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Abstract. We formulate the equivalence principle in Newtonian mechanics and General Relativity.
We distinguish seven formulations of the equivalence principle, but not all are equivalent. We
summarize the methods used in General Relativity to calculate the inertial mass. His examination
leads us to consider two total energy-momentum tensors: calculated from gravitational mass and
using inertial mass. The first is the one that appears in the gravitational field equation, and the
second is the one that allows us to determine the system's energy and, therefore, its inertial mass.
We conclude that the theory of General Relativity does not explain the equality of inertial and
gravitational mass, although it is a result derivable from Newtonian mechanics.

1.- Introduction

There needs to be more clarity in the scientific literature about the principle of equivalence,
where we find different and even very different formulations. In this investigation, we define the
equivalence principle in classical mechanics, which must be adapted to extend it to General Relativity.
We formulate seven versions of the equivalence principle, not all equivalent to each other and
expressing different physical realities.

The geodesic equation, the equation of motion of a test particle in a weak gravitational field,
and the Einstein-Infeld-Hoffman equation of motion make it possible to formulate the weak
equivalence principle in General Relativity accurately.

In General Relativity, we define the inertial mass by extending the result found in Special
Relativity, that is to say, equating the mass to the total internal energy calculated at the centre of
mass. In comparison, we find the gravitational mass from Newton's law at a great distance from
the body that creates the field.

We find the energy of a system of interacting particles by the total energy-momentum tensor,
of which we know several formulations, although different, give the same value of the inertial mass
at a great distance from the system as long as we consider a space-time asymptotically flat.

Numerous authors have found that in General Relativity, the inertial mass is equal to the
active gravitational mass; however, we find a defect in these reasonings because there is confusion
with the energy-momentum tensor of matter since they mistakenly identify the energy-momentum
tensor calculated with the gravitational mass with the one calculated with the inertial mass and
therefore in the reasoning above accept from the beginning the equality of the two types of masses.
Therefore these reasonings give an identity and not the equality between inertial and gravitational
mass.

We adapt the gravitational field equation when, as Mach's principle requires, the proportionality
between inertial and gravitational mass depends on time.

Based on assumptions consistent with Newtonian mechanics, we demonstrate that the inertial
mass is proportional to the gravitational mass, resulting in a theoretical rather than experimental
outcome.
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2.- Inertial mass in Newtonian mechanics and Special Relativity

In Newtonian mechanics, inertia is a characteristic of matter that causes a physical object to
resist any alteration in its state of motion, specifically changes in its speed. We determine the
measure of the inertia of an object by its inertial mass, which is the ratio of the force exerted on the
object to the acceleration the object experiences

m; =—. (1

According to Newton's theory, the inertial mass of an object is directly proportional to its amount of
matter (see appendix). This mass remains constant regardless of the object's position or direction
of movement and is a scalar property.

In Special Relativity, the concept of inertial mass remains the same as in Newtonian physics
(Sachs, 1987). It refers to the resistance that a body presents to changing its movement. However,
we cannot calculate it using formula (1) because, in Special Relativity, force does not vary
proportionally with acceleration.

The equation of motion in Special Relativity is

dp d mu m m
:7:d 22 i 2 2
t t\/l—u /e \/l—u /e (l—u /e )
m;, 1is the longitudinal mass; m, is the transverse mass; u is the particle's velocity; and a, and a

are the tangential and normal accelerations. Expanding (2), we find the tensor expression
F,=mag; a,f= (1,2,3),

=m,a, +m,a,, 2

o

m,; is the inertial mass tensor defined by

m S 4 m

ap 3/2
l—uz/c2 (l—uz/cz)/
In Special Relativity, we measure the mass by (2), a formula that coincides with (1) for small
speeds. m is independent of velocity. In (3), we observe that in Special Relativity, there are two
inertias: the equivalent to Newtonian physics, characterized by inertial mass, and relativistic inertia
related to speed, since as speed increases, it is necessary to apply a greater force to achieve the
same acceleration.

In tensor notation the Newtonian inertia is mdJ,, and the relativistic inertia 7, is

Uiy

T (€)
C

m,, =

Vg =M, —MO,5,

(27

in the second-order approximation, we find

2
T ® %mu—25aﬂ + mw,
c c
we verify that relativistic inertia depends on speed and inertial mass; we also check that relativistic
inertia depends on the reference frame.
Another way of representing the relativistic inertia together with the inertial mass is by the

relativistic inertial mass, defined by

m

3.- Active and passive gravitational mass
In Newton's law of gravitational attraction
F=gZle

2
r

two masses appear; one is the gravitational mass m; of the body that creates the force, and the
other is the gravitational mass m, of the body on which the force acts, called active and passive
gravitational mass, respectively. The active and passive gravitational mass are equal by the principle
of action and reaction, which is strictly fulfilled in Newtonian mechanics. Passive gravitational
mass is the mass that intervenes in the weight, which is the technique that helps us measure the
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body's gravitational mass.

We must point out that inertial and gravitational mass represent very different qualities;
however, Newtonian physics considers them the same, causing unnecessary confusion between
the two concepts.

In General Relativity, the idea of passive gravitational mass cannot be applied. Instead of
gravitational forces, movements are the result of changes in the geometry of space-time.

4.- Equivalence principle in Newtonian physics

An experimental result of Newtonian physics is that in free fall towards the Earth's surface,
all bodies acquire the same acceleration, regardless of the characteristics of the test body *, which
is called the universality of free fall ** and we will call the Galileo's equivalence principle. This
name will distinguish it from other formulations of the equivalence principle, which are not always
equivalent to each other (Lehmkuhl, 2021).

According to Newtonian physics, the inertial mass of an object is proportional to its passive
gravitational mass. This proportionality constant is universal and applies to all bodies. Including this
constant of proportionality in the universal gravitational constant G, we get that the inertial and
gravitational mass have the same value.

The experience also shows that the constant of proportionality, which we will call the coefficient
ofinertia &, is independent of time. Although we do not rule out the possibility that the dependence
is with cosmic time & = §(t) , which means

ds (1)
dt

<<, (4)

&is the same for all bodies. (4) tells us that the variability of the coefficient of inertia may be slow
enough that we cannot measure it in terrestrial experiments. In Newtonian mechanics, m, = £(t)m,
is equivalent to assuming that G'depends on time and the inertial mass is the same as the gravitational
mass; we must apply this result with caution to General Relativity

There is another formulation of the equivalence principle that states the movement of a test
body in a gravitational field is solely determined by its initial conditions, such as its velocity and
position. This movement is not affected by the characteristics of the body, including its inertial or
gravitational mass. This particular formulation, what we call the general equivalence principle is
more general than the constancy of free fall acceleration. It is applicable not only in Newtonian
physics but also in General Relativity.

The equivalence principle in Newtonian physics is based on empirical evidence. However, if
we make several assumptions that are logical in Newtonian mechanics, we can theoretically deduce
the proportionality of the inertial and gravitational masses, which becomes a theoretical and not an
experimental result (see appendix).

If we assume that the gravitational force acting on the part of an object is not affected by
force on another part of the same object, that is to say, that the force that acts on a system is the
sum of the forces that act on its parts; if we also define that the total gravitational and inertial mass
of'abody is the sum of the masses of the parts that constitute it and finally if gravity and inertia are
independent of the chemical composition and physical properties of the body, then we can use

* We understand that a test particle has a small enough mass that its gravity does not affect the pre-existing
gravity created by other bodies. As a result, it has minimal self-gravity and no intrinsic angular momentum or
spin.
** The acceleration of a test body in free fall in terrestrial gravity is not constant but depends on the distance
to the centre of the planet, according to

P
However, if the particle travels only a short distance that is much less than 7, we can observe the same
experimental results that were discovered by Stevin in the 16th century and later confirmed by Galileo and
Newton in the 17th century. In General Relativity, the acceleration of free fall is dependent on the velocity of
the body, and therefore, it changes as the body moves (see below).
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Newtonian mechanics to conclude that the inertial and gravitational mass are proportional to the
amount of matter in the object; this satisfies the requirements of the equivalence principle (see
appendix).

Since the two types of masses are proportional to the amount of matter, we can use the same
unit for both masses. However, the unit kilogram in the International System defines the unit of
inertial mass (Mana and Schlamminger, 2022); however, the old definition of the kilogram used
from 1889 to 2019, gave the unit of gravitational mass.

5.- Equivalence Principle in General Relativity

According to Newtonian physics, the equivalence principle states that an observer in a freely
falling reference frame will not detect locally any gravitational effect on the motion of a test
particle *. This means that the motion of a free particle is inertial, what we will call Einstein's
equivalence principle in the first version and is valid in both Newtonian mechanics and General
Relativity.

Einstein's equivalence principle in the second version states that an accelerated reference
frame is locally equivalent to a gravitational field.

The equivalence principle, both in the first and second versions, had a great heuristic value in
the formation of General Relativity because the local equivalence of an accelerated frame and a
gravitational field helped Einstein to glimpse some gravitational phenomena, such as the bending of
aray of light when it passes through the proximity of a body with strong gravity or the redshift of
spectral lines depending on the position of the source in the gravitational field.

On the other hand, the equivalence principle suggested formulating gravity as a geometric
theory; specifically, since in a free-falling reference frame, the movement of a test particle is
inertial, the trajectory followed by the particle must be a generalization of the equation of motion in
Special Relativity, that is, the trajectory is a geodesic. Conversely, if the equation of motion of a free
test particle is a geodesic, then a freely falling reference frame is a locally inertial frame (see
below). Although the issue is controversial, we believe the equivalence principle is not a foundation
of General Relativity, as Einstein once expressed **. We can derive the gravitational field equation
without considering the equivalence principle, as was done in the original works of Einstein and
Hilbert (Einstein, 1952), (Hilbert, 1915).

However, Einstein's equivalence principle in the second version allows to deduce the «comma-
goes-to-semicolon rulex» that generalizes results of Special Relativity, substituting partial derivatives
for total derivatives.

In General Relativity, three versions of the equivalence principle are distinguished: weak,
medium-strong and very strong (Ciufolini and Wheeler, 1995, p. 90). The weak equivalence
principle is the above; it refers exclusively to the movement of a test particle (it corresponds to
Galileo's equivalence principle and Einstein's equivalence principle in its two versions). The medium-
strong equivalence principle states that all physical laws (except gravitational ones) are locally
equal to those of Special Relativity in a freely falling reference frame. Finally, the very strong
equivalence principle states that in a freely falling frame, all physical laws, including gravitational
ones, are locally identical to those of Special Relativity.

The difference between the medium-strong and the strong principle is evident in the Nordtvedt
effect, according to which the gravitational self-energy of a system (that is, the potential energy of
the interaction with its own gravitational field) would contribute differently to the mass inertial and
gravitational, therefore breaking the equality between the two and breaching the principle of strong
equivalence. However, the measurements carried out have yet to show any evidence of the
Nordtvedt effect, which means that it does not exist or is extremely small.

* The motion of the free particle is also independent of the velocity of the freely falling frame and its location
in space and time.

** Einstein's identification of the equivalence principle and the covariance principle with the general principle
of Relativity can be a confusing issue. We believe there are three distinct concepts involved (Segura, 2014, p.
47-152).

4
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6.- Geodesics and the equivalence principle

Einstein's equivalence principle suggests that gravitation is an effect of the geometry of
space-time; that is, there is no gravitational force on the test body, but rather its movement is
caused by space-time geometry; therefore, we must consider that a particle moving in a gravitational
field is a free particle (that is, not subjected to forces).

For the above reason, we extend to General Relativity the law of motion of Special Relativity,
that is to say, that the movement of a free particle in a gravitational field is the extremal of the
action

I=—mcj.ds=—mcj.§dt = L=—mc—t=—mc — %)

ds is the space-time line element, L the Lagrangian of the free particle and 7 the particle's proper
time. Applying the Euler-Lagrange equation to (5), we obtain the trajectory of the particle, which is
the equation of the geodesic line
2k

dx  p&d ©)

dr dr dr
since we assume that the geometry is riemannian, the affine connection coincides with the Crhistoffel
symbols Ff;. which have symmetric components and depend on the metric tensor and its first
derivatives.

We find a situation similar to electromagnetic theory, which is constituted by Maxwell's
equations and the Lorentz equation of motion. In gravitational theory, we have Einstein's field
equations and the geodesic equation (6). However, as we will see later, by the non-linear nature of
Einstein's equation, we can deduce from them the particle's motion equation without the need to
impose the geodesic equation.

In the geodesic equation, only the active gravitational mass that produces the field appears,
on which the metric tensor and the Christoffel symbols depend; however, the inertial and gravitational
masses of the test body do not appear. That is to say, that equation (6) is compatible with the
equivalence principle in the sense that the movement of a test body in a gravitational field only
depends on its initial conditions. Note that from (6), we cannot affirm that the acceleration of the
test particle is constant in its free movement in a gravitational field, since the coordinate acceleration
dv/dt depends on the position and the speed.

In the second-order approximation with respect to the inverse of ¢, the equation of motion
(6) in a weak field is (Segura, 2023a) and (Segura, 2013, p. 48-51)

dv 0A 2 v o v
dt__v¢ 4E+4VA(V/\A) [c¢ czj+3cz ;+4c (V V)¢ 2V¢, (7)
¢ is the Newtonian potential, A is the gravitomagnetic potential, and  is the inductive scalar
potential (i.e., dependent on the velocity of the source) *. For the simplified case where we can
neglect inductive effects and time dependence (7)is

—=x-Vg-V—-
dt
if we assume that the mass M creating the ﬁeld is much greater than the gravitational mass of the
test particle whose motion we are considering **, the equation of motion becomes
v GM 4G2M2+4GMV(VT) GM v ®
P a r o et
the same formula that we derived from the Einstein-Infeld-Hoffman equation (see below). From
(8), we verify that the acceleration of free fall depends not only on the position (as in Newtonian
mechanics) but also on the velocity of the test particle. The first summand of (8) is the Newtonian
term, and the rest are relativistic terms.

* (7) is a function of coordinate position and coordinate time; it is not a function of proper distance and
proper time, which are measurable magnitudes (Segura, 2023).
** This condition means that we can neglect the motion of M .
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Drawing 1.- K is a fixed reference frame in a gravitational field. K" is the freely falling frame, which occupies
a position at ¢, and another place an infinitesimal moment later. P is the point around which we define the
freely falling frame. Point R is infinitely close to P. In the drawing, we represent the coordinates of the points
P and R. We also indicate the criterion of signs, upwards positive and downwards negative. Since the frame
K' is accelerating downward, its acceleration is negative.

So, in General Relativity, the principle of weak equivalence must be formulated by saying
that the movement of a test particle in a gravitational field only depends on its initial conditions and
is independent of the characteristics of the body.

When considering equation of motion (6), it's important to note that Christoffel symbols may
appear for three reasons. Firstly, if curvilinear coordinates are used instead of Cartesian ones.
Secondly, if the movement is referred to a non-inertial reference frame. And finally, if there is a
gravitational field present.

7.-  Local inertial frame
Suppose a reference frame K concerning which a body of great gravitational mass M is at
rest. Let K’ be the reference frame freely falling, that is to say, that its movement is the same as
that of a body in free fall; the three-dimensional acceleration of K’ with respect to K is by (6)
2 _«a i J
dx oo & )
dt Tdt dt
we assume that the coordinates are Cartesian, that is, in the absence of gravity the Christoffel
symbols are null. In drawing 1, the fixed point P relative to K is the place in whose infinitesimal
environment we define the frame freely falling K" at the instant #,. R is a point that occupies the
position x“ relative to the frame K and the position x'* relative to K' atthe moment 7 =¢, + At .
From drawing 1, we find that the relationship between the coordinates of R relative to K and K" are

i (o =) 30, (0 ), S

a a 1 a i i j j
=(x - X; )+E(Fij )O (x —xo)(x’ - X ),
we have expressed the differentials that appear in (9) by finite differences; the subscript 0 means

we measure the values at time #,. Generalizing the previous expression to four dimensions so that
the transformation also includes time

¥ = (3t a5, (¢ ) () (0

(10) is the transformation of coordinates to a freely falling reference frame; we find (Fg )0 from
the Lorentz transformation between the reference frames K and K', finding that the non-zero
components are (Fga) and (rgo) . Now we verify that K’ is a locally inertial reference frame.
As shown in (Segura, 2015, p. 1541 6), the metric tensor does not change with the transformation
(10), but its derivative is zero in K'at point P and at time ¢, . The Christoffel symbols are zero in K’
in the neighbourhood of point P.

Then the equation of the geodesic (6) or equation of motion of a test particle that moves




INERTIAL MASS AND EQUIVALENCE PRINCIPLE IN GENERAL RELATIVITY

freely in Cartesian coordinates in a freely falling reference frame is
d2 xmz B
ar’
this tells us that the free particle's motion is inertial and therefore has a uniform and rectilinear
motion. Cartesian speed is constant if the move is restricted to a zone infinitesimally close to P.
Consequently, we conclude that the freely falling frame is a locally inertial reference frame, as long
as we accept the universality of free fall.

The vanishing of I f; in the infinitesimal neighbourhood of a point is not caused by the vanishing
of the gravitational field, as shown by the fact that the curvature tensor does not vanish in K". The
Christoffel symbols are cancelled by the combined action of a non-inertial reference frame (the
freely falling frame) and the Christoffel symbols associated with the gravitational field. The above
shows that from the geodesic equation, we deduce the Einstein equivalence principle in the first
version. As demonstrated in (Segura, 2014, p. 15-16), if the affine connection (which coincides
with the Christoffel symbols in Riemann geometry) is symmetric at each point in space, we can
define a locally inertial frame, which is a geometric property and not a physical property.

8.- Energy-momentum tensor in General Relativity

Test bodies moving freely in a gravitational field do not have the property of inertia. That is
to say; they do not oppose resistance to the change its speed because the speed changes by
following a geodesic movement.

If we define the tetra acceleration of a particle by

P Du* B du* T dx' dx’
dr dr Vdr dr

D is the covariant derivative, 7 is the proper time of the particle and u" is the tetra velocity; so
when the particle is free in a gravitational field, its tetra acceleration is zero, which is the extension
of the law of inertia to General Relativity. From here, we express the property of inertia in a
gravitational field by saying that a free test body is opposed to having the non-zero tetra acceleration.
Generalizing the equation of motion in Special Relativity, we arrive at
Du*

dr

F* is the tetra force of non-gravitational origin that acts on the particle of inertial mass m, .

In General Relativity, we define the energy-momentum tensor complex ©, which brings
together the energy-momentum tensor of «matter» 7 (that is, matter and other fields different
from the gravitational one) and the energy-momentum tensor of the gravitational field ¢/ produced
by the particle system. Although there are various options for doing this decomposition, from all of
them we derive a differential conservation equation

3
8@11. _o,
ox
(Tolman, 1930), (Landau and Lifshitz, 1971, p, 304-311), (Meller, 1955, p. 333-345), (Moller, 1958)

and (Weinberg, 1972, p. 165-171); in some formulations, the total energy-momentum tensor appears
with the two contravariant indices

koo ko, k. ik ik | ik ).
Oz —\/E(TZ +ti(T))’ O11) —g(T +t(LL))’
ik ik, ik . ko ko Lk k

O, =T+ O, =g (T" +,, +5})
S* is a function with zero divergence, and its volume integral over the entire system is also zero. In
all prescriptions, we can put ®F (o ®") as the divergence of a superpotential 4 (or 4™ ) that is
a function of the metric tensor and its derivatives

o — on®
i st i

the character of the indices of the superpotential can vary according to the chosen formulation.

a

k
F'=m

(1)
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We find the energy of the 0,0 component of the total energy-momentum tensor. Since
superpotentials are antisymmetric, we derive by Gauss's integral theorem the total energy of the
system

onY*

dxdydz = j heds, (12)

z

S

E= l®gdxdydz = .

Vv
expression that is similar to Gauss's theorem of electrostatics; x, y, z represent orthogonal coordinates,
Vis the three-dimensional volume occupied by the system, ¥ is the closed surface that encompasses
V,and dS, is defined by

1

8 |
— By _
dSa —Egaﬁyds 7 —Egaﬂy

(da’db’ —da’ db” ) = €, da” db’

moreover, the surface element is dS, = \/;dg‘a; &,5, are the Levi-Civita symbols, da” and db”

are the components of the vectors that limit the surface element, and y is the determinant of the
three-dimensional spatial metric tensor (Segura, 2015, p. 66-67). We note that the integration of
(12) is not over the spatial volume 4V but for the product of the differentials of the coordinates
dQ = dxdydz , from which we deduce the three-dimensional volume element dV = ydQ). We make
this choice to apply Gauss's integral theorem and be able to deduce the integral theorem of
conservation of energy; if we do the integral (12) for the three-dimensional volume, we will not find
a law of conservation of energy and momentum.

Although there are several ways to define the total energy-momentum tensor, in all cases,
we obtain the same total energy of a closed system as long as we use an asymptotically flat space-
time (Florides, 2009). However, the energy calculation for limited portions of a system differs
depending on the chosen prescription (Radinschi et al., 2020).

(Ohanian, 2010) observed a significant difference between Gauss's theorem of electrostatics
and (12); while for the first, the result of the surface integral is the electric charge, for (12), it is the
inertial mass ( £ / ¢ ) and not the gravitational mass as would be required by the similarity between
both theorems; in section 12, we delve into this difference.

We can relate the various formalisms of the energy-momentum tensor complex. Starting
from the Landau-Lifshitz (LL) energy-momentum tensor, we derive new energy-moment pseudo-
tensors of the gravitational field through the following two procedures (Chandrasekhar, 1969)

ik ik - %2 0 v/2 '\ 1,ik
=)t g(g )h(LL)
-2 5 (13)
Tf = g,-,-t(llzL) +tg ? @(g‘//zgji )h(l/zlL)
t(dz 1) and h(”zlL) is the pseudo-energy-momentum tensor of the gravitational field and the superpotential
in the Landau-Lifshitz formalism, v is an arbitrary integer; 7 and T‘f are the new pseudo-energy-
momentum tensors of the gravitational field. From the first formula (13), we find complexes of the
form
v+2
@ik ng (Tik +Z_ik)’
from the second formula (19) we find
v+2
o =g F (1 +et),
For the two groups of complexes, we find a differential conservation law. Equations (13) coincide
with those (11) except for an indeterminate quantity ¥;*, whose divergence and volume integral are
zero, at least for asymptotically flat coordinates. For example, for Tolman's formalism,
whose expression we deduce from the second equation (13) by setting v = —1, we find the total
energy-momentum tensor @, ,, = Je (T[k +f +VE ) :

We note that we cannot raise or lower the total energy-momentum tensor indices by multiplying
it by the metric tensor. By doing this operation, we find new magnitudes that are no longer energy-
momentum tensors since we do not obtain a conservation law from them. That is to say, ®" and
g jl@jk are different magnitudes.

8
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Only the Landau-Lifshitz pseudo energy-momentum tensor t(”z 1) is symmetric. The tensors
derived from the first equation (13) are not.

We obtain the energy-momentum tensor of the gravitational field by utilizing the superpotential
and field equation. For example, for the Landau-Lifshitz formalism, second equation (11), we find

o Lon™ 1 . 1,

ty=——7+—| R" —-g"R |,
gox gy 2

we decompose the Einstein tensor into terms that only contain the first derivatives of the metric

tensor and other terms that only contain the second derivatives, that is

ikl

t(”ZL) zla_l_l_l(R[k _lgszj +l(Rik _lgikRj ,
g 2 4 2 2

by definition, the superpotential corresponds to the terms that only contain the second derivatives of

the metric tensor, then we find

(Rik—lgikRj 2_1% — gt =i(Rik—lgikRj

2 , g o' (t1) 4 2 .

and from here, we derive the components of the energy-momentum tensor of the gravitational
field, which we can put in terms of the derivatives of the metric tensor or in terms of the Christoffel
symbols (Landau and Lifshitz, 1971, p. 306). For a weak gravitational field the 0,0 component is

7 2

00

Uiy =~ 872G (V¢)

(Chandrasekhar, 1969). We can apply the previous reasoning to any other formalism, from which
we would obtain some of the expressions (13).

9.- Inmertial and Gravitational Mass in General Relativity

In Special Relativity we show that the inertial mass of interacting particles is the system's
total energy measured at its centre of mass (where the total linear momentum is zero) divided by
the speed of light squared. Generalizing this result to General Relativity, we find the inertial mass as
a function of the 0,0 component of the total energy-momentum tensor

1
m, =— [ ©dxdydz.
c
According to the formalism used, the energy density is ®) or ®” . Computing (12) for a closed
system in asymptotically flat spacetime, for which the metric at a great distance from the source
where we make the surface integral of (12) is
ds* = [1 - 2GMJc2dt2 —(1 + 2GMj(dx2 +dy’ +d2° ),

Czl" Czi"

M is the gravitational mass of the system, we find
m, =M

then the inertial mass of the system is identical to its active gravitational mass, which is not the
same as Galileo's equivalence principle, which states that the inertial mass is equal to the passive
gravitational mass; as we said this magnitude does not appear in General Relativity (Vollick, 2021).
We find the previous result with any formulations of the total energy-momentum tensor.

In the Tolman-Einstein formulation, the energy-momentum tensor of the gravitational field is
the canonical one, that is, the one found through the Lagrangian field theory (Segura, 2014, p. 62-
67). When the field is static, we find

E = J‘(\/EY})O + \/gtg)dxdydz = J‘\/g(TOO -T'-T; —T;)dxdydz =

= [New\7 (T -1 =T} -1 ) dvdydz = [ 2, (T - T - T - T3 )av

y is the determinant of the three-dimensional metric tensor, and &V is the three-dimensional volume
element. Interestingly, in (14), the components of the gravitational energy-momentum tensor do not
appear explicitly but exclusively the components of the matter energy-momentum tensor.

For a perfect fluid

(14)
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i U
Tk=[po+p/02+ .

juiuk _gikp (15)

P, in the volume density of matter at rest, p is the pressure, U is the internal energy per unit mass,
p,U is the internal energy per unit volume as it is considered in thermodynamics and is measured
in the proper frame, and u* is the tetra velocity of an elementary portion of the fluid.

Calculating the tetra velocity, we obtain by (15) the components of the energy-momentum
tensor of matter in the desired order in the centre of mass frame

2
20 U _
T =p,c| 1+ -2+ = |1 0(c?
Po ¢ ( )
2
vi 20 U 1 p 3
T = pyc| 1+———2+—+—-"—[+0(c 16
po( PR CZ,OOJ ( ) (16)
2
L ap| Y2, p U 1 4

T = pvv" + pb,5+ pev*y (0—2 = + 2 + = + = 2pgé,, +O(c )
v is the three-dimensional velocity of a volume element in the centre of mass frame, and ¢ is the
gravitational self-potential; the previous components allow us to determine the inertial mass of the
system in the approximation second-order of the inverse of c¢. Substituting (16) into (14)

2 2
m; Z%J‘(I”L%J{Pocz(1+v—2+%]+p0v2 +3p}dV=J.{p0 [1+2L2+£2+£2J+3£2}1V,
c c c ¢ c c

C

then the inertial mass density per unit three-dimensional volume is

2 U ¢ p
p=p| 1+—+=+5|+3,

0 [ CZ C2 CZ c2
for cosmological calculations, we assume that the velocity relative to the centre of mass is small
relative to ¢, the potential energy and internal energy are also negligible, then the inertial mass

density is

pzpo+3c£2~

According to the virial theorem, the pressure from the continuous medium is comparable to its
potential self-energy. However, we cannot ignore the pressure since we assume that, in addition to
matter, electromagnetic radiation also contributes to the gravitational field. We know this to be true
from the presence of microwave background radiation and dark energy.

From the above, we conclude that all forms of internal energy contribute to the inertial mass
of a system, including the energy of the gravitational field and potential energy. As we have assumed
the equality between inertial and gravitational mass, we admit that all forms of energy also contribute
to the gravitational mass; this leads us to conclude that in General Relativity the principle of strong
equivalence is applicable.

The active gravitational mass m, is defined in General Relativity by the asymptotic value or
Newtonian limit of the metric tensor
2Gm,

ccr
which determines the orbital motions at large distances if the velocities are small.

Contrary to other authors, we understand that the General Relativity does not explain the
identity between inertial and gravitational mass. Note that (12) is the system's energy as long as the
energy-momentum tensor is a function of the inertial mass since the energy is equivalent to the
inertial mass. The tensor 7, thatappears in Einstein's field equations is function of the gravitational
masses that create the field, and we can only find the energy from 7, if we previously assumed
the inertial and gravitational masses to be identical.

This matter becomes essential when we assume (as we will do later) that the proportionality
between inertial and gravitational mass varies with cosmic time.

8o =1-
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10.- Einstein—Infeld-Hoffmann theory

In a celebrated article written in 1938, Einstein, Infeld and Hoffmann presented a long and
cumbersome investigation through which they found, from the gravitational field equation, the equation
of motion of a system of particles, understood as singularities. The method assumes small velocities
and weak fields. It uses approximations to obtain the motion equation in first approximation
(Newtonian) and second approximation.

The developed method demonstrated that we can deduce the equation of motion from a
nonlinear field theory, such as General Relativity. Therefore, the motion equation is unnecessary to
impose as a complementary law as in electromagnetic theory or as we have done before with the
geodesic equation.

The method is based on applying the gravitational field equation in the outer case

1
Rik =0 = Rik —EﬂikﬂquM =0 (17)

77, 1s the metric Minkowski tensor. We decompose the previous equation in two terms

D, +2A; = 2(Rik _%UiknquP‘Ij

in A, there are all the nonlinear terms of the metric tensor and some linear terms, and @, only
has linear terms (although not all of them) and has a particular property that we will now see.

We assume that the system is composed of N-point particles. We choose the particle s and
a closed surface X that encompasses only the particle s and that no other particles are found on the
same surface, then inside X (17) is fulfilled. For the choice of A, it is found that

IAiadSa :0 (18)
2

and it is also independent of the chosen surface X.

If the integral (18) does not depend on the shape of the surface, it cannot depend on the field
potentials because these depend on the coordinates of the surface, which, as we have said, is
arbitrary; therefore, (18) can only depend on the coordinates of the singularity s and its time
derivatives. Or put another way, (18) is the equation of motion of the particle s.

Developing (18), we find the equation of motion of each of the N point particles that make up
the system in the approximation of small velocities and weak field. If we assume that the system is
made up of two particles of active gravitational masses, m, and m, , the Einstein-Infeld-Hoffmann
equation is

2 2.2 2
alzGr?2 +i2 5@ m;mZ 48 ’3%2 +G’?2 i(r Vz] vl +4(v,v,)-2v; L
r r ro |20 r r (19)

sl e o

r =1, —r, ; for another method of obtaining (19) see (Papapetrou, 1951). In (19), we verify that the
acceleration of particle 1 depends not only on its speed but also on its active gravitational mass, as
seen in the second summand. Then (19) does not comply with the general equivalence principle
unless we assume that particle 1 is a test particle, then its mass is small enough not to alter the
gravitational field produced by particle 2; that is to say that in (19) we can neglect the second
summand.

The second summand of (19) arises as a consequence of the self-force, that is to say, of the
force that particle 1 exerts on particle 2, producing acceleration that in turn influences particle 1

G’mm Gm, Gm Gm
5 r31 =5 r2 rzl =5 rzaz.

In the equations of motion of order greater than the second, we again find that the movement
of a point particle depends on its mass as a consequence of the self-force. We eliminate these
terms assuming m, is small enough (Blanchet, 2001).

Assuming that particle 1 is a test mass, we cancel the terms containing m, and the velocity
of particle 2; then, from (19), we calculate equation (8) that we found from the geodesic equation.

11
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Then from the gravitational field equation, we deduce the general equivalence principle: the
motion of a test particle in a gravitational field only depends on its initial conditions and not on its
mass.

11.- Other definitions of mass
Various proposals exist to define the inertial mass of a system of particles that interact
gravitationally. Here, we present some of these proposals without evaluating their validity.
1.- We have previously defined the inertial mass by generalizing the relationship between mass and
energy of Special Relativity, so the inertial mass is
E
m,=—-
cZ

1

E is the total energy at the center of mass of the isolated system *. Inertial mass can also be
defined by the differential equation of mass conservation (applicable in isentropic processes)

D, (pouk)zﬁak (\/gpouk) = 0, (\/gpouk) =0

P, 1s the volume density of mass at rest, and u" is the tetra velocity of a portion of the volume
occupied by matter. Applying Gauss's integral theorem and integrating over a surface that
encompasses the entire system, we find the conserved magnitude

M= 1j\/§ oo’ dxdydz. (20)
¢ 14

Expanding (20)

o

v~ [Leav=[par,, @

1 1
M =_J“/gp0u0dxdydz z—j ooPo s
¢l c 2 % v
1+ i 1_7
¢ c ¢

dV = \/;dxdydz is the volume occupied by a portion of proper density p, measured from the
frame with respect to which the portion of volume moves with speed v; dV is the element of
proper volume, the one measured by the observer who moves with the matter. By (21), we verify
that M is the inertial rest mass, where we do not consider the various types of energy associated
with matter, such as gravitational potential energy, thermodynamic internal energy, kinetic energy
or elastic energy.

2.- The so-called ADM mass is frequently used in the literature (Arnowitt, Dreser and Misner,

2004)
L [02_’% i @h_ﬂJ s
2y ox“* ox? |
8.5 =—1+h,,; we deduce this expression from the Weinberg and Tolman-Einstein formulations,
so they do not add anything new to the calculation of the inertial mass.
3.- If we consider a spherically symmetric, asymptotically flat and static spacetime, we find from
the field equation that the 77 component of the metric tensor in spherical coordinates is

2
cr

S

i

where

I

m(r) = 47r.[p(r')r'2dr’
from where we define the p -mass ’

m, = 4ﬂjp(r)r2dr

0

* The energy E includes all forms of internal energy. We calculate this energy when the system is isolated;
that is to say, the system's kinetic energy as a whole does not contribute to the energy E (because we do the
calculations in the centre of mass), and the potential energy of external fields does not contribute.

12



INERTIAL MASS AND EQUIVALENCE PRINCIPLE IN GENERAL RELATIVITY

which coincides with the gravitational mass of the system.
4.- (Bonnor, 1992) provides another definition of the inertial mass of an perfect fluid. Starting from
the conservation of the energy-momentum tensor of matter

D,T" =D, [(po +p/02)ui”k _gikp] =

(22)
=D, [(po + p/cz)u" ]u’ +(,00 +p/c? )ukau’ -g"0,p=0
multiplying (22) by u,
D[ (py+ p/e*)ut |e* =u*o,p, (23)
we have considered
uu =c*; uu*Du' =0,
substituting (23) into (22)
. ) uiuk
(py+p/c)a =[gk—c—2 d.p, (24)
we define the tetra acceleration by
k i i
u*Du' =diDuk _Dw a.
dr dx dr

From equation (24), we derive the Newtonian equation of motion when we neglect the second-
order terms in the inverse of c. Bonnor established a parallelism between (24) and the second law
of dynamics applied to a fluid and deduced that the volume density of the inertial mass is

p=p+p/c,
therefore the inertial mass of a volume of the perfect fluid is
m =[(p,+p/c’)av, (25)

P, 1s the density of the rest mass of an elementary portion of the perfect fluid, where we include
the thermodynamic internal energy. (25) is quite different from other expressions. Also, it does not
have the potential energy nor the kinetic energy associated with each of the elementary portions of
the system.

5.- (Rosen and Cooperstock, 1992) modify Bonnor's previous result, arguing that it does not include
the energy of the gravitational field, which, although not necessary for small bodies, is significant
for bodies of astronomical size. For a perfect fluid, Rosen and Cooperstock find

m, :I\/E(po +3p/c2)dxdydz =_f 8o (,00 +3p/c2)dV
expression differs from (25) because of the coefficient 3 and because it contains the gravitational
self-energy, coinciding with the formula we found in Tolman's theory.
6.- (Denisov, Logunov and Chugreev, 1986) determine the inertial mass of a particle from its
energies: particle's proper energy, kinetic energy, internal energy and potential energy.

1 U 1V 14

m =— l+—=+—— dv
' czfpo[ & 2c 2c]

and for an extensive body, add the gravitational potential energy of the external field; the energies

are calculated in the centre of mass frame.
7.- By including kinetic, potential, and internal energy to the conserved mass (21), we can derive

inertial mass
2 2
m, =M+Jp0(lv—+l£+£)dV fp (1+v—+l£+£)dV_
2¢ c

268 ¢

¢ 1¢ U 3¢ v2 5 ¢ 1%
—Ip0(1+ ——2 \/76119 I +—c—+? dQ= I 202 c dQ
which is the same result obtained by Chandrasekhar using the weak ﬁeld approximation

(Chandrasekhar, 1965), (Chandrasekhar, 1969).
Let's consider a system of particles subject to their mutual gravitational attraction, which
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results in pressure. If the system is homogeneous, meaning its density remains constant throughout,
then if p is the pressure of the matter

1
- | P gdV =3 [ pav
(Papapetrou, 1951, appendix II). By the virial theorem, we find a relationship between the average
values of the total kinetic and potential energy of the particle system

2(E,)=—(E,)
both expressions allow us to simplify the energy formulas found previously.
Another issue to consider in the energy formulas above is that the expression

J5pddv

is the total potential self-energy of the particle system; however

1
Epo¢dV

is the potential energy of the mass p, dV only if the density does not depend on position.

12.- Criticism of the proof of equality of the inertial and gravitational mass

The gravitational mass of a body is an entirely different concept from its inertial mass;
however, in Newtonian mechanics, they share the property that their magnitudes are proportional
to the amount of matter in the body; this allows using the same unit of measurement for both
masses and also affirming that their magnitudes are proportional.

The proportionality coefficient between both magnitudes, or inertia coefficient, is a universal
constant and seems not to depend on time. However, we cannot rule out that the inertia coefficient
depends weakly on time, so it can vary in periods of cosmic time, as follows from Mach's principle.

Therefore, we formulate two problems: why phenomena as disparate as inertia and gravitation
have proportional magnitudes and verify if the coefficient of inertia depends on time.

There is agreement that General Relativity shows that the inertial mass is equal to the
gravitational mass and not only proportional as required by the Gallielian equivalence principle; that
both types of masses are the same means that in General Relativity G is not indeterminate, which
does not occur in Newtonian mechanics.

In the gravitational field equation

1

Ry — Eg,-kR =—xT; (26)

the energy-momentum tensor of matter 7, encompasses the sources of gravity. But the source of
the gravitational field is the gravitational mass, not the inertial mass, so in (26) 7,, is calculated with
the gravitational mass.

Energy is related to inertial mass, so if we want to calculate the energy of a system from the
total energy-momentum tensor, we have to use the energy-momentum tensor of matter calculated
from the inertial mass

Therefore, we must distinguish two energy-momentum tensors of matter, the one formed
with the gravitational mass 7}, and the one that uses the inertial mass Ty the first appears in
the field equation (26), and we use the second to find the energy of the system.

Accepting these premises, the deductions that identify inertial and gravitational mass in General
Relativity are not such, since they are reduced to an identity, because to determine the total energy
these demonstrations use the gravitational energy-momentum tensor.

13.- Mach's principle

Mach's principle states that the inertia of a body results from the gravitational action of the
Universe as a whole. That is, inertia (and therefore inertial mass) is an acquired property, and due
to the Universe's dynamic nature it must change over time *. Since we assume that gravitational

* Even for a static Universe the coefficient of inertia could vary.
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mass is an innate characteristic of the body, from Mach's principle we arrive at the relation

m, =§(t)mg 27)
& (t) is the coefficient of inertia, which must vary very little with time, and we will only be able to
notice its temporal dependence for cosmic intervals of time.
We find the energy with the energy-momentum tensor of matter deduced in Special Relativity
and that we extend to General Relativity, that is, the tensor that we have previously called T, .
Generalizing (27) we have the relation
1
T:’k(g) = %T;‘k([) > (28)
which is the energy-momentum tensor that has to appear in (26).
We derive the energy-momentum tensor of the gravitational field from (26), therefore using

T then the total energy-momentum tensor is
L g)
1 ks
Gf( )= ®f(,-) _ % > (29)
97 E@) 0 o

applying Tolman's formula (14) we find

1 sl
m, = c—z.[@g(l_)dxdydz = gj‘\/goo (To(()g - Tlég) N T22(g) B Tig) )dV

therefore the inertial mass of the system is & (t) times that found with ﬂk(g)

Atpresent & (t) =1 by definition, a value that does not hold in the past or the future. Therefore,
according to Mach's principle, the inertial and gravitational mass will always be proportional; however,
the proportionality coefficient will vary with cosmic time. The development of Mach's principle will
have to explain why inertial and gravitational mass are proportional and will have to determine the
time dependence of the coefficient of inertia.

In Newtonian mechanics the variation of the inertial mass with time is equivalent to assuming
that the inertial and gravitational mass are always identical, but that the gravitational constant

varies with time (De Sabbata, 1980) *. Indeed, from Newton's laws we find
m.m m! m!

e g = oa=-2 " _G()E = G(r)=—2,
r E(r) r r £(1)
G, is the usual value of the universal gravitational constant. To extend the previous result to
General Relativity, (28) should be similar to doing the transformation

G,

Loy = Tag > Go = G(1)&(1),
then the gravitational field equation is
1 87G 87G(t
Rik_EgikRz_c4§(;)];k =" c4( )Tzk Z_Z(Z)Y;k (30)

T, is indistinctly T, or T, .

If we accept that G varies with time, the equation of motion of a free particle would be the
geodesic line derived from the action (5), as in General Relativity. However, if we assume that the
inertial mass varies with time, then the action of a free particle would be by (5)

I=—cjm(t)ds (31)

obtaining an equation of motion different from the geodesic, and that depends on the inertial mass,
which would violate the principle of weak equivalence. Since the variation of m (t) is minimal, the
equation of motion would still be the geodesic for practical purposes.

* To study the time dependence of G, it is preferred to use a dimensionless constant that contains G, such as
the gravitational fine-structure constant «, , instead of the dimensional constant G
Gm’

P
o =
£ he

m,, is the mass of the proton (Moss et al., 2010).
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If we perform the conformal transformation

g, = m(t)2 g, = ds =LdE = I=—c.[d§
m(1)
we derive the geodesic equation. That is, we recover the geodesic equation and the weak equivalence
principle under a redefinition of the measurement units (which have to change over time) (Brans
and Dicke, 1961).
If the inertial mass varies with time, the law of conservation of energy and momentum
ceases to exist. From the Bianchi identities applied to the field equation (30), we find

D, [;{(t)T’k] =0
which does not match D, 7" =0. In addition, we find
k
00,
ox*
therefore, the total energy-momentum of the system is not conserved; this is because we are
considering the variation of the inertial mass and, consequently, the variation of the energy of the
matter that generates the gravitational field.
However, from the field equation, we obtain the conservation law
k
O _y
ox*
which is formally identical to the law obtained in (16), although it does not correspond to the energy
and momentum conservation of the system.

(30) should not be understood as the equation of a scalar-tensor field of the Jordan-Brans-
Dicke type (Brans, 2014); in (30), G is not a scalar potential that we can derive from the field
equation, but we deduce its temporal variation from the gravitoelectromagnetic potentials derived
from the integration of the field equation of General Relativity (Segura, 2018).

#0,

14.- Appendix.- Demonstration of the equality of inertial and gravitational mass in
Newtonian mechanics

To simplify the reasoning, we make an idealized demonstration, but the results that we will
find will be physically accurate. We accept the hypotheses set out in section 4.

We measure force by a dynamometer, which gives measurements in arbitrary units. Newton's
law of gravitation states that the force between two point bodies is inversely proportional to the
square of the distance between the bodies. We also know that the force of gravitation depends on
a characteristic of the bodies that we call gravitational mass (active or passive, depending on the
case).

We choose an arbitrary body as a standard of gravitational mass, which has a specific
chemical composition and a defined physical state, to which we give the value 1, regardless of the
units in which it is expressed *. To find the gravitational mass of another body with the same
chemical and physical characteristics as the standard, we use the volume of the body since the
gravitational mass is proportional to the volume for bodies of the same characteristics.

Since the force acting on a point body and its gravitational mass are additive, the force on a
body with the same physical properties as the standard is proportional to its gravitational mass m,

Folt (32)
r
Suppose we have another body with chemical and physical properties different from the
body chosen as the standard. In that case, we find its gravitational mass assuming that (32) applies
to any substance and using a balance that compares the standard mass with the body's gravitational

mass.

* This happened in 1889 when the international prototype of the kilogram was defined based on a platinum
and iridium weight, to which the gravitational mass of 1 kilogram was assigned.
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We define that the quantity of matter is a property measured by the gravitational mass in the
sense that both quantities are equal or proportional. Therefore the gravitational mass of a body is
equal or proportional to the amount of matter.

Based on our reasoning, we can extend the standard of gravitational mass to include inertial
mass; this means that the inertial mass of the standard is equal to unity or proportional to unity with
a coefficient of proportionality &. By applying the additivity of force and masses and Newton's
second law of mechanics, we conclude that the gravitational and inertial mass are equal (or
proportional with the proportionality factor &) for bodies with the same characteristics as the mass
standard.

The main problem of all this simple reasoning is to relate the inertial and gravitational masses
of a body with different characteristics to the mass standard. We find the inertial mass of this body
using the second law of mechanics or the conservation of linear momentum; we also find its
gravitational mass with a balance, but we cannot be sure that both masses are equal or proportional.

Let us assume that the inertial mass is not affected by chemical and physical characteristics,
as seems to follow from the second law of mechanics. We can reason as if all bodies have the
same characteristics. If the inertial mass does not depend on the characteristics of the body, then 1
unit of the inertial mass of body 4 with the same properties as the mass standard is entirely equivalent
to 1 unit of a different material B. Since A4 has, by definition, 1 unit of gravitational mass, body B will
have the same gravitational mass.

We conclude that, regardless of their characteristics, the inertial and gravitational masses
coincide (or are proportional) for all bodies. With which the laws of Newtonian mechanics
demonstrate the weak equivalence principle.

From the previous deduction, we verify that the inertial mass, like the gravitational mass, is
proportional to the amount of matter; therefore, both masses are proportional.

Although the assumptions we made in section 4 are logical and acceptable in Newtonian
mechanics, they must be verified experimentally. For this, experiments have been carried out to
verify if the equality of inertial and gravitational mass holds for any substance. As is known, these
experiments results favour the weak equivalence principle.

15.- Conclusions

We have divided this work into two parts. First, we analyze the various formulations of the
equivalence principle, defining seven different principles. We distinguish between them what we
have called the general equivalence principle, which states that the movement of a test particle in
a gravitational field only depends on its initial conditions. This formulation is applicable in Newtonian
mechanics and General Relativity.

The equation of motion in a weak gravitational ficld to the second approximation, the geodesic
equation, and the Einstein-Infeld-Hoffmann equation confirm the general equivalence principle.

We have shown that the existence of locally inertial systems is a geometric property related
to the symmetry of the affine connection, which coincides with the Christoffel symbols in a
Riemannian space-time.

In the second part, we examine the techniques used in General Relativity to define and
calculate the inertial mass of a system of interacting bodies, which is the total internal energy of the
isolated system and referred to the center of mass, divided by the speed of light squared. For
example, we have applied Tolman's formula (14) to a perfect fluid to find the inertial mass in the
second approximation, verifying that all forms of energy participate in the inertial mass. Although
the inertial mass of a particle is invariable, the inertial mass of a particle system is variable, as is its
energy content.

We criticize the calculations in General Relativity to demonstrate that the inertial mass is the
equal as the gravitational mass *. We understand that there are two energy-momentum tensors of

* This result refers to the equality of the inertial mass and the active gravitational mass, which is different
from what we have called Galileo's equivalence principle, which indicates that the inertial mass is equal to the
passive gravitational mass. In Newtonian mechanics, the two types of gravitational masses are equal as a
consequence of the validity of the principle of action and reaction; this principle cannot be extended beyond
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matter, the one that uses the gravitational mass (and is the one that appears in the field equation)
and the energy-momentum tensor calculated with the inertial mass, which allows us to find the
energy and, therefore the inertial mass of the particle system. From here, we conclude that General
Relativity does not explain the equality or proportionality of the inertial and gravitational masses.

We end this section with a new formulation of the field equation where it is taken into
account that the inertial and gravitational mass have a time-dependent proportionality, as required
by Mach's principle. With this approach, we conclude that there is no law of conservation of the
energy-momentum of matter since the inertial mass varies with cosmic time.

In the appendix, we present elementary reasoning using Newtonian mechanics, from which
we theoretically deduce that the inertial and gravitational mass are proportional as long as we
accept several logical hypotheses in the Newtonian mechanics.
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