; replacing 
2

nk
K

with
2

,
k

K  and 
2

n  with 
2

n  in Eq.     (4.2.4) so that Eq. (4.2.5) becomes     

             
2

2 2

256(1 )
for 1 multiple integer  superpositions   

( )

EMP

G

cutoff P

N n
n k L





   

  (4.2.5) 

 

If we now go back to Eqs.  (2.3.9) & (2.3.10) as k   the energy squared
2 2 2

nk nk
E c p  

2 2 2
n  .  Again, using the logic of section 3.5.1 for multiple integer n superpositions the  

expectation value for energy squared as k   is 
22 22 2 2 2

k k
E c n k c p thus  

 

        for multiple integer  superpositions as ,    
k k

n k E c n kc  p    (4.2.6) 

 

 

4.2.2 All N = 1 superpositions cutoff at Planck energy but interactions at less 

It is reasonable to assume that the cutoff superposition energy cannot exceed the Planck                                            

energy 
Planck

E  (at least for square cutoffs) and that this is true for all 1N   superpositions. 

(Section 6.2.1 discusses N = 2 superposition 
Planck

E  cutoffs.) So, for simple square cutoffs: 

(cutoff ) cutoff Planck
1 multiple integer  superpositions cutoff en y erg

k
N n E n k c E       (4.2. 7) 

                           This can be written as      
cutoff Planck

Planck

c
n k c E

L
       

   
cutoff cutoff

Planck

For  1 multiple integer  superpositions        
1

  &  1 
P

n k n kN Ln
L

    
   (4.2.8) 

  

 Planck

cutoff
1 multiple integer    superposition interaction cutoff energy  

E
N n ck

n
   

  (4.2.9) 

Using Eq.   (4.2.9) with Planck energy of 
19

1.22 10 .GeV  and 6.0135n   from Eq.(3.5.16) 

for simple square cutoffs (also see Figure 4.1.2). 

 



60 

 

                18
Interactions between 1 fermions cutoff @ 2.0288 10 .N GeV      

From Table 4.3.1 we see that all other particles such as photons, gluons and gravitons etc. 

have 6n   and thus higher interaction cutoff energies than fermions i.e.. 
18

2.03 10 .,GeV   but < .
P

E   Putting 
18

2.0288 10 .GeV  in the SM equations   (4.1.3) and 

(4.1 4). 

 

                             

1 18

1

1

2

1

3

1 1

1 2

@ 2.0288 10 . 34.4179 0.08@ ( )

  ............................... 48.5707 0.04....................

  ............................... 50.4053 0.22.....................

5

3
EM

GeV k cutoff





  







  

  

 

 

 
1
........ 105.934 0.173................... 

 

 

 

   (4.2.10) 

Real world high energy secondary interactions only involve 
1 2 3
, &   , but spin zero primary 

interactions do not involve the weak force. Table 4.1.1 can thus only predict 
1

105.921
EM




  at 

the cutoff compared to the SM combination of 
1 1

1 2
(5 / 3) 

 


1

EM



  105.934 0.173   of Eq. 

(4.2.10).  (See Figure 4.1.1 & Figure 4.1.2). Also using Eqs.  (3.3.3) and (4.2.10) we get the 

primary to secondary fundamental coupling ratio
C

 . 

 

      
1 18

3  
Coupling Ratio @ 50.405 0.22  (ie.@  2.0288 10 .)

C cutoff
k GeV 


     

 

   (4.2.11) 

The secondary coupling constants in Eq. (4.2.10) can perhaps be thought of as those to the 

bare colour and electromagnetic charges. 

If we now put Eq. (4.2.8) into Eq. (4.2.5) we get 
2

2

2 2

256(1 )
256(1 )

( )

EMP

G EMP

cutoff P
n k L


 


     

From Eqs.(4.1.2) and Table 4.3.1 we find (1 ) 1.115
EMP

 
 
and Eq.(4.2.5) becomes                                 

                                                    2
256(1.115) 318.3

G
       (4.2.12) 

From the paragraph following Eq. (4.2.3) we see that this equation temporarily assumes 1
G

   

If it does equal one then 318.3
G

    is the ratio between the primary graviton coupling to bare 

preons, and the normal measured gravitational constant G. Section 8.2.2 develops a cosmic 

expansion model with 0.018
G

    In section 6.2.6 we assume an approximate value of 

1
G

   in Eq.(6.2.9) to get a primary to secondary graviton coupling ratio of 318
G

  . When 

318
G

   the contribution from gravity cancels any deficit in primary interactions providing 

these superpositions cutoff at Planck energy, which we argue is true for all 1N   

superpositions. (This section and all its equations are derived by equating the contribution due 

to gravity and the deficit due to the Planck energy cutoff in primary interactions.). To enable 

Planck energy interactions 2N   infinitesimal mass bosons must also cutoff at Planck energy 

just as 1N   superpositions do, or as in Eq.   (4.2.9). Sections 6.2 & 6.2.1 discusses these 

2N   superposition Planck energy cutoffs. 
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Figure 4.2.1 plots radial probabilities for all 3,4,5,6&7n   Planck Energy cutoff modes. 

They are identical as the radial probability 8 2 2 2
( / 9)

R
P r Exp n k r  , but from Eq. (4.2.6) 

1nk   in each Planck energy mode, so they all have radial probability
6 8 2

8.74 10 ( / 9)
R

P r Exp r


   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Solving for Spin ½, Spin 1 and Spin 2 Superpositions 

Superpositions with 2N   are covered in section 6.2. Equation (4.2.11) and Eq.  (3.3.20) can 

be extended by keeping N s  constant as in Eq. (4.4.1) allowing us to solve various 

combinations of spins ½, 1 or 2 and 1N   or 2N  . 

           
1

2

1
2

4 4 4 4 5 5 5 5 6 6 6 6

 ( 2) (Spin 1)              ( 1) (Spin 1)               ( 1) (Spin )

 or ( 1) (Spin 2)         or ( 2) (Spin )    

4 * (1 * )    2 * (1 * )       * (1 * )

    

   

    

b b b b b b b b a a a a

N N N

N N

c c c c c c c c c c c c

     

   

    

                     2 /  2 / 50.4053 0.199194
C

  

       

 

   (4.4.1) 

 

Starting with spin ½ we can solve this to get 6 6
* 0.7254c c   as the dominant value.  

Putting 6 6
* 0.7254c c   into Eq.(4.1.2) or alternatively using Table 4.1.1 

 2
1

6 6
1.386256 0.197258 * 1 75.6499

EMP
c c

    
   

 

          (4.4.2) 

From Eq.   (2.2.4) the available 
2 2

Q A

2

2 4 2
8 8 )

3

EMP

k r
sN





 
 

 with probability 
sN dk

k


  

where we ignore the infinitesimal factor of (1 )  due to gravitons. And from Eq. (2.3.12)                                           

 Radius in Planck units. R
ad

ia
l 

P
ro

b
ab

il
it

y
 

 
  

Planck region 

Figure 4.2.1 Plot of radial probability of all 3,4,5,6&7n   Planck energy modes. Despite 

each mode having Planck energy, the probability in every case of being inside the Planck 

region is virtually zero at
7

8.9 10


  .  

 

 

All Planck energy n modes look identical 
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2

4 2 4 2

2 2 2 4 2

4

8 8 )
*

81 3

* 1367.58 for (spin 1/2 1)  

                    683.79  for (spin 1 1) or (spin 1/2 2)

                    341.9    for (spin 1 2) or (sp

EMP

n n

n

n n

n k r
Q A c c k r

sN

c c n N

N N

N





 
 

 

   

    

  





in 2 1)    

                    170.95  for (spin 2, 2) by extension.

N

N

 

 

 

 

  

 

   (4.4.3) 

 

The same primary electromagnetic coupling EMP
  builds all fundamental particles, allowing 

Eq.(4.4.3) to be true. Using Eqs,  (4.4.1),  (4.4.3) & * 1
n nn

c c   we get Table 4.3.1. We 

define the coupling ratio for gravitons in Eq.(6.2.9) section 6.2.6, where we also solve 

infinitesimal mass graviton superpositions. In Table 4.3.1 three member superpositions fit the 

SM best. In section 4.1 we solved spin ½ superpositions with a dominant centre mode 
6 6

*c c  

that fitted the SM. However when solving for spins 1 & 2 we must initially comply with Eq. 

(4.4.1) which defines interaction probabilities (see Eq.  (3.3.20) and the following paragraph). 

We must also comply with Eq. (4.4.3) which determines centre or side mode dominance. In 

this table we have also included a massive 1N  , spin 2 graviton superposition as a dark 

matter possibility which we will look at in Section 8.2. There are other possibilities which we 

have not included.  

 

 Mass Type Spin  N 3 3
*c c

 
4 4

*c c

 
5 5

*c c

 
6 6

*c c

 
7 7

*c c

 
 Infinitesimal mass gravitons    2  2 0.8342 0.0001 0.1657   

 Massive Spin 2 gravitons    2   1 0.4847 0.0526 0.4627   

 Infinitesimal mass bosons    1  2 0.4847 0.0526 0.4627   

 Massive bosons    1  1  0.0134 0.8878 0.0988  

 Massive fermions    ½   1   0.1305 0.7254 0.1441 

Table 4.3.1 Approximate probabilities for known and one possible infinite superposition. 

To this point this paper has attempted to demonstrate that infinite superpositions can behave 

as the SM fundamental particles. The methods used may be unconventional, but it is 

important to remember that primary interactions are very simple and very different in 

comparison to secondary interactions (see sections 2.2.2 & 2.2.3).These methods are also 

based on simple basic quantum mechanics and SR. There is also surprising consistency with 

the SM. If the principles behind the outcomes of these derivations are at least on the right 

track, and fundamental particles can be built by borrowing energy and mass from (space and 

time mode) zero point fields then, as we will see in what follows, this may have some 

significant and profound consequences. In particular what is currently labelled Dark Matter, 

may possibly be a halo of virtual time polarized (
29

10 eV


 & 185,000
C

ly at this current 

cosmic time) massive spin 2 gravitons, with inverse radius squared density and an exponential 

cutoff in the region of half a million light years. 
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Part 2 

Consequences of Infinite Superpositions 

5 Exploring Possible Connections with Gravity 

5.1 Zero Point Energy Densities are Limited 

If the fundamental particles can be built from energy borrowed from the spatial component of 

zero point fields and this energy source is limited, particularly at cosmic wavelengths, there 

must be implications for the maximum possible densities of these particles. In section 2.2.3 

we discussed how the preons that build fundamental particles are born from a Higg’s type 

scalar field with zero momentum in the laboratory rest frame. Infinitesimal mass particles 

such as gravitons borrow their mass from the time component of the same zero point fields. 

With zero momentum in this frame they have infinite wavelength and can borrow from 

anywhere in the universe. This suggests there should be little effect on localized densities, but 

possibly on overall average densities in any universe. So, which fundamental particle is likely 

to be most abundant? Working in Planck, or natural units with 1G  , assume a graviton 

coupling constant between Planck masses of one. The total baryonic matter in the universe 

according to the CDM , is 51
4.5 10 Kg   or 

59
2 10   Planck masses. Including dark matter 

this is 
60

10  Planck masses. Their average distance apart is approximately the radius 
OH

R  of 

this region. As a crude illustration assume one graviton of this wavelength per pair of Planck 

masses. Thus there should be approximately 
2 120

10M   virtual gravitons with wavelengths of 

the order of radius 
OH

R  within this same volume. (This number is in line with more accurate 

later calculations.) No other fundamental particle is likely to approach these values; for 

example, the number of virtual photons of this extreme wavelength is much smaller. (Virtual 

particles emerging from the vacuum are covered in section 6.2.3) If this density of virtual 

gravitons needs to borrow more energy from the zero point fields than what is available at 

these extreme wavelengths, does this somehow control the maximum possible density of a 

causally connected universe?  

 

5.1.1 Virtual particles and infinite superpositions 

Looking carefully at Section 3.3 we showed there that, for all interactions between 

fundamental particles represented as infinite superpositions, the actual interaction is only 

between a single wavenumber k  superposition of each particle. We are going to conjecture 

that a virtual particle of wavenumber ,k  for example, is just such a single wavenumber k

member. Only if we somehow interact with it do we observe the properties of the full infinite 

superposition representing that particle. They are virtual before this interaction, always only 

lasting for / 2T E   , and the full properties do not exist until observed, as in the 

Copenhagen interpretation of quantum mechanics. Even though they are only a single 

wavenumber their three superposition modes as in Table 4.3.1 partially identify them. This 

combination and its probability as in Eq.(2.2.4) /N s dk k   and the first paragraph after Eq.   
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(3.3.12) defines the full particle properties. We will use this conjectured virtual property when 

looking at the probability density of virtual gravitons of the maximum cutoff wavelength. 

Virtual gravitons are thus a superposition of the three modes 3,4,5n   as in Table 4.3.1, but 

of a single wavenumber k  only. Time polarized or spherically symmetric versions are a 

further equal (1 / 5)  superposition of 2, 1,0m     states of the above 3,4,5n   mode 

superpositions. A spin 2 virtual graviton in an 2m    state is simply a superposition of the 

three modes 3,4,5n   as above, but all in an 2m    state. 

   

5.1.2 Virtual graviton density at wavenumber k in a causally connected universe 

From this point on we will use Planck units 1c G   . General Relativity predicts 

nonlinear fields near black holes, but in the low average densities of typical universes we can 

assume approximate linearity. The majority of mass moves slowly relative to comoving 

coordinates so we can ignore momentum (i.e. 1)  , provided we limit this analyses to 

comoving coordinates. Spin 2 gravitons transform as the stress tensor in contrast to the 4 

current Lorentz transformations of spin 1, but, at low mass velocities the only significant term 

is the mass density
00

T . In comoving coordinates the vast majority of virtual gravitons will 

thus be time polarized or spherically symmetric which we will for simplicity call scalar. We 

will initially do all our calculations in these comoving coordinates where we should be able to 

simply apply the equations in sections 3.4  & 3.5 to spin 2 virtual graviton emissions, as they 

should apply equally to both spins 1 & 2 at low mass velocities. (This is not necessarily so 

near black holes.) We will assume spherically symmetric 3l   wavefunctions emit both spin 

1 & 2 scalar virtual bosons, and 3, 2l m    states can emit both 1m    spin 1 bosons and 

2m    spin 2 gravitons. Section 3.4 derived the electrostatic energy between infinite 

superpositions. In flat space we looked at the amplitude that each equivalent point charge 

emits a virtual photon, and then focused on the interaction terms between them. Thus we can 

use the same scalar wavefunctions Eq’s.   (3.4.1) for virtual scalar gravitons as we did for 

virtual scalar photons. Using 1 2( )  * 1(  2 ) 1 1 1 2 2 1 2 2* * * *          
 

we 

showed in section 3.4.1 that the interaction term for virtual photons is
 

                                  1 2
( )

1 2 2 1 1 2

1 2

4
* * cos ( )

4

k r rk
e k r r

r r
   



 
    

  (5.1.1) 

 

This equation is strictly true only in flat space but it is still approximately true if the curvature 

is small or when 2 / 1m r  , which we will assume applies almost everywhere throughout 

the universe except in the infinitesimal fraction of space close to black holes. In both sections 

3.4 & 3.5, for simplicity and clarity, we delayed using coupling constants and emission 

probabilities in the wavefunctions until necessary. We do the same here. There will also be 

some minimum wavenumber k which we call min
k where for all 

min
k k  there will be 

insufficient zero point energy available, and Eq. (5.1.1) cuts off exponentially. We will find 

that this maximum wavelength is where 
min ObservableUniverse

1/  ( 1 / )
OU

k R R  . In Section 6 we 

find gravitons have an infinitesimal rest mass 
0

m of the same order as this minimum 

wavenumber 
min

k . At these extreme k values this rest mass must be included in the 
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wavefunction exponential term. It is normally irrelevant for infinitesimal masses. Section 6.2 

looks at 2N  infinitesimal rest masses finding in Eq.(6.2.5) that
2

min
1

k
K  . 

Using Eq. (3.1.11) and 1c   

 
  

2 2
2 min

min 2

0

1
2

k

s n k
K

m
   so for spin 2 gravitons 

2 2

min

0 min2

0

1  or  
n k

m n k
m

          
   (5.1.2) 

     Table 4.3.1 tells us for 2N   spin 2 gravitons 3.29n   so that 
0 min

3.29m k     (5.1.3) 

This virtual mass 
0

m  increases the E  term in / 2E T    for a virtual graviton from 

E k   to 
2 2

0
E k m    when 1,c   reducing the range 

1
r T E


     over which it 

can be found. This range is controlled by the exponential decay term 
kr

e


 in its wavefunction, 

becoming 
2 2

0k m
e
 

 near 
min

.k  So we can define a k   using Eq.   (5.1.3)     

    

       
2 2 2 2 2 2

0 min min min min min
10.84   and     10.84 3.44k k m k k k k k k         

    (5.1.4) 

 

Using the normalized virtual graviton wavefunction Eq.   (3.4.1) we can say that:     

     A massless with infinitesim
2 2

 al become mass  
4

s
4

kr ikr k r ikr
k e k e

r r


 

   
   

(5.1.5) 

 

Thus the massless interaction term in Eq. (5.1.1) becomes with this infinitesimal mass 
0

m  

 
                       1 2

( )
1 2 2 1 1 2

1 2

4
* * cos ( )

4

k r rk
e k r r

r r
   



 
        

  (5.1.6) 

Let point P  in Figure 5.1.1 be anywhere in the interior region of a typical universe. Let the 

average density (or its equivalent transformed value) be 
U

  (subscript  U for universe ) Planck 

masses/energy density per unit volume. Consider two spherical shells initially in comoving 

coordinates around the central point P of radii 
1 2

&r r  and thicknesses 
1 2

&dr dr  with masses 

2

1 1 1 1
4

U U
dm dv r dr     and 

2

2 2 2 2
4

U U
dm dv r dr     

 

 

 

 

 
 

 

 

 

 

 

 

 

2
dr

  

2
r

  

Figure 5.1.1 Two spherical shells surrounding a central point. 

1
r   

1
dr   

Central point 

P   
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In Planck units we know that the gravitational constant 1G   applies between Planck masses, 

so we might expect the graviton coupling constant is 1
G

   between Planck masses also, but 

we don’t actually know this. (Its actual value has no effect on what we are going to do in  

section 5, but Eq.(8.2.19) finds that 0.018
G

   fits with cosmic observations. 

The secondary graviton coupling constant between Planck masses 
G

        (5.1.7) 

 

Section 3.4.1 in Eq.  (3.4.3) used scalar emission probability (2 / )( / )dk k   for spin 1 

photons. Equation (2.1.4) and the paragraph following tell us that this probability is 

proportional to / .sNdk k  Thus Eq. (3.3.18) and the italics following imply that the scalar 

emission probability for spin 2 gravitons becomes (4 / )( / )dk k  between Planck masses, or 

twice that of spin 1. Equation (6.2.8 ) suggests all superpositions cutoff exponentially
min

@ k . 

Looking at what we did in deriving Eq. (3.3.14) for graviton emission probability, we must 

include this cutoff twice i.e. 2

min
(1 [ 0.65 / ] ) ,Exp k k  first for graviton superpositions, then 

for mass superpositions. (We are looking at emission probability here, not exchange 

probability, which requires four powers.) Now distant galaxies recede at light like and greater 

velocities, but all clocks in comoving coordinates tick at the same rate and quantum 

interactions (a bit likes Mach’s principal) are instantaneous over all space.  Thus, as we 

integrate over radii 
1 2

& 0r r     we can still use the same equations as if the distant 

galaxies are not moving. (The vast majority of mass is moving relatively slowly in these 

comoving coordinate systems and we return to this important comoving coordinate property 

in section 5.3.1). Using the spin 2 coupling probability (4 / )( / )
G

dk k   between Planck 

masses we can now integrate over both radii 
1 2

&r r ; but to avoid counting all pairs of masses 

1 2
&dm dm  twice, we must divide the integral by two. The total probability density of virtual 

gravitons at any point  P  in the universe at wavenumber  k,  is using Eq.(5.1.6)  

           

min 1 2

min 1 2

2

0.65 / ( )2 2 2

1 1 2 2 1 2

1 20

0.65 / ( )2 2

1 2 1 2 1 2

0

4 4
(1 ) 4 4 cos ( )

2 4

     32 (1 ) cos ( )

k k k r rU

Gk G

k k k r r

G U

dk k
e r dr r dr e k r r

k r r

k
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k


   

 

 

  
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  




    


    





 

Expanding 
1 2 1 2 1 2

cos ( ) cos cos sin sink r r kr kr kr kr    we can then use: 

       

2 2

2 2 2

0

cos
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r

k r

r

k k
re kr

k k







 

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k k
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
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and 
2 2 2

0

2
sin

( )

r

k r

r

k k
re kr

k k










    to get 1 2

2 2
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1 2 1 2 2 2 4

0

4
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
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Adding both together  min
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k
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 
  

 

      (5.1.8) 

From Eq.(5.1.4) 
2 2 2 2

0 min
10.84k k m k k     and we can write Eq.(5.1.8) as                                                               
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x
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Converting Eq. (5.1.9) back to min
dk  we can express it as follows: 

2

min min4

min min

0.154
Cutoff wavelength probability density  when 1G U

Gk

k
dk x

k k

 
    .  

2

min min min min 4

min

0.154
Cutoff wavelength probability density   where  G U

Gk Gk Gk
K dk K

k

 
    

 (5.1.10) 

 

5.2 Can we Relate all this to General Relativity? 

The above assumes a homogeneous universe that is essentially flat on average. At any cosmic 

time T it also assumes there is always some value min
k  where the borrowed energy density 

min min
,

Gk ZP
E E  the available zero point energy density 

min
@ k . We have initially assumed 

comoving coordinates, but at peculiar velocities our spherical shells become ellipses and our 

equation min min minGk G k
K dk   should remain true at any peculiar velocity, also in all 

coordinates. So, what happens if we put a small mass concentration 1
m  at some point?  The 

gravitons it emits must surely increase the local density of min
k gravitons, upsetting the 

balance between borrowed energy and that available. However, GR informs us that near mass 

concentrations the metric changes, radial rulers shrink and local observers measure larger 

radial lengths. This expands locally measured volumes lowering their measurement of the 

background minGk
 . But clocks slowdown also, increasing the locally measured value of  

min
k .  

Let us look at whether we can relate these changes in rulers and clocks with the 

min min minGk G k
K dk   of Eq. (5.1.10). 

3

min

2

Gk

G U

k

 


  

 
min

k
x

k
   

Figure 5.1.2 A plot of Eq.(5.1.9). We will show below that 
2

min
/

U
k  is a constant for all 

space time, thus this plot looks the same in all metrics, but the local measurement  of min
k  

increases inversely to the local clock rate, with 
1/2 1/2

min 00 rr
k g g


   near mass concentrations. 

The wavenumber probability density of the extra gravitons emitted near mass concentrations 

is also identical to the above curve, but the vertical axis is proportional to / .Gm r   
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Central observer 

at point P 1
r

  

5.2.1 Approximations with possibly important consequences 

Let us refer back to Eq.  (3.4.2) and the steps we took in section 3.4.1 to derive it; but now 

including 
2 2

0 min
10.84k k m k k     as in Eq.(5.1.4)  

                min 1
( )min

1 2 2 1 min 1

1 2

4
* * cos[ ( )]

4

k r rk
e k r r

r r
   



 
                                

   (5.2.1) 

 

Assume spacetime is approximately flat or ,g   with errors 
1/2

1 (1 2 / ) / .m r m r     

Using Figure 3.4.2, Eq. (5.2.1) is the probability that a virtual graviton of wavenumber k is at 

the point P if all other factors are one. . Let us now put mass 1
m  Planck masses at the Source 1 

point in Figure 3.4.2, or as in  Figure 5.2.1. Also assume that the point P is reasonably close to 

mass 1
m (in relation to the horizon radius) at distance 1

r  as in  Figure 5.2.1 and the vast 

majority of the rest of the mass inside the causally connected or observable horizon OH
R  is at 

various radii r, equal to 2
 r  of Eq.  (5.2.1) where 2 1

r r r   and thus 1
cos[ ( )]k r r cos( )kr   

& 1 2( )
.

k r r k r
e e

   
  This is equivalent to localizing General Relativity to much smaller than 

horizon radii, but still to vast cosmic radii.  Only under these conditions can we approximate 

Eq.   (5.2.1) as 

1 2 2 1

1

4
* * cos( )

4

k rk
e kr

r r
   




    

 (5.2.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We are assuming time polarized gravitons are as we are looking at the scalar potential of a 

central mass relative to the rest of the universe, or a time polarized/ scalar interaction with no 

directional effects due to spatial polarization. We can consider simple spherical shells (again 

initially in comoving coordinates) of thickness dr  and radius r around a central observer at 

the point P which have mass 
2

4 .
U

dm r dr   At each radius r the spin 2 gravitons coupling 

factor including cutoff is 
2 2

min0.61 / 2
(1 ) (2 / )( / )

k k

G
e dk k 


  between Planck masses. Again 

assuming instantaneous quantum coupling as if space is not expanding: 

Radius   

Spherical shells thickness dr   

& mass 
2

4
U

dm r dr   

 

Mass 1
m   

 r   

 Figure 5.2.1  A central observer at a distance 
1

r  from a mass concentration. 
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min min0.65 / 0.65 /2 2 21 1
4 2
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m mdk dk
e dm e r dr
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Including this coupling factor 
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 (5.2.3) 

This is the virtual graviton density at point P due to each spherical shell. (Ignoring the 

relatively small number of 
min

k  gravitons emitted by mass 
1

m  itself 
1 1
*

m m
  , (Section 7). 

Integrating over radius 0r    the virtual graviton density at wavenumber
min

k using 

Eqs.(5.1.4) and (5.2.3) is 
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   (5.2.4) 

 

 

   Now
2 2 2 2 2
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      (5.2.5) 

Equation (5.1.10) hypothesizes min min minGk G k
K dk  . In a metric far from masses where

g  ,  
min

k  has its lowest value. As we approach any mass 
min

k  increases to 
min

k  where 

we use blue/green double primes when   due to metric changes.g   This avoids 

confusion with the 
min

&k k   of Eq.(5.1.4).  At a radius r  from mass m  the Schwarzchild 

metric is 
1/2

(1 2 / )m r


  for the time and radial terms. Radial rulers shrink and clocks slow, 

measured volumes and frequencies both increase locally as 1
m

r
  . The combination of the 

change in frequency  and volume if the mass m is infinitesimally small implies: 
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(1 )Gk Gk Gk

Gk Gk

m m

r r

  

 

  
     

   (5.2.6) 
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We can now put Eqs. (5.1.9) and (5.2.5) into Eq. (5.2.6) and dropping the now unnecessary 

subscripts, the graviton coupling constant 
G

  and exponential cutoff 
2 2

min0.61 / 2
(1 )

k k
e


  cancel: 
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2
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 
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All terms in x cancel and this equation reduces to:     
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min min min
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
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(5.2.7) 

This equation tells us that even though both min
&

U
k reduce their values with the passing 

of cosmic time the ratio 2

min
/

U
k  is always invariant, and Figure 5.1.2 is always true in any 

metric. To be consistent with GR; at all points inside the horizon 
2

min

0.88U

k


  in Planck units at 

any cosmic time.                                                                          
2

2

min 2

min

The average density of the universe 0.88 0.88

Where the parameter  is in radians.

U

OU
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k
R

k R




 
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(5.2.8) 

Putting Eq, (5.2.8) density 2

min
0.88

U
k  into Eq. (5.1.10) gives minGk

 & 
minGk

K . 

 
2 2

min

min min min min min4

min

0.154 (0.88 )
0.12 & 0.12G

Gk G Gk Gk G

k
dk dk K dk K

k


       

 (5.2.9) 

The value of minGk
K  is invariant in any metric and at any peculiar velocity, If our conjectures 

are true, this is the number density of maximum wavelength gravitons excluding possible 

effects of virtual particles emerging from the vacuum. In section 6.2.3 we argue these do not 

change the minGk
K  of Eq. (5.2.9).  

 

5.2.2   The Schwarzchild metric near large masses 

At a radius r  from a mass m  (dropping the now unnecessary suffixes) the Schwarzchild 

metric is 
1/2

(1 2 / )m r


  for the time and radial terms which can be written as  

                              
00

2

1 1 1

1 2 1/
M

M

rr
g

m r g 



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
 

   

(5.2.10) 

Velocity
M

 ( 1c  ) is that reached by a small mass falling from infinity and 
1

M
 

 is the metric 

change in clocks and rulers due to mass m . We use blue/green symbols  with the subscript M   

for metrics g  as we did for 
min

k  above. The symbols 
1

M
 

 help clarity in what follows.                                        
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 Using these symbols
min min minmin min min

  &      & 
GkM M Gk M

k dk dkk                (5.2.11) 

We can also differentiate Eq.   (5.2.10) keeping the radius fixed. 

1/2 3/22 2
(1 )

1

(1 )

d

m m

r r

m

rd 

 

 or 
2M

M

M

d dV dm

V r





  which is equivalent to 

2The change in Frequency The change in Volume The change in Mass

Frequency before change Volume before change Radius of Measurement
M

   
 (5.2.12) 

 

Up to this point we have been working in comoving coordinates. Velocities relative to 

comoving coordinates are usually referred to as peculiar velocities. To distinguish them from 

green metric symbols we will use red symbols where 
2 2 1

(1 ) .
P P

  
   At peculiar velocity 

P
  

the local Lorentz (or SR) transformation of universe density U
  is 

2

UP
   and frequency or 

wavenumber 
min

k  as 
min

.
P
k   Thus 

2

min
/

U
k  in Eq. 5.2.5 does not change at peculiar 

velocities, but what happens if we change the metric locally around mass concentrations? 

Equation 5.2.5 was derived by looking at graviton coupling between a very small central mass 

and the mass of the rest of the universe assuming approximately flat spacetime. In section 8 

we argue that GR is highly accurate up to galactic, and galaxy cluster scales, but not cosmic 

scales. Even with black holes, the volume of warped spacetime in the galaxies  surrounding 

them is infinitesimal compared to the cosmic scale wavefunction volume that is in 

approximately flat spacetime. Instead of complicating things with wavefunctions in curved 

spacetime we can perhaps try a very simple approach. Lorentz transformations or SR apply 

locally but not at cosmic scale, where Hubble flow galaxy velocities exceed that of light. 

From Table 6.2.1 the Compton wavelength of infinitesimal mass gravitons is C  1.06 ,
OH

R  

if we think of a large sphere of this radius or multiples of it, regardless of changes in a small 

localized metric, the number of atoms for example inside it, is fixed at any cosmic time. They 

may all have random peculiar velocities with KE relative to comoving coordinates all moving 

at various Hubble flow velocities due to space expansion, but the number of them inside this 

expanding space is constant at any cosmic time, as seen by an imaginary observer outside the 

cosmos. We know from GR that a mass m is the value when measured where .g   In 

any metric, a local observer measures both mass ,dm  after falling to his location, and that of 

all the fixed number of distant atoms as having increased by .
M

  Also frequency or 

wavenumber min min
&k dk  increases as .

M
  Thus min

3

k MG
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
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Eq(5.2.5) is true for very small masses min
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  as in Eq.(5.2.12). 
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5.3 A Different Expansion to the Lambda Cold Dark Matter Model  

Section 5.1.1 describes virtual gravitons as superpositions of the three modes 3,4,5n   at a 

single wavenumber ,k  as in Table 4.3.1 from which we find 3.29n  . Using Eqs.  (3.1.11),   

(3.1.12), (3.2.10)&(5.1.2);
2 2

1 ,
k k

K    

2

2

2
1

k

k

k

K

K
 


. For 2 N  spin 2 gravitons  

                       
0 min min

k

n k n k k
K

m n k k
    and thus we can express these as  

                                  

2
2 22

2

min

1      and         where      
1

k k

x k
x x

x k
    


 

  (5.3.1) 

 

Using Eq.   (5.1.2)  0 min min
3.3m n k k  and from Eq. (3.1.4), we find spin 2 gravitons borrow 

from time polarized quanta a mass 2

0 0 min
/ ( 2 ) / (2 ) 3.3 / (2 1 )m s m k x    . The total 

energy squared of a superposition mode n  is the rest mass squared that is borrowed plus the 

momentum squared 2 2 2 2 2
3.33p n k k   if 1.  Equation (3.2.1) says  

2
( )

k k
debt n p k  is the vacuum debt of spatially polarized quanta. But as in 

Eq.(2.2.4) even though we are considering only a single graviton emitted, its superposition 

occurs with probability /N s dk k   so we need to multiply this spatial debt by 4N s   

for 2N   infinitesimal mass spin 2 gravitons. (See first paragraph after Eq.  (3.3.12).) So 

putting 1 , multiplying by 4 and ignoring minus signs and putting min

min

min

k k
k k x

k
   for 

gravitons: 

Spatial vacuum debt per graviton at wavenumber k  is 

3

min 2

4
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 (5.3.2) 

 

Time vacuum debt per graviton at k is min min
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 (5.3.3) 

Equations (5.1.9) & (5.1.10) give the number density of gravitons at any wavenumber  k and 

putting Eq.(5.2.8) 2

min
1.722

U
k  into this where 

2 4 2
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 (5.3.4) 

 

Multiplying Equ’s. (5.3.2) & (5.3.3)  by this density we get the energy densities required 
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Time mode energy required 
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  (5.3.6) 

 

To enable numerical integration of these energies up to 
min

k k  we can use  
min

dk k dx  
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But zero point energy density at 
min

@ k is  

3

min

2
2

k


 and the integrated zero point energy available 

min
@ k is 

4

min

2
.

8

k


 Even if 1

G
   this is too small by about 2 2

min
1/

OH
k R . However, the area of 

the causally connected horizon 
2

4
OH

R  suggests possible connections with holographic 

horizons and the AdS/CFT correspondence, but as we will find, in a very different way. 

 

5.3.1 The Holographic Principle and Holographic Horizons 

The holographic principle is a supposed property of quantum gravity and was first proposed 

by Gerard’t Hooft. Leonard Susskind [31] described it as “The three dimensional world of 

ordinary experience, the universe filled with galaxies, stars, and everything we are familiar 

with is a hologram, an image of reality encoded on a two dimensional surface. A prime 

example is the AdS/CFT correspondence proposed by Malcadena  [27] where anti-de Sitter or 

hyperbolic space with Planck modes on a 2D horizon that can perhaps be thought of as 

holographically generating the interior. However we are going to assume space is flat, but still 

use the horizon in a manner that parallels the holographic principle. We will however start 

with some usefull cosmology equations. Space between comoving galaxies expands with 

cosmic or proper time t and is called the scale factor ( )a t . It is normally expressed as 

( )
p

a t t   and we will start at time 
0

t T  with time T  now.                                                

Thus 
1

( )
p

a t pt


 and the Hubble parameter
( )

( )
( )

a t p
H t

a t t
   

 (5.3.9) 

In flat space at the current time the coordinate, proper and comoving distances are all equal. 

Writing the present scale factor normalized so that ( ) 1a T   implying ( ) /
p P

a t t T , we can 

get the causally connected horizon radius OH
R  and the horizon velocity V. Using Eq. (5.3.9): 
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0 0

0

0
The horizon radius if &  constant.

( ) 1 1

T T

p

OH p

T T

T Tdt dt T
R T T T p

a t t p p


    

    
   (5.3.10) 

 

In flat space horizon velocity

0

 ,

T

pOH

p

T

dR d dt
V T

dT dT t

 
   

  
  then using 0

( )  for ( ) :d u v u dv v du T T       

1
( ) 1 .  But  is the Hubble parameter at time ,  so 

that in flat space the horizon velocity 1 ( )  regardless of how  behaves.

p

pOH OH

OHp p

OH

dR RT p p
pT R T

dT T T T T

V H T R p


   

 

 
 

(5.3.11) 

The Hubble flow velocity of a comoving galaxy on the horizon is ( )
OH

V H T R  and thus 

from this equation the horizon velocity is always 1V V   .  In other words, the horizon is 

moving at light velocity relative to comoving coordinates instantaneously on the horizon as 

measured by a local comoving observer. We are going to conjecture that the space added in 

one unit of Planck time inside the expanding Hubble horizon creates the source of zero point 

quanta that we can borrow. This extra volume is the horizon surface area 
2

4
OH

R r  where 

,r V t    1V V    is the Hubble horizon velocity, and t  is one unit of Planck time.  As 

preons at the centre are born with zero momentum they have infinite wavelength allowing 

them to borrow quanta from any point inside the causally connected horizon. 

Extra Hubble flow space volume inside horizon 
2 2

4 4 .
OH OH

R r R V t         (5.3.12) 

 The density of modes available inside this extra space is: 

2

2
Mode density 

k
dk


  

  (5.3.13) 

 

As zero point energies are / 2 / 2k   per vibration mode we need to multiply by / 2k . 

But these quanta are half time mode and half spatial. Dividing by 2 again,  putting one unit of 

Planck time 1t   then multiplying by Eq. (5.3.12): 
2 2 33

2

4
Space and time mode energy density available =

4

OH OH
R V R V k dkk dk

 

 
   

   

  (5.3.14) 

Multiplying both numerator and denominator by 2

min
k  and using Eq.           (5.2.8)

min OH
k R    

2
2 2 2

2 3min

@ min

min min

 where OH

Energy k

k R V k V k
dk k x dx x

k k


 

   
    

 

 

 

In Eq. (5.3.8) we integrated the energy required by min
k  gravitons up to min

k , repeating this  

 

Space and time mode energy density available   
2

2

@ min
 

4
Energy k

V
k




   

   (5.3.15) 



75 

 

 

 

 

 

 

In the first half of this paper where we looked at building superpositions we assumed that 

mass was borrowed from a Higgs type field whereas energy was borrowed from zero point 

spatial modes. We will now conjecture that all infinitesimal mass superpositions borrow their 

mass from the time modes of zero point fields. This implies that we can equate Eq’s. (5.3.8) 

and (5.3.15) at any particular cosmic time.  
2

2 2

min min
0.46

4
G

V
k k




   

At all cosmic time  
2

0.46
4

G

V





                 

(5.3.16) 

This also implies: 

At all cosmic time  2 0.46 4
G

V


 


 

 (5.3.17) 

Inserting this into Eq. (5.2.8) 

At all cosmic time 
2

2 2

0.88 0.46 4
0.88 G

U

OU OU
R R V




 
 


 

         

(5.3.18) 

This is different to Lorentz invariant zero point densities and only works in flat expanding 

space with infinite wavelength preons born with zero momentum. If the above ideas are on the 

right track these equations may well control the expansion of space. If there is no acceleration 

initially as in the current CDM model, we can assume a constant Hubble horizon velocity 

.V   Using Eq.       (5.3.18) and assuming a constant mass/energy inside an expanding scale 

factor volume, as in current cosmology, we put the mass density 4
a 

  in the radiation 

dominated era and 3
a 

 in the matter dominated era. This leads to scale factors 1/2
a t and 

2/3
a t as in current cosmology with no acceleration. Section 8.2 looks at the possibility of 

massive spin 2 virtual gravitons behaving as what is called dark matter, and the possibility 

they control  space expansion acceleration in the matter dominated era. We are also going to 

  

Figure 5.3.1 Preons forming a central mode k are born with zero momentum and infinite 

wavelength. They can borrow  modes from anywhere inside the horizon. The extra volume 

of space available for this inside the horizon due to the scale factor expansion, can be 

thought of as a holographic type layer on that horizon that is the Hubble flow velocityV   

thick. If 2V c   for example, this holographic layer is just two Planck lengths.  

 

Zero momentum  

preons at centre 

can absorb quanta 

from any point 

inside horizon 

Horizon surface area  
2

4
OH

R   

 

The rate of space expansion inside the horizon  

is the Hubble  flow velocity 1
OH

HR V V    

 

The extra volume of space inside the horizon 

per unit of Planck time is 
2

4
OH

v R V     
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suggest that the time mode zero point energy in Figure 5.3.1 is also a possible source for the 

Higgs field. 

 

 

5.3.2 A constant horizon velocity in the radiation dominated era  

In the introductory notes we discussed why we can simplify things greatly in this different 

way of looking at gravity in flat space. We have equal coordinate, proper and comoving 

distances at the current time. As explained in section 8.1.2, the FLRW equation becomes a 

very simple
2 2 2 2 2 2 2

( ) ( )ds c dt a t dx dy dz      in this flat space where ( )a t  is the scale 

factor at time .t  Also the observable horizon radius can be very simply expressed as: 

 

 with 
OH

dR
R Vdt V

dt
  is only true if space is flat. 

  (5.3.19) 

 

The universe density Eq.       (5.3.18) 
2 3 4

1G

U

OH
R V G a


  


 in the radiation dominated space. 

We are also going to assume a constant Hubble horizon velocity in this era. 

 

                                            
4 2 1/2

a R a R     where 
OH

R R     (5.3.20) 

The Hubble parameter 

1/2

1/2
 

2 2

dRRa VdtH
a R R



    as in flat space 
dR

V
dt

  the horizon 

velocity. 

             The Hubble flow velocity at (  here) is  
2

OH

V
R R V H R     

       (5.3.21) 

As in Eq.(5.3.12) the Hubble flow velocity at the horizon is 1V H R V      (a comoving 

observer instantaneously on the horizon sees it passing him at velocity c as in local SR.) 

Thus 1
2

V
V V     or the Horizon velocity is 2V   in the radiation era 

   (5.3.22) 

A horizon velocity of 2 V  implies a horizon radius in flat space of 
0

2 .
t

OH
R Vdt t    

From Eq.(5.3.20)
1/2 1/2

a R t  as in current cosmology where 
1/20 0

= 2 .
( )

T Tdt dt
R T

a t t
     

The Stefan-Boltzmann law says 

2 4 4 2

4 4

2 3
0.1645

60 60
Thermal

k T
T T

c

 
     in Planck units. 

We can put 2 , 1
OH

R t V    into Eq       (5.3.18) to get the temperature in Planck units:   

4 1/2 1/4

2 2

5.08 5.08
0.1645 7.8

(2 )

G G

Thermal G

OH

T T t
R V t

 
 


    


 and converting to degrees K  

1/2 1/4 32 32 1/2 1/4

1/4

Temperature 7.8 1.417 10 11.05 10

Planck temperature @   11.05 2 Planck units if 0.018

G G

Planck G G

T t K t K

T t

 

 

 
    

  
 

     (5.3.23) 
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Figure 5.3.2 plots radiation temperature starting at 
32 1/2

1.4 10 @ 2.92
G

T K t     Planck 

time, dropping to 3000T K at recombination. Equation (5.3.23) controlling this plot is based 

on Eq.       (5.3.18), which this paper agues is true in all flat comoving coordinates and there is 

no need for a finely tuned critical density to achieve flat space as it is inherent in this model. 

Of course, we do not know exactly how long after 1t   Planck time all these equations start 

to apply, but if it happened to be about the same time that inflation is thought to end 10
( 10t 

Planck time or 
33

10


 seconds) the causally connected radius would be 10
10

OH
R   Planck 

lengths or 
25

10 metres


 with quantum temperature fluctuations (as a fraction of the average) 

that could be similar to what inflation predicts 5
( 10 ),


  and as observed in the CMB. 

Nucleosynthesis is virtually identical to the CDM model and there should be less need for 

inflation as all these equations also apply in regions initially out of causal contact. Section 

8.2.2 looks at an acceleration dependant effect on gravity that could effect this early era.  

 

5.4 Non-Comoving Coordinates and Spatial Polarization 

To this point we have been working in comoving coordinates for simplicity. Velocities 

relative to comoving coordinates are called peculiar velocities, so, does all our previous work 

still apply in non-comoving coordinates with these peculiar velocities? In section 5.1.2 we 

calculated the density of 
min

k  virtual gravitons in comoving coordinates where they are 

spherically symmetric or time polarized. So at peculiar velocities there can be spatially 

polarized probability densities of them. However we can apply here the same thinking that 

Poincare used over a century ago. At that time there were various models of the electron, the 

Abraham-Lorenz probably being the most well-known [28], [29]. All these models suffered 

the problem of electromagnetic mass in the field being 4/3 times the relativistic mass, where 

the extra 1/3 came from the spatially polarized component due to velocity. In 1906 Poincare 

showed that if the bursting forces due to charge were balanced by stresses (or forces) in the 
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1037

  Figure 5.3.2  A logarithmic temperature plot with 0.018
G

   from 2t   Planck units until now. 
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32

Planck temperature 1.4 10 @ 2K t   Planck units of time.  

For many powers of ten until transition, temperature 32 1/2 1/4
4.83 10

G
T t K
     

             After transition, this gradient is initially set by 2/3
( )a t t  

 

3000 @T K  recombination 

2.75T K  now 

Transition @
55

10t   Planck time. 
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same rest frame as the particle, these would cancel the extra 1/3 figure, restoring covariance 

[30] . We  can use the same principles here. In comoving coordinates we can think of our time 

polarized gravitons with their centres of momentum at rest. (See the scalar type interaction 

example as in section 3.3.2). In section 2.3 we looked at spherically symmetric wavefunctions 

that build these superpositions around such zero nett momentum centres. They had squared 

orbital momentums that would generate bursting pressures balanced by zero point forces in 

the same frame as that centre, which for our time polarized gravitons is at rest in comoving 

coordinates. These can be thought of as equivalent to the Poincare stresses holding a charged 

particle together. So in any other frame moving relative to it at a peculiar velocity these zero 

point balancing forces cancel any extra momentums or energies due to spatially polarized 

components. Thus spatially polarized virtual gravitons due to peculiar velocities do not add to 

the zero point energies borrowed from inside the horizon. We can ignore them, and only 

consider time polarized 
min

k gravitons in all other frames when equating zero point energies 

required to build virtual gravitons with that available to be borrowed from the receding 

horizon. In other words they do not change the metric.  

 

We can think of a box of these 
min

k gravitons fixed in comoving coordinates. It will have a 3 

volume density (or 3 dimensions) 
min min min

3
Gk Gk

D K dk  as we have previously calculated 

where by 3 volume we mean 3
3V d x dxdydz  . If we now move relative to it at peculiar 

velocity 
P

  (where red symbols will be used from here for peculiar velocities, to distinguish 

from blue/green metric changes near mass concentrations) it will shrink in size as 
1 2 1/2

(1 )
P P

 
   so that its new 3 volume density 

min min min
3

Gk Gk
kD K d   , where 

mn inmi
/

P
dkdk    is the local increase in wavenumber 

min
k . If we repeat our derivations of the 

background 3 volume density, and the extra emitted by local mass concentrations, we find 

they also both increase by  
mn inmi

/
P

dkdk     with no change in the ratio /  , so all our 

logic is unchanged at any peculiar velocity. But all this, is the same as saying that at any 

peculiar velocity, and in any metric, the 4 volume density of 
min

k gravitons is invariant at any 

cosmic time T, where 4 Volume is 4
4V d x dxdydzdt   for 4 dimensions. (It is important to 

note here that we are discussing above the number densities of 
min

k gravitons which increase 

as 
P

  with peculiar velocity, as distinct from energy densities of 
min

k gravitons which increase 

as 
2 2

min

2

min
/

P
k k   with peculiar velocity.)  

 

5.4.1 Invariant 4 volume or 4D cosmic wavelength  graviton densities 

Define min min

min

Gravitons Gravitons
3

3Volume
Gk

k k
D

x y z
  

  
  and as 4 volume x y z t x y z t             

           min min min

min

Gravitons Gravitons Gravitons
4

4Volume   
Gk

k k k
D

x y z t x y z t
   

          
  is an invariant.  

 

 In flat comoving coordinates only we will define 4 volume 
min

k  graviton density as 
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min min

min

4 Volume Density  4          3 Volume Density   3  

however 4  is invariant in all coordinates and in any metric.

Gk Gk

Gk

D D

D

 




 

    

      (5.4.1) 

This is equivalent to dividing 
min

k  , in any metric, at any peculiar velocity, by 
MP

   thus 

returning it to flat space comoving value 
min

k at any cosmic time T. As both

min min
4  & 4  

Gk Gk
D D   are invariant, their ratio is also invariant in any coordinates, and 

at any peculiar velocity at any particular cosmic time. But the flat space comoving value of  

min
k  decreases with cosmic time.   

 

5.4.2 Cosmic wavelength graviton and 4 volume or 4D action densities 

In deriving Eq.    (5.3.8) we said that each 
min

k  graviton always borrows a fixed amount of 

action, where Action E T    per graviton is constant but 
min

E k  .  So if four volume  

(4D) 
min

k  graviton density
min

 ( 4 )
Gk

D  is invariant, the four volume action density required by 

min
k  gravitons must also be invariant.  

 

Our hypothesis is that at any point in spacetime, gravity is determined by the 4 volume 
min

k

action density available from inside the horizon always being equal to the 4 volume 
min

k

action density required by gravitons; with both remaining invariant in any coordinates.  

 

 

6 Infinitesimal Mass Bosons 

6.1 Cosmic Wavelength Superposition Cutoffs 

In section 4.2 when we introduced gravity, for the lower limit in our integrals we assumed

min
0k  , and then in section 5 showed that there is a lower limit min

0k   .  It turns out that 

for massive 1N   superpositions the effect of this is negligible in comparison to the high 

frequency cutoff cutoff
k   , which we showed gravity can address in section 4.2. For 

infinitesimal rest mass 2N  superpositions we cannot, however, ignore the effect of  min
0k   

 

6.1.1 Quantifying the approximate effect of min
0k  on infinite superpositions 

If we look again at section 4.2.1 we can repeat what we did there as follows. Initially to 

illustrate these effects we will consider only 1N   superpositions where we can say that when 

Cutoff
,

nk
K   

min
and  (for 1 only)  0,   and thus

nk
N K   

 

   

min

cutoff

2

min2 2 2 2

min Cutoff Cutoff

1 1 1 1 1
1 1

1 1 1 1

nk

nk

K

nk

nk nk nk nkK

K
K K K K




   
          

      
     

    

  (6.1.1) 
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Our earlier infinitesimal in Eq.(4.2.2) 
2

1

cutoff
nk

K
   becomes 2

min2

1
.

cutoff
nk

nk

K
K

   

Using section 4.2.1 and 4.2.2 equations, we can show 

2

2 2

1

cutoff

P

nk C

L

K
  and  

2

2

min 2

C

nk

OH

K
R

 .  

 

For our purposes here we are ignoring small numerical factors such as 
2

n to show in Planck  

units where 1
P

L   that   

2

2

min2 2 2

1 1
C

nk

nkCutoff C OH

K
K R

           

               

2
2

tion The rat  toio of the   isextra contribu  C

OH
R


 



 
   

 
 

  (6.1.2) 

 

In Planck units 
2 122

10
OH

R   and 
4

C  for electrons say is 
92

10 , so the effect is of order 
92 122 30

/  10 /10 10  
    which we have been ignoring. We cannot ignore this, however, in 

the case of infinitesimal rest masses as we will see. 

 

6.2 Infinitesimal Masses and N = 2 Superpositions 

Looking again at angular momentum and rest masses discussed in section 3.2 the key factor in 

our final integrals is in Eq. (6.1.1). Using Eq.   (3.1.12) we can rewrite Eq. (6.1.1) as 

                                                 

min

2 2 2

min

1 1 1

1

nk

nk

K cutoff

nk nk nkCutoffK
K  

 
  

 
                                 

 

           (6.2.1) 

 

With massive 1N   superpositions, as above, the difference between 
2

min
& 1

nk
  is vanishingly 

small, i.e.
2

min
( 1) 1/

nk
     and as in section 6.1.1 this first term is of much less significance 

than the 
2

Cutoffnk
  term. Now define an approximate equality between 

2

min
&

k
N  using Eq.   

(3.1.12) as follows 

                                                      
2 2

min min
1

k k
N K   

 
      (6.2.2) 

In section 3.2 we derived angular momentum and rest masses for only massive, or what we 

called 1,N   particles. To get integral angular momentum we had to assume in deriving Eq.  

(3.2.6) that the minimum value of 
min

 or 0
nk nk

K K  . For massive 1N   particles, such as 

electrons, the error in this assumption (as in section 6.1.1) is 
30

10


  times smaller than  , 

which for an electron is already 
45

10 
  due to the high frequency cutoff @

18.31
10 .GeV  

(We allowed for this 
45

10 
 when we included gravity in section 4.2.)  From section 6.1.1 

above we approximated 
2 2 2

min
 as /

nk C OH
K R  for all massive particles. So, we can express Eq. 

(6.2.2) in terms of this approximation for fermions with non-infinitesimal mass 

                   

2 2
2

min 2 2

2

10 50

2

1 1    as    0

A 10 eV mass particle has 10

C C

k

OH OH

C

OH

N
R R
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

 

 
     
 



 

                                                    

      (6.2.3) 
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For the massive particles it appears we can say that 1N  . However in section 8.2 we explore 

the possibility of galaxy halos as spin 2 virtual gravitons of 
29

10 eV


  mass where 
2 10

min
1 10 .

k
 

   At this extreme low mass (but still 
5

10  larger than infinitesimal masses 

(which we discuss further below) Equation (6.2.1) shows that we cannot get the correct 

angular momentum unless something else changes, perhaps by a small change in the actual 

high frequency cutoff details. So if massive particles are a group with 1N  , then it would not 

seem unreasonable to imagine there could possibly be another group with 
2

min
2 1

k
N K    

implying that 
2

min
1.

k
K   Repeating the derivation of Eq.  (3.2.6) but with 
2

min
2 1

k
N K    and for clarity and simplicity let cutoffnk

K   .   

                min min

2

2 2 2

2

min

1
( ) ( 2)

(1 ) 1

1 1
( )  as previously.

1 ( 2) 2

nk nk

nk nk

z

nk nk nkK K

z

nk

K dK
Total s N m sm

K K K

sm
Total sm sm

K N


 

     
  

   
     

   

L

L

              

 

       (6.2.4) 

 

 

Provided we have doubled the probability of superpositions as in Eq. (2.1.4) from 

( 1) /s N dk k   to ( 2) /s N dk k  , the final angular momentum results in Eqs.  (3.2.6) and 

(6.2.4) are identical. The same is true for rest mass calculations.  For multiple integer n 

infinite superpositions if 2N   then the expectation value 
2

min
1

k
K  . We thus conjecture:  

All 2N   infinite superpositions have 
2

min
1

k
K  . (6.2.5) 

Using Table 4.3.1 

               2N  infinitesimal rest mass spin 1 superpositions have 3.98n   

               2N  infinitesimal rest mass spin 2 superpositions have 3.29n   

Using Eqs.  (3.1.11) and Eq.           (5.2.8) 

      

2

2 2 2 2 2

min min min

2 2

min

15.82
1  or  0.355  for Spin 1

2 2

11.09 2
                                1  or  0.300  for Spin 2   

2

OH

k C C C

OH

C C

n s R
K k k

R
k

   



  



 

     

       (6.2.6) 

 

From Eq.(8.2.18) 0.33   and from Table 8.2.1
61

52 4.3 10
OH

R ly lp    when 0.009.k    

Using these values the above equations provide the infinitesimal masses of 2N   photons, 

gluons and gravitons as in Table 6.2.1 below. 

 

  Spin       ⟨𝒏⟩     Compton Wavelength
c

    Infinitesimal Rest Mass 

    1       3.98             1.06
OH

R           
34

3.52 10 .eV


   

    2       3.33             0.9
OH

R           
34

3 10 .eV


   

Table 6.2.1  Infinitesimal masses and Compton wavelengths of 2N   photons, gluons & 

gravitons. They limit the range of virtual photons and gravitons to approximately the horizon. 

The graviton rest masses above are reasonably close to recent proposals for the accelerating 

expansion of the cosmos [18,19].  
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6.2.1 Cutoff behaviours for N = 1 & N = 2 superpositions 

Equation (6.2.1) can be written for both 1N   & 2N   superpositions using the results of 

sections 4.2 & 6.2 and Eq. (6.2.5) as follows:  

                   
min

min

cutoff

2 22

Cutoffmin

cutoff

2 22

Cutoffmin

1 1 1 1
     when 2

1 2(1 )2

1 1 1 1
 =           when 1

1 11

nk

nk

nk

nk

K

nk nknkK

K

nk nknkK

N
K

N
K

 

 

 
    

     

 
   

     

 

       

       (6.2.7) 

 

(We should be using expectation values, but for clarity we simply imply them.) We have 

shown in section 6.2 that 2

min
1/ 1/ 2

k
   when 2N  , but in reality it is Eq. (6.2.7) that 

must be true. In section 4.2 we showed that for 1N   superpositions the primary coupling of 

gravity to preons infinitesimally increased the interaction probability by  to  (1 )    where  

 

from Eq. (4.2.4) 
2 2 2

0 0

2 2 2 22

cutoff

21

cutoff ( )2 (8 8 )

G

nkEMP

m G m c

K sn ks c


 



 
    


.  

 

In the 1N   case this meant that any deficits due to a non-infinite cutoff were exactly balanced 

by the contribution from gravity, but in the 2N   case this infinitesimal correction is out by a 

factor of two. However Eq. (6.2.7) says that exactness can be maintained in the 2N  case by 

an infinitesimal change from 2 2

min min
1/ 1/ 2 to 1/ 1/ 2

k k
   . Thus both 1N   & 2N 

superpositions can cutoff at Planck energy as in section 4.2.2.  The low frequency cutoff for 

all superpositions must be at 
min

/
OH

k R   if they are to affect gravity. 

 

6.2.2 An exponential cutoff at cosmic wavelengths for infinite superpositions 

We used a square cutoff above for 
min

k  but an exponential cutoff is more likely.  

Going over what we did in Eq.(6.2.4) and using Eq.(6.2.5) 

   
0.65

2 2 2 2

min min 1 0

(1 )
Putting    then using 0.25 0.2505

(1 ) (1 )

x x x

nk

nk x x

Kk xdx e xdx
x

k K x x

  

 


    

     

 

An exponential cutoff 
0.65

(1 )
x

e



min

@ k is   the same as a square cutoff
min

@ k  

                          

  (6.2.8) 

 

                                      
 

                                       

 Probability factor  

                              

 

min
k

  

min

k
x

k
    

Figure 6.2.1 A simple 0.65x
e
  exponential cutoff for all infinite superpositions that gives the 

correct angular momentum for 2,N   spins 1 & 2 infinitesimal mass bosons. 
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6.2.3 Virtual particle pairs from the vacuum and spacetime curvature 

For almost a century it has been a puzzle why spacetime appears to be flat on average and not 

massively curved by Planck scale zero point energy densities. In section 5.1.1 we conjectured 

that virtual particles are just single wavenumber k  superposition members, whereas real 

particles are full infinite superpositions of all wavenumbers k  from 
min

k  to 
Planck

k . We 

assumed this was true in all of section 5. If this is the actual difference between virtual and 

real particles, then only full infinite superpositions (representing that particle) have real 

properties that can be measured (such as measured mass/energy) rather than implied. If 
min

k

virtual gravitons are such single members they can couple to 
min

k members of full infinite 

superpositions. On the other hand, virtual particles out of the vacuum, are mainly short lived 

high k  single value members that will not couple to 
min

k , if our conjectures are true.  

The density of 
min

k virtual pairs from the vacuum based on the Lorentz invariant supply of 

local zero point fields is virtually zero and the supply from expanding space is consumed by 

min
k gravitons as in section 5.2 , (see sections  6.2.4 & 6.2.5 below). But this is not the full 

story. The virtual particles that dress electrons and quarks for example add mass to the real 

particles. As these short lived virtual particles are emited and reabsorbed they impart 

momentum and kinetic energy increasing the effective mass of the real long lived paricles. In 

fact, the majority of the proton and neutron mass is due to the virtual gluons interacting 

between quarks.  

 

6.2.4 Zero point energy from the horizon behaves differently to local 

As we said above local zero point energies are Lorentz invariant. At high frequencies there is 

no shortage locally to build the high frequency components of full infinite superpositions. But 

as we have shown this is not so as we approach cosmic wavelengths. If there were no supply 

from expanding space there would be only a few modes of the local supply of 
min

1 /
OU

k R  

quanta inside the horizon. Because preons are born with zero momentum and infinite 

wavelength they can absorb 
min

1 /
OU

k R  quanta from space expansion inside the horizon as 

we have discussed. This 
min

k quanta supply behaves differently to normal Lorentz invariant 

zero point local fields. It is only available to zero spin preons that are born with zero 

momentum, or infinite wavelength, in the rest frame in which infinite superpositions are built. 

 

6.2.5 Revisiting the building of infinite superpositions 

In section 2 we developed equations to determine the probability of each mode of a 

superposition using local zero point fields. In section 5 when we found the cosmic wavelength 

supply inadequate, we used quanta from space expansion. So how do we justify our use of the 

local zero point fields to determine mode probabilities and behaviours? As we noted above 

there is a plentiful supply of high frequency local zero point fields. This local supply is 

adequate for high densities of superpositions for all modes from the Planck energy 1k   high 

energy mode cutoffs to somewhere around 17
10 ,k


  or near the Higgs boson energy. The 

coupling to local zero point fields in this high frequency region determines the behaviour of 
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all the SM particles. There is, however, a gradual transition to absorbing quanta from the 

expanding space supply as the wavelength increases. Because this supply of 
min

k  quanta 

behaves as the invariants 
min min

 or  
Qk Gk

K K above, and entirely differently to Lorentz invariant 

local zero point fields, spacetime has to warp around mass concentrations and the universe has 

to expand. 

 

6.2.6 The primary to secondary graviton coupling ratio 
G

   

In Eq.  (4.2.12) we found 318.3
G

    as the ratio between the primary graviton coupling to a 

bare Planck mass and the normal measured gravitational constant G. Equation (5.1.7) defined 

graviton coupling between Planck masses and Eq.(8.2.19) finds  0.018
G

  so that the 

primary to secondary graviton coupling ratio (as for colour and electromagnetism in Eq.  

(3.3.2) is: 

1
318.3 56 18,000

G G G
  

       (6.2.9) 

 

To solve graviton superpositions we can use Eq. (3.3.14), which is the gravitational 

interaction probability  between fermions, and we can now put on the RHS the coupling ratio

20,352
G

   in the same way as we did for Eq. (3.3.19). This  
4 4 4 4

* (1 * )
c c c c

c c c c  we are going 

to calculate here is for spin 2 & 2N  . It is different to the double combination of  

( 2) (Spin 1) or ( 1) (Spin 2)N N   
4 4 4 4

for 4 * (1 * )
b b b b

c c c c  we derived in Eq. (4.4.1). 

 

                      
   

2 2 1 2

1/2 1 6 6 6 6 2 2 4 4 4 4

4 4

2 * (1 * ) 2 * (1 * ) 4( )
 

a a a a c c c c G
s N c c c c s N c c c c

q q

  
           

1/2 1 2 2
2 1,  1,& 2 4,  2 s N s N      so    1

6 6 6 6 4 4 4 4
* (1 * ) 8 * (1 * ) 2 2 /18,000

a a a a c c c c G
c c c c c c c c 


     

                             or  
 

4 4 4 4

6 6 6 6

1 1
* (1 * )  

9, 000 8 * (1 * )
c c c c

a a a a

c c c c
c c c c

 
   

 
 

But from Eq. (4.4.1)
6 6 6 6

 * (1 * ) 2 /  2 / 50.4053 0.199194
a a a a C

c c c c      

                          So    
4 4 4 4

1 1
* (1 * ) 0.00014

4 9,000 0.199194 7, 200
c c c c

c c c c   
 

.  

 

Using Eq.(4.4.3),
4

* 170.95
n n

c c n   for spin 2, 2N   we get the infinitesimal mass graviton 

superposition values in Table 4.3.1.  

 

 

6.2.7 Massive bosons and the Higg’s mechanism 

In the SM the Higg’s mechanism adds mass to zero mass photons but here we say it adds 

mass to infinitesimal mass photons to convert them to massive photons. But additionally, it 

converts them from 2N   to 1N  , and also from 3,4,5n   to 4,5,6n  superpositions.  
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7 Virtual Gravitons and Mass Interacting with Itself 

7.1 Do we have to take account of *
m m

   on kmin Densities? 

In section 5 we began by finding the average 
min

k graviton probability density in a uniform 

universe. We then placed a mass concentration in it, and calculated the extra probability 

density of  
min

k  gravitons (before the dilution due to local space expansion) due to the 

amplitude of this mass multiplied by the amplitude of the rest of the mass in the universe. This 

ended up being proportional to 2 /m r  in Planck units. Apparently ignoring the *
m m

   

term we got  min Universe Universe
( * ) ( * ) 2 /

Gk m m
m r         as in Eq.(5.2.5).  

However, we approximated by assuming that our concentrated mass m M  did not 

change the rest of the mass in the cosmos. If we subtract the mass m from the cosmic mass M 

and look at how our concentrated mass m interacts with this reduced value we have 
2

( ) ,M m m Mm m    if we now add the interaction term of the mass interacting with itself 
2

m  we then have 
2

( )M m m m Mm    which is our original approximation.  

In other words by not subtracting our small concentrated mass m from the larger cosmic mass 

M we have effectively already included the local gravitons emitted by this local mass 

interacting with itself.  

   

8  An Infinitesimal Change to Einstein’s Equations 

8.1 An Infinitesimal change to General Relativity at Cosmic Scale 

Let us review how we have tried to connect gravity with our infinite superpositions in the 

second half of this paper. We started out with the hypothesis that 
1

00
1

rr
g g


    everywhere 

when there are no mass concentrations, assuming that uniform densities don’t curve 

spacetime. We introduced mass concentrations and spacetime had to curve around them so as 

to keep 4 volume 
min

k  action densities, required and available, invariant. But what do we 

mean by a mass concentration? If we think of the mass in the universe as a dust of density 
U



and consider a small sphere of volume V dv   enclosing this dust, its mass will be 

U
m dv    ,

U
V  but our hypothesis says it will have zero effect on the spacetime 

curvature surrounding it. If we now increase this density to   by bringing dust from far away 

into this sphere its mass will increase to ,m dv   and the effect on spacetime curvature is 

now proportional to the increase in the enclosed mass  ( ) .
U

m m m dv dv            

Using similar reasoning, if instead of increasing the density we now remove the original 

enclosed dust the effect on the spacetime curvature is 
U U

m dv V        and 

spacetime curvature is of opposite sign to that surrounding positive mass. Relooking at 

Eq.(5.2.7), but instead of a mass concentration ,m  we replace it with mass dilution ,m  

Eq.(5.2.7) becomes: 
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2

min min

min

 1.725Gk

Gk U

k m m

r r



 

  
   

(8.1.1) 

If this dust is essentially at rest in comoving coordinates we can define a tensor (Cosmos)T .  

In comoving coordinates (Cosmos)T  has only one significant non zero term 

00
(Cosmos)

U
T  , a density of only a few atoms per cubic metre. In any other coordinates 

this same (Cosmos)T  tensor is transformed by the usual tensor transformations that apply 

in GR. If these coordinates move at peculiar velocity 
P

  then 
2

00
(Cosmos)

P U
T   

2

00
(Cosmos)

P
T . The same transformation happens in any metric but with 2

M U
   .  We argue 

that Equ.(5.2.7) is consistent with the infinitesimally modified Einstein field equations 

 

       4
(Local

1 8
Modified Einst ) (Cosein 

2
mos)T T

G
G R g R

c
    


       

       (8.1.2) 

Einstein had always wanted his theory of gravity in curved space-time to be similar to the 

Gauss/Poison equation 2    the electric charge density. But this charge density is in 

reality the local difference in the normally very accurately (on average) balanced positive and 

negative charge densities. We can express this difference as follows: 

 

             2
(positive) (nePoisson/Gauss  gative)  (nett charge)             (8.1.3) 

If we write the electric charge equation this way we can see that our modified Einstein tensor 

equation above is perhaps not too different, and hopefully Einstein might have approved. 

Equation (8.1.2) has some parallels to, but is not the same as, the   term he introduced to 

stabilize the cosmos. The red terms are zero if (Local) (Cosmos)T T   and 

(positive) (ne ).gative   Just as the average value over the whole universe of (positive)  

is the same as that of (negative) , the same is also true for the average value of (Local)T

which has to be (Cosmos).T  This forces the average values of 

1

00
 to be very close to one.

rr
g g


  It also means that there is no nett gravitational attraction of 

matter over any large cosmic sphere. (We will look at what this means for the FLRW metric 

in the next section) Thus this infinitesimal modification is most relevant in the extreme case as 

(Local)T
  approaches (Cosmos)T . Far from mass concentrations (Cosmos),T T

 
  

space-time curvature in these intergalactic voids is of the opposite sign to that surrounding 

positive mass, but the causally connected universe is always flat regardless of the value of .

(See section 8.1.2) Equation (8.1.2) is also consistent at all cosmic times with Eq.  (5.2.9) 

min min minGk Gk
K dk  .  

 

8.1.1 This infinitesimal change does not effect most gravitational fields 

Equation (8.1.2)  only modifies Einstein when the local mass density Local U
   where U

  

is a few atoms per cubic metre which is extremely low. The Milky Way has a disk diameter of 
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100,000ly  and to keep things simple, if we assume a spherically symmetric distribution of 

the total galaxy mass inside a sphere of this radius. the average mass density is about 
5

10
U

  

so Einstein’s GR is still very accurate. The same should apply inside the solar system. In 

Section 5 we tried to show in Eq.  (5.2.12) that the Schwarzchild metric relates with Eq.(8.1.2) 

We have not attempted to do the same with the Kerr metric which is an exact solution to 

Einstein’s equations. Provided Local U
  we will assume there is no change, however, 

when there is angular momentum there may well be circularly polarized gravitons emitted 

with an 

2

2

2
cos

r


  angular distribution about the spin axis. This could possibly be why the 

determinant of the Kerr metric can be written as 

2

4 2 2 2

2
sin (1 cos ) .g r

r



   We      will 

look more carefully at galaxy behaviour in Section 8.2. The only regions where Local U
  are 

the intergalactic, or galaxy free, voids. We will look at these in section 9. 

 

 

8.1.2 Friedmann-Lemaitre-Robertson-Walker Metrics and Friedmann’s Equations 

The FLRW metric and Freidmann equations have been the bedrock of cosmology for nearly a 

century, a cosmology that in its current CDM form has been recently showing some cracks. 

(See Reiss [33] and New Physics required due to Hubble tensions). It is an exact solution to 

the 00 component of GR so how can it possibly be questioned? If we relook at our 

infinitesimally modified Einstein Eq. (8.1.2) and re express it as follows: 

 

Writing (Local) (Cosmos)T T T  
    

4

1 8
Infinitesimally Modified Einstein becomes 

2

G
G R g R

c
T  


     

         

      (8.1.4) 

 

Over large homogenous and isotropic regions of space the average values of all 16 

components of are the same as (Local) (Cosmos)T T   and this is true for all large volumes 

inside the horizon.  

All 16 components of both &  TG 
 average zero in large regions     (8.1.5) 

If the components of the Freidmann equations average zero it cannot control cosmic 

expansion and we argue that QM does. We will consequently continue to use the following 

metric.     



   FLRW flat space metric with no KE or gravitation effects  2 2 2 2 2
( )ds c dt a t dr         (8.1.6) 

8.2  Massive Spin 2 Virtual Gravitons and Dark Matter Halos 

Table 4.3.1 listed theortically possible infinite superpositions and included a possible spin 2 

massive boson that we called a massive graviton to partner with infinitesimal mass gravitons. 

Pairs of these spin 2 gravitons have some parallels with massive and infinitesimal mass spin 1 
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photons that are also bosons. The photon mediates electrical charge with three different 

massive photons for 1,0, 1   charge, and they all have masses in the 100GeV range. The 

spin 2 graviton on the other hand, mediates changes in the metric where no charge is involved, 

consequently only one massive graviton appears to be necessary. Its mass however might 

behave very differently to massive photons. Just as infinitesimal mass bosons have a mass of 
1

min OH
k R


  or  34

10 eV


 (at the current time) and always approximately inverse to the horizon 

radius, we are going to speculate that massive spin 2 gravitons are always somewhere between  
4 6

10 10  times as massive as infinitesimal mass gravitons. This would mean that at the 

current cosmic time they would be 
29

10 eV


  with Compton wavelength halos of 

100,000  200,000ly  radius around the galaxy cores emitting these virtual massive 

gravitons. While this very low mass appears at first sight to be far too small to behave like 

dark matter, infinitesimal mass gravitons couple between Planck masses and there are about 
19

10  protons per Planck mass. If protons or quarks exchanged massive gravitons the coupling 

constant between them only needs to be less than one and as we will see below it does not 

need to be very large. Also if these massive gravitons are time polarized their spherical 

symmetry gives an inverse radius squared mass density just as dark matter is supposed to have 

to give galaxies their flat orbital velocities.  

 

8.2.1 Massive gravitons generating MOND-like galaxy behaviour 

The approach we are going to take in this section appears to only work if the mass of massive 

gravitons 
min

,
G

m b k  where the mass ratio of massive to infinitesimal mass b is a constant. 

We are thus going to assume that the mass of massive spin 2 gravitons is always 
minG

m b k 

where 1b   and this mass is vastly greater than that of infinitesimal mass gravitons. 

 

Using Eq. (5.1.4) at wavenumber 
min

k  let 2 2 2

min min min min
 if 1,

Gk G
k k b k bk m b       

 

with wavefunction  
min min

min

min

2

4

Gkk r ik r

Gk

Gk

k e

r




 
       

min2

4

Gm r ik r

G
m e

r

 

  

        2

min min 2

2
*

4

Gm rG

Gk Gk

m
e

r
 




  with radial probability 2

min min
* 2 Gm r

Gk Gk G
R R m e


  

     (8.2.1) 

To give galaxies their observed orbital velocity behaviour they are thought to have a  ratio of 

dark matter to baryonic of  9:1. Assume a coupling constant between baryons of MG
  for 

massive gravitons, and also assume an average galactic baryonic mass of 48
10  Planck masses 

in this cosmic era.  There are 19
10  baryons per Planck mass or 67

10  baryons per galaxy.  

The massive graviton total mass is 9 times this or 49
10  Planck masses, and if massive 

gravitons are 
29

10 ,eV


  or 56
10


  Planck masses in this cosmic era, there will be 105

10  

massive gravitons per galaxy.  This, implies that 
105 67 2 29

10 / (10 ) 10 ,
MG

 
   which is a very 

small coupling constant between baryons. However, while we have assumed all the baryons 

contribute, since galaxies are  a similar size to massive graviton wavelengths, a much smaller 

number will contribute, and it is the square of this number that generates massive gravitons. 

Later, we will also introduce a massive graviton coupling parameter increase factor at very 
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low energies that is related to galaxy clustering (Eq.(8.2.8)), So despite what will still be a 

very small massive graviton coupling parameter, it is not implausibly so.  

 

If we imagine as an unrealistic example a hollow sphere of baryonic matter where there are no 

gravitons or massive gravitons inside it. But on the outside, the radial mass density of massive 

gravitons is inverse to the radius sqared as in Eq.(8.2.1) within the Compton wavelength 

approximately. If we plot the orbital velocity with radius, it will follow Newtonian predictions 

in the inner core region and exponentially transition into the flat velocities observed. This 

Newtonian gravity will thus be concentrated around the peak radial baryonic mass densities 

(as in Renzo’s rule).  A very hypothetical  plot of this is shown in Figure 8.1.1. 

 

 

                                       
     

 

 

 

8.2.2 Accelerating cosmic expansion 

If the mass of massive gravitons is always 
minG

m b k  then we can say that 
min

.
G

m k  The 

radius of the Compton wavelength halo is 
1

min
,

Halo
r k


  so the volume inside this halo is  

Compton wavelength radius halo volume 
3

minHalo
v k


    (8.2.2)  

We are now going to assume that at all cosmic time there is some ratio ( )X t  of massive 

gravitons to baryons with a total cosmic mass density of: 

Cosmic mass density ( )
U Baryonic

t     

Baryonic mass density 
( )

U

Baryonic
t


 


 

 (8.2.3) 

If we take the Milky Way as an example, and assume a Compton wavelength of about 56
10  

Planck lengths, the average density inside this radius is about 4
10  times the cosmic average 

density. We are going to assume that at all cosmic time, the halo baryonic density is 

proportional to the cosmic baryonic density: 

Average baryonic density in this halo volume 
2

min

 halo baryonic
( ) ( )

U
k

X t X t


    

  (8.2.4) 

Using Eq.(8.2.2), the baryonic mass inside the halo is 
3

Baryonic halo min
M k


 times 

2

min

( )

k

X t
 or: 

1/4 1/4

0

Orbital velocity

m a
     

Critical

r

r
   

Figure 8.1.1 Plot of a very hypothetical orbital velocity radial profile assuming the peak 

radial mass densities, where the massive gravitons originate, are somewhere greater than one 

Milgom critical radius. This behaviour has many parallels to MOND predictions. 

 

 

 

Newtonian behaviour in the inner regions 

Massive gravitons start taking effect 
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The baryonic mass inside the halo is 
2 1

3 min min

min
( ) ( )

Baryonic Halo

k k
M k

X t X t




   . 

 (8.2.5) 

The number of massive gravitons emitted is proportional to this baryonic mass squared:  

The number of massive gravitons emitted is  
2

2 min

2
( )BaryonicHalo

k
M

X t



   
 (8.2.6) 

As the mass of massive gravitons is 
min

:
G

m k  

Galaxy mass of massive gravitons emitted is  
2 1

min min

min2 2
( ) ( )

k k
k

X t X t

 

    
     (8.2.7) 

At extremely high energies near the Planck region, the coupling parameters of the 

fundamental SM particles depend on the exchanged energy (as in Figure 4.1.1). If we regard 

the other end of the energy spectrum as near the cosmic wavelength or 
min

k  region, (think 

Hubble flow energy supply at horizon scale as in Figure 5.3.1 ), and with massive gravitons 

always 5

min
10 ,k  we can perhaps conjecture that the massive graviton coupling parameter 

between baryons can similarly increase as 2
( ) :X t   

Massive graviton coupling strength between baryons is 2
( )

MG
X t     (8.2.8) 

From Eq.(5.2.8) 
2

min
 

U
k   so  

1 1/2

min U
k  

 and conjecturing the scale factor cubed is inversely 

proportional to cosmic mass/energy density or 
3

( )
U

a t 
  implies 

3 ( )

1 1/2 3/2 2
min

( )

p t

U
k a t t
 

     

 

Galaxy mass of massive gravitons emitted is 

3 ( )1 2 1

min min 2

2 2

( )

( ) ( )

p t

MG
k X t k

t
X t X t

  

     
    (8.2.9) 

As the ratio of dark matter to baryons in galaxies is approximately 9:1 and if the baryonic 

mass is one we can say : 

Total galaxy mass is 
3 [ ]

21 9

p t

t  
  (8.2.10) 

 

From Eq.(8.1.4) when mass is initially distributed evenly the local mass density is equal to the 

cosmic average and there is no tendency to cluster, at least initially, but it is unstable, and will 

rapidly tend to cluster, especially in early eras, because massive gravitons were very massive 

compared to now as illustrated in Figure 8.2.1. 

 

                                          
 

 

Massive graviton mass

Massive graviton mass now
  

Large massive graviton mass could 

accelerate both supermassive black hole 

and galaxy generation in early eras. 

Cosmic age in years   

Figure 8.2.1 A logarithmic plot of the increase in massive graviton mass versus cosmic time.  
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We are going to speculate that the rate of both black hole and galaxy formation is proportional 

to the massive graviton mass 
min

.
G

m k  Again conjecturing that the scale factor cubed is 

inversely proportional to cosmic mass/energy density, or 
3

( ) ,
U

a t 
  implies that 

3 ( )

1/2 3/2 2
min

( ) .

p t

G U
m k a t t



 
      Thus at any cosmic time t we can say that the total number 

of galaxies is proportional to: 

Total number of galaxies at cosmic time t is 
3 ( )

2

0

p t
t

t dt



   
  (8.2.11) 

We will conjecture that all the above equations combined are equivalent to:                                                               

                          In the matter dominated era 
3 ( ) 3 ( )

2 2

0
 ( ) 1 9

p t p t
t

t kt t dt



     
  (8.2.12) 

We will see later that the parameter p starts at 2/3, and ends up in the region of 1, so that 

initially 
3

( )
12

p t

t t




 .  Also, as clustering starts, the baryons inside them, reduce the baryon 

supply available from the intergalactic voids. We will assume this happens approximately 

exponentially, or that the intergalactic void baryonic density   ( ).Exp kt    Eq.(8.2.5) 

increases by this factor, but (8.2.6) increases by the square of this factor ( 2 ).Exp kt   Going 

through the following equations we can simplify all the above if ( 2 )Exp kt  very 

approximately cancels the the effect of the change in parameter p so that 
3

( )
12

0 0
.

t tp t

t t




   We 

can then think of the constant k in Eq. (8.2.12) as a probability factor per unit of time, that a 

galaxy starts to form. We will also assume that galaxies are starting to form at say about 140 

million years or about 1/100 of the age of the cosmos. Putting all this together: 

 

In the matter dominated era 
3 ( ) 3 ( ) 3 ( )

2 2 2

0
 ( ) 1 9  1 9 log100

p t p t p t
t

t kt t dt kt t



      
  (8.2.13) 

 

This can only be very approximately true, but it may show expansion behaviour trends. In the 

radiation era, the energy density of the cosmos is proportional to the fourth power of 

temperature. This era was dominated by 2N   bosons, and in section 5 we assumed that all 

infinitesimal mass boson superpositions borrowed their mass from the time mode zero-point 

energy coming from the horizon (as in Figure 5.3.1)  time modes of zero-point fields. In 

Eq.(5.3.16) we put
2

1.84 ,
4

G

V





  We are now going to conjecture that in the matter (or 

2N   superposition) dominated era, the Higgs field energy density is somehow borrowed 

from the time mode zero-point energy coming from the horizon (again as in Figure 5.3.1). 

Thus the Higgs field energy density is simply  ,
U

  where as in Eq.(8.2.3)  ( ).
U B

t    At 

any cosmic time in the matter dominated era, there is some baryonic density ,
B

  and if we 

imagine it to be fixed while we increase the clustering ratio, the factor ( )t  changes, 

implying 2
( ),V t    or that

2 ( )t

V


 


 

   (8.2.14) 

 

Using this equation we can use Eq. (5.2.8) and using 
2 2 2

min OH
k R  implies: 
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Cosmic mass/energy density
2

2

min 2 2

( )
U

OU OU

X t
k

R R V



  


  

(8.2.15)  

Conjecturing the scale factor cubed is inversely proportional to cosmic mass/energy :
U

   

2 2/3 1/3

3

1/3

1
( ) ( )

( ) ( )

OU OU

U

R V R V
a t a t

t t

 
   

 
 

   (8.2.16) 

In flat space we can use Eq.(5.3.19) (  where 
OH

dR
R Vdt V

dt
   is only true in flat space).  

Using 
OH

HR V   or 
1

,
OH

H V R
  and ( )

( ) ,
p t

a t t  we can get two partial DE’s, one for ( )R t  

and thus ( ),R t  plus one for ( ),p t and thus ( )
( ) ,

p t
a t t  which we can solve approximately. 

 

( ) 1 ( ) ( )

( ) ( )
OH

V R t a t p t

R R t a t t

 
    

  (8.2.17) 

With appropriate boundary conditions and assuming 0
73 / sec/ Mps,H km Table 8.2.1 shows 

three very approximate solutions of Eq. (8.2.17), with three values of the rate of galaxy 

formation parameter k in Eq. (8.2.13). 

 

Parameter .k  Horizon radius Cosmic age  Deceleration  Redshift Parameter (1)p   

0.005k   
9

39.4 10 .ly   9
11.7 10 .y   0

0.28q    0.33
t

z   ( 1) 0.87p t    

0.009k   
9

52 10 .ly   9
14 10 .y   0

0.69q    0.8
t

z   ( 1) 1.05p t    

0.015k   
9

76 10 .ly   9
18 10 .y   0

1.11q    1.36
t

z   ( 1) 1.34p t    

 

 

 

 

The first solution is in line with a recent deceleration value of 0
0.285 0.021q     [39], and 

the last solution is in line with Caramena and Mara [20], who using 2020 pantheon data 

measured 0
1.08 0.29.q     Our plots below show the 0.009k   solution, with a 

deceleration midway between these values, but future observations will refine these values. 

 

 

 

 
 

 

Horizon velocity 4.88c   

Hubble flow velocity  3.88c   

t

T
  

Horizon radius 3.7
OH

R T   

Table 8.2.1 Three very approximate solutions, assuming 0
73 / sec/ Mps,H km   The parameter 

k is related to the rate of clustering into galaxies.  

Figure 8.2. 2  A plot of the 0.009k   solution with 0
73 / sec/ .H km Mps   
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Redshift   

Figure 8.2.3 A plot of deceleration parameter q versus time on the left, and versus redshift z on the 

right, for the 0.009k  solution. 

 

 

Deceleration  q    

Figure 8.2.4 A plot of the 0.009k   scale factor showing similar behaviour to the 

Lambda-CDM. 

Scale factor ( )a t    
( )

( )
p t

a t t   

t

T
  

t

T
   

t

T
   

Parameter ( )p t    

Figure 8.2.5 The behaviour of the parameter ( )p t  for the 0.009k  solution. 

 

t

T
   

Figure 8.2.6 A plot of ( )X t  as in Equ’s.(8.2.3) & (8.2.13). The massive graviton coupling 

parameter ,
MG

   that increases as the square of the mass ratio of massive gravitons plus 

baryons, is the above curve squared i.e. 2
( ) ,X t  with 2

( 1) 2X t    currently. 

 

( )X t 
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8.2.3 Baryonic density for this solution 

One 
3

/kg m is 
97

1

0.516 10



 Planck units and current observations measure 0.2 to 0.25 atoms 

per cubic metre. Proton mass is 27
1.67 10 ,kg


  27

0.225 1.67 10
Baryonic

 
  

27 3
0.375 10 /kg m


   

27

125

97

0.375 10
7.3 10

0.516 10




  


 Planck units. Now (( 1) 1.37X t    in Figure 8.2.6 and Eq.(8.2.3) 

125 124
( 1) 7.3 10 1.37 10 .

U Baryonic
X t 

 
        

Eq. (5.2.8) 
2 2 2

min
1.725 1.725

U OH
k R 

   so that 
2 2 124

1.725 10 ,
OH

R
 

   

Thus 

124 2

2 10
.

1.725

OH
R



   At 9
56 10 ,ly  

61
4.3 10

OH
R lp   2 123 2

1.83 10 .
OH

R lp    

124 123

2 10 1.83 10
0.106 0.33

1.725


 

       
(8.2.18) 

In Eq.(5.3.16) we put 2
/ 4 1.84

G
V     so that 

2

4 1.84
G

V









0.106 ( 3.88) 1
0.018

4 1.84 56

V



 
  


 

(8.2.19) 

 

 

8.2.4 How long can this energy be borrowed for? 

Because 0.018
G

   is so small, we can ignore the energy required by infinitesimal mass 

gravitons in the matter dominated era. We have thus ignored the energy they need to borrow 

in Eq.(8.2.14) as it is much smaller than the cosmic mass density. If we are borrowing min
k  

quanta they can be borrowed for 1/ 2T E    where min
/ .

OH
E k R     Thus 

/ 2
OH

T R   and with 0.33,   (3 / 2) .
OH

T R   As 3.7 ,
OH

R T  5.6 ,T T   implying 

min
k quanta can be borrowed for much longer than the age of the cosmos. 

 

 

8.2.5 The Higgs boson  

It is not clear whether the Higgs boson is a spin zero superposition as in Table 2.2.1. 

However, if it is, it would be a superposition of two infinite superpositions (one spin up and 

one spin down) with a total angular momentum vector summing to zero, just as two spin ½ 

fermion superpositions can, for example. 
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9 Intergalactic Voids and Filaments of Galaxies 

9.1.1 Positive and Negative Spacetime curvature. 

We can write our infinitesimally modified Einstein equation (8.1.2) as follows: 

 

4 4
(Local

1 8
) (Cosmos)

8

2
.T

G G
G R R

c c
T Tg     

 
       

(9.1.1) 

 

We will define mass concentrations as regions where 0,T
   and regions with mass 

deficiencies as regions where 0.T
   Thus regions where 

Local Cosmos
   have positive space-

time curvature, and regions where Local Cosmos
   have negative space-time curvature.  When 

deriving Eq.(8.2.13), to simplify our integrations, we took advantage of this reduction of 

cosmic densities, in the supply of baryons from the intergalactic voids, so as to very 

approximately compensate for the increase in the parameter p in the scale factor. We assumed 

this happens approximately exponentially, or that the intergalactic void baryonic density is  

 ( ),Exp kt    with Eq.(8.2.5) increasing by this factor, and Eq. (8.2.6) increasing by the 

square, or ( 2 ).Exp kt   For this to very approximately cancel the effect of the increase in 

parameter p implies that 
max min

/ ,k p p  For this to work in our middle solution in Table 

8.2.1, the void supply density is currently approximately 80% of the cosmic average. But 

regardless of the actual value, it has to be less than the cosmic average. We can thus say: 

 

Intergalactic voids with 0 and negative curvature

Galactic filaments with 0 and positive curvature

Local Cosmos

Local Cosmos

T

T





 

 

  

  
 

(9.1.2) 

 

 

In mass concentrations (or galactic filaments) where ,
Local Cosmos

   gravity causes mass to 

appear to attract mass, but in intergalactic voids (mass dilutions) where ,
Local Cosmos

   

gravity causes mass to appear to repel mass.  Mass can act both attractively, or repulsively 

with other mass, depending on whether  or  .
Local Cosmos Local Cosmos

       As space expands, 

the rate of expansion (of any remaining atoms) will be thus greater in voids, as they are 

effectively repelling each other. In complete contrast, the galactic filament mass 

concentrations are gravitationally bound, by mass appearing to attract mass, with what 

Einstein always referred to as a fictitous force. 

The galactic filaments will thus appear to compress relative to the greater rate of expansion of 

the intergalactic voids. This is in line with recent cosmic observations.[40] 
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10 Further Issues not Already Covered. 

10.1.1 Preferred frames 

It might seem that we have been arguing in earlier sections for a preferred frame. But there is 

really no difference in what we are proposing compared to current physics. In comoving 

frames the cosmic microwave background is isotropic. At peculiar velocity 
P

  it is no longer  

isotropic, and the average background temperature increases by ,
P

  exactly the same increase 

as 
min

k  to  
min minP

k k  ; that is if we could measure it, which is most unlikely. We have 

frequently talked in this paper about local observers measuring 
min

k , but only as a thought 

experiment, and the average (over all directions) background temperature can be used to 

measure either 
peculiar

 or 
metric

  at any particular cosmic time, provided we already know its 

value in flat comoving coordinates, which from Eq .(8.2.18) is 
1

min
0.33

OH
k R


  There are no 

other changes in physics in this comoving frame; it is exactly as Einstein originally postulated, 

an important experimentally verified feature of GR.  If we think in terms of four volume, or 

4D 
min

k  action density invariance, whether we are in a non-comoving frame, or in a non-flat 

metric, it makes no difference. 

  

10.1.2 Gravitational waves and 4 volume invariance 

We showed in section 5.4.1 that the 4 volume 
min

k  graviton density at any cosmic time 

min
4

Gk
D  is invariant in all coordinates and in any metric. But the metric can oscillate and not 

change this invariance, with such disturbances travelling at the speed of light. We can imagine 

extra gravitons around a mass concentration and the background gravitons (if there is 

accelerating mass as in binary pairs) generating real transversely polarized 2m   , gravitons. 

We can also show from Eqs.(5.1.9) that most of these gravitons are close to the locally 

measured value of the 
min

k  wavenumber, about 96% are between 
min

k & 5
min

k . Thus, most of 

this radiated energy is near min
k . The frequency of the radiated wave is twice the orbital 

frequency of the binary pair source, typically hundreds of orbits per second. Typical 

wavelengths are in the thousands of kilometres or roughly 
41

10  Planck lengths. As most of the 

energy in the wave is in quanta near 
min

k there is no connection with the frequency of the 

radiated wave as in spin 1 photons and electromagnetism. The wavelength of 
min

k  gravitons is 
63

min
1/ 1.2 3.2 10

OU
k R    Planck lengths, with the ratio between these two wavelengths of 

the order of 
22

10 . This ratio is inverse to the binary pair orbital frequency. It could only 

approach one if the binary orbital period is approximately twice the age of the universe. 

 

10.1.3 Constancy of fundamental charge  

It has always been fundamental that the electromagnetic charge of protons and electrons is 

precisely equal and opposite to get a neutral universe. In section 4.2 we showed that the 

probability of superpositions was (1 ) /sN dk k   where the infinitesimal   is proportional 

to rest mass squared and thus different for various particles. We used this probability to 

determine interaction coupling strengths in section 3.3. This suggests that the probability of 
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virtual photon emission is also proportional to the probability (1 ) /sN dk k   of each 

superposition, and would not be precisely equal for electrons and protons due to small 

variations in   of the order of 
45

10


  between electrons and quarks. If, however, we look 

closely at Eq.(4.2.3) and the following equations, by adding the amplitude for gravity at right 

angles we effectively added the probabilities of spin 2 gravity generated superpositions to 

those of spin 1 colour and electromagnetic superpositions. If, somehow, only those 

superpositions generated by spin 1 electromagnetic and colour interact with spin 1 photons, 

this would cancel any minute difference in charge. If this is not so, then there are infinitesimal 

differences in charge of the order of 
45

10


 which would surely have shown up in some form 

by now, unless there are minute differences in the total number of electrons and protons. 

 

10.1.4 Superpositions, Feynman’s strings and possible resonances 

For over a century there have been models of the electron with the Abraham-Lorenz probably 

the best known [28], [29] but all of them suffered from electromagnetic mass in the field 

being 4/3 times the relativistic mass. Poincare showed that bursting forces due to charge 

balanced by stresses (or forces) in the same rest frame as the particle could cancel the extra 

1/3 figure, and restore covariance [30].  In chapter 29 Volume II of his famous lectures on 

physics, Feynman, probably jokingly, suggested that if the electron is held together by strings, 

their resonances could explain the muon mass [38]. He just may have been right. The 

dominant 6n   mode of the electron family of superpositions is held in orbit by a squared 

vector potential 2 2 2 4 2
16 .Q A k r  The bursting force is a scalar potential of order ,

EM
  a 

small perturbation in comparison. Perhaps we could imagine some sort of cubic equation with 

three solutions for rest mass, and something similar for quarks, but with larger perturbing 

forces.  

 

11   Discussion 

This paper set out to form the fundamental particles from infinite superpositions. There are 

several significant consequences of this proposal, including the hypothesis that the four 

volume density of cosmic wavelength (or 
min

)k  gravitons inside the observable horizon is 

invariant at any cosmic time.  The density of matter, is approximately proportional to the 

inverse horizon area, but also proportional to the inverse of the Hubble flow velocity 
2

( (Total/Baryonic mass) / ( )
U OH

R V  , suggesting that QM controls the expansion of space.  

When mass is distributed evenly as a dust there is a uniform three volume (spatial) density 

throughout a sphere of radius 
OH

R  and space and spacetime is flat everywhere. If any of this 

mass is concentrated in a central location it increases the three volume density of 
min

k  

gravitons around this mass and space has to expand locally in agreement with Einstein’s 

equations, apart from an infinitesimal difference that becomes larger at large cosmic radii.  
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Of course, QM can only control the density and expansion rate of the cosmos in the manner 

described here unless there is something wrong with the Friedmann equations. We have 

argued, however, that our infinitesimally modified Einstein equations, over very large 

homogenous and isotropic regions of space, make all components of these modified tensors 

average zero.  This nullifies their effect in the Friedmann equations. 

Perhaps the most significant consequence of this proposal is that, just like spin 1 photons, spin 

2 gravitons have a massive member as well as one with what we describe as having 

infinitesimal mass. However, in the case of gravitons the massive member has a mass that is 

always approximately proportional to the inverse horizon radius 
1

( )
OH

R


 , and is currently 

about 
29

10 ,eV


 having a Compton wavelength similar to galaxy halos. The spherically 

symmetric wavefunctions of these 29
10 eV

  massive gravitons, with inverse radius squared 

probability, give galaxies their MOND-like properties we observe. In other words. provided 

their Compton wavelength is long enough, they behave just like a form of dark matter that 

decreases in density with radius as 2
.r

   

Our approach suggests a modified GR complying with both quantum mechanics and SR, but 

the domain in which GR is accurate is always retricted to a location in space. It proposes a 

very different method for forming fundamental particles which does not unite the fundamental 

forces at high energy but agrees with the most basic version of the SM apart from 

infinitesimal mass bosons. Like Einstein, as in Figure 3.3.3, it looks at gravity not as a force, 

but purely as a consequence of warped spacetime, or invariant four volume (4D) 
min

k  graviton 

densities with particles following geodesics.  

It is common practice in cosmology to put the scale factor ( ) ,
p

a t t  and the QM approach in 

this paper controls the scale factor in the radiation era at 1/ 2p   with a horizon velocity 

2.V    In the matter dominated era, massive gravitons, with a mass that is always 

approximately inverse to the horizon radius, control the scale factor initially at 2 / 3p   and 

the horizon velocity at 3V   as in current cosmology if 1,   but with no dark energy. We 

proposed an extremely simple mathematical model of this which demonstrates that the 

generation of massive gravitons can accelerate the expansion of space.  As cosmic time 

progresses  is 2 / 3p   and  is 3,V   where the actual time history of this change, tracks this 

massive graviton generation inside galaxy halos. As the mass of massive gravitons is 

approximately inverse to cosmic time, they were very massive in the early eras, which must 

have significantly effected the rate at which supermassive black holes could form. 

As noted in our introduction, Merritt points out that dark energy responsible for accelerating 

expansion in the CDM  is an auxiliary hypothesis, added to the model around 1998. 

However, since that time astronomers have adjusted its properties, as needed, to match 

whatever new observational data relating to the universe’s large scale structure becomes 

available, under the assumptions that Einstein’s theory of gravity is correct. (D. Merritt, 

personal communication with the author’s brother, October 20, 2018). And in this regard, the 

Reiss team claim their latest figures for the Hubble parameter provide “stronger evidence for 

physics beyond the CDM ” (Reiss et al.,2019 p.1) [33]  
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On a final note, the primary interactions involved in forming the fundamental particles are 

simple, allowing simple mathematics. Indeed, we have purposely avoided exotic mathematics 

throughout this paper in the belief that, while powerful and elegant, it can hide the wood for 

the trees so to speak. The theoretical physicist Hossenfelder expresses a similar sentiment in 

the title of her recent book [3]  Lost in Math: How Beauty Leads Physics Astray. If “Mother 

Nature” can be described simply, why not do so?. 

The ideas presented, although radical, at a fundamental level are also very simple. 

Superpositions are a signature component of quantum mechanics and we have merely 

extended them to building the fundamental particles. The proposals form a consistent package 

conforming with both quantum mechanics and SR.  They also suggest new physics that may 

facilitate progress in a field considered by many to be in difficulty, or even in crisis [1-5]. 

 

12  Conclusions 
 

If the fundamental particles are built from infinite superpositions as we propose, they must 

have at least an infinitesimal mass that is approximately inversely proportional to the horizon 

radius multiplied by the the Hubble flow velocity. And this may have some very significant 

consequences: 

 

 Because cosmic wavelength gravitons vastly outnumber all other particles, the 

invariance of the action quanta they borrow from the expanding space inside the 

horizon directly relates with infinitesimally modified Einstein field equations. 

 

 This infinitesimal modification limits the range of GR to much smaller than horizon 

scale and also makes the Einstein equations average zero over isotropic and 

homogeneous regions. 

 

 The Freidman equation components must also average zero over large regions of space 

and space is flat. QM controls the expansion of space regardless of ,  with or without 

inflation. 

 

 Gravity can act both attractively, or repulsively between masses, depending on 

whether the local mass density is greater, or less than, the cosmic average. 

 

 The galactic filaments, (where ),
Local Cosmos

   will appear to compress relative to the 

greater rate of expansion of the intergalactic voids.  

 

 In the matter era, the inverse radius squared probability wavefunctions of massive 

gravitons behave just like dark matter, giving galaxies and galaxy clusters their 

observed MOND-like behaviour. 

 

 Because the mass of massive gravitons is approximately inverse to cosmic time, it was 

very large in early eras and could have sped up supermassive black hole generation. 
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 The holographic principle is seen as a property of quantum gravity, and this paper 

builds on that principle. It includes gravity at horizon scale wavelengths, but not near 

Planck energy as in most papers including gravity with the other forces.  

 

 Space has to be always flat, spacetime is distorted locally, and the domain of accuracy 

of GR is restricted to a location in space. 

 

 Because spin 2 polarization vectors rotate at twice the rate of spin 1 polarization 

vectors,  they cannot transmit momentum or force. Thus, gravity cannot unite with the 

other fundamental forces, which is exactly what Einstein told us over a century ago. It 

is an emergent property of QM, as is accelerating expansion. 

 

 In the matter dominated era, the Higgs field energy density is equal to the cosmic mass 

density. It can be borrowed from the Hubble flow expansion of space for greater than 

the age of the cosmos. 

 

 Entanglement must be somehow linked with all the above, as the maximum 

wavelength of infinite superpositions is horizon scale. 
 

 Just as the SM fundamental particle coupling parameters near the Planck region 

depend on the energy exchanged, all the above is only possible if the massive graviton 

coupling parameter between baryons at the other end of the energy spectrum, depends 

on the mass ratio of baryons plus massive gravitons to baryons squared. 

 

 As baryons cluster into galaxies, they increase the cosmic density of massive 

gravitons. This additional mass density necessitates an increase in the Hubble flow 

velocity eliminating the need for dark energy.. 
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