
Hyperparameter Optimization and Interpretation

in Machine Learning

Farid Soroush, PhD
soroushfarid@gmail.com

2023

Abstract

Machine learning has undergone tremendous advancements, paving the
way for a myriad of applications across industries. In the midst of this
progress, the significance of hyperparameter tuning and model evaluation
can’t be understated, as they play a critical role in achieving optimal
model performance. This project delves into the realm of ML model
optimization and evaluation, harnessing Bayesian Optimization, SHAP
(SHapley Additive exPlanations), and traditional evaluation matrices. By
focusing on a decision tree classifier, the study investigates the efficiency
of various hyperparameter tuning methods, the interpretability of model
decisions, and the robustness of performance metrics. Preliminary results
suggest that Bayesian Optimization may offer advantages in efficiency over
traditional tuning methods. Furthermore, SHAP values provide deeper
insights into model decision-making, fostering better transparency and
trust in ML applications.

1 Introduction

Machine learning’s potential is undeniably vast, spanning from healthcare di-
agnostics to financial forecasting [1]. As the applicability of ML expands, the
necessity to refine, understand, and trust these models becomes paramount [2].
Central to achieving these goals are hyperparameter tuning and model evalua-
tion [3].

Hyperparameters, distinct from model parameters, are set before the learn-
ing process begins and significantly influence model performance [4]. Conven-
tional methods like Grid Search and Random Search offer a systematic or ran-
dom exploration of the search space, respectively [3]. However, they can be
computationally intensive or miss optimal configurations [5]. Enter Bayesian
Optimization: a probabilistic model-based optimization technique that has re-
cently gained traction for its efficiency in hyperparameter tuning [6].

While achieving optimal performance is crucial, understanding why a model
makes a particular decision is equally important. In many real-world scenarios, a
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black-box model, regardless of its accuracy, isn’t sufficient [7]. Decision-makers
require transparency to trust the model’s predictions, especially in sensitive
areas like healthcare or finance [8]. SHAP values, derived from game theory,
have emerged as a potent tool to decipher the contributions of each feature
towards a prediction [9].

Moreover, model evaluation extends beyond accuracy. In imbalanced datasets
or multi-class scenarios, matrices like the confusion matrix, ROC curves, and
others, offer more nuanced insights into model performance [10].

This project aims to bridge these pivotal areas, offering insights into:

1. The comparative efficiencies of hyperparameter tuning methods, focusing
on Bayesian Optimization.

2. The interpretability of DecisionTreeClassifier decisions using SHAP values.

3. A comprehensive evaluation of model performance using traditional ma-
trices.

The subsequent sections delve deep into methodologies, results, and impli-
cations of the findings.

2 Methods

2.1 Dataset

The Iris dataset, often referred to as Fisher’s Iris dataset, is a classic dataset
introduced by the British biologist and statistician Ronald A. Fisher in his 1936
paper The use of multiple measurements in taxonomic problems as an example
of discriminant analysis [17]. It has since become one of the most well-known
and frequently used datasets for testing and illustrating various data analysis
techniques, especially in the domain of classification.

The dataset comprises 150 observations from three species of Iris flowers:
Iris setosa, Iris versicolor, and Iris virginica. Each species contributes 50 obser-
vations, making the dataset well-balanced. For each observation, four features
were measured from the flowers: sepal length, sepal width, petal length, and
petal width, all in centimeters. These measurements were used by Fisher to
develop a linear discriminant model to distinguish the species from each other.

The simplicity, along with its clear separability between classes, makes the
Iris dataset an excellent choice for introducing classification techniques. Over
the years, it has been used in various fields of study, from machine learning
to statistics, and remains a staple for demonstrating the basics of classification
algorithms [18].

Given its historical significance and frequent appearance in literature, the
Iris dataset serves as a benchmark in the evaluation of many machine learning
algorithms. Its characteristics provide a controlled environment to compare
different methods and techniques, making it a valuable asset for researchers and
practitioners alike [19].
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While the dataset is simple, it allows for the exploration of various aspects of
data analysis, such as data visualization, preprocessing, feature extraction, and
model evaluation. Furthermore, because of its ubiquity, results obtained on the
Iris dataset can be easily compared across different studies and methodologies
[20].

2.2 Decision Tree Classifier and Hyperparameter Tuning

Decision Trees are a non-parametric supervised learning method used for classi-
fication and regression. The goal is to create a model that predicts the value of a
target variable by learning simple decision rules inferred from the data features.

To optimize the performance of a Decision Tree, hyperparameter tuning is
essential. Various techniques are employed, such as:

• Grid Search: An exhaustive search over a specified parameter grid. Grid
Search builds a model on each parameter combination possible and eval-
uates each model.

• Random Search: Sets up a grid of hyperparameter values and selects
random combinations to train the model and score.

• Bayesian Optimization: Uses probability to find the minimum of a
function. This method, based on the Bayes theorem, aims to reduce the
number of iterations needed to find optimal hyperparameters compared
to grid or random search methods. The objective function for Bayesian
Optimization focuses on maximizing the accuracy of a DecisionTreeClas-
sifier, validated using 3-fold cross-validation on the training data. The
parameters optimized include:

– criterion: Determines the function to measure the quality of a split,
either ”gini” for Gini impurity or ”entropy” for information gain.
The search space ranges between [0, 1], where values below 0.5 map
to ”gini” and above map to ”entropy”.

– max depth: Represents the maximum depth of the tree, with [0,
50] as its range and 0 implying no restrictions.

– min samples split: Minimum number of samples required to split
an internal node, with a search space of [2, 10].

– min samples leaf: Minimum samples required at a leaf node, rang-
ing between [1, 4].

Using the defined objective function, the Bayesian Optimization library
iteratively searches for optimal hyperparameter values over 25 iterations,
with the initial 5 being random explorations. Post optimization, the best
parameters are employed to train a DecisionTreeClassifier, resulting in the
‘model bayesian‘.
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3 Results and Evaluation

The hyperparameter tuning process employed three optimization techniques:
Random Search, Grid Search, and Bayesian Optimization. For each of these
methods, the best hyperparameters and their corresponding cross-validation
scores were identified. The details of these hyperparameters and the cross-
validation scores are summarized in Table 2. Additionally, the optimal parame-
ters obtained from the Bayesian Optimization method are presented in Table 4.

Performance evaluation of the models on the test set utilized several met-
rics and tools, which include the confusion matrix, classification reports, ROC
curves, and SHAP values.

3.1 Confusion Matrix

Visualized as a heatmap, the confusion matrices in Figure 1 offer insights into
the classifiers’ accuracy for each optimization method. These matrices contrast
Actual vs. Predicted values, which are crucial for gauging the effectiveness of
the models.

3.2 Classification Report

The classification reports, shown in the table after Figure 4, provide a compre-
hensive summary of performance metrics. They encapsulate precision, recall,
F1-score, and support for each class in the dataset. The overall accuracy, macro
average, and weighted average are also included in these reports.

3.3 ROC Curve

Figure 2 presents the Receiver Operating Characteristic (ROC) curves. These
curves graphically represent the classifiers’ performance across varied classifica-
tion thresholds, offering insights into the balance between the true positive rate
and the false positive rate.

3.4 Feature Importance

Figure 3 illustrates the importance of features in the model, as determined by
different search methods. The two sub-figures provide a comparative analysis
of feature importance when using Random Search and Grid Search.

3.5 SHAP Value

SHAP (SHapley Additive exPlanations) values, as depicted in Figure 4, offer a
comprehensive measure of feature importance across machine learning models.
These values are essential for understanding individual feature contributions to
model predictions. Three sub-figures present SHAP values corresponding to
Random Search, Grid Search, and Bayesian Optimization methods.
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3.6 Test Scores

The models’ performances, when trained with the best hyperparameters ob-
tained from both Random and Grid Search, are displayed in the table following
Table 4. These scores give a direct understanding of how well the models gen-
eralize on unseen data.

For more detailed performance metrics, including specific figures, confusion
matrices, classification reports, and ROC curve representations for each model,
readers can refer to the subsequent sections.

4 Conclusion

Throughout this project, we delved deep into the nuances of hyperparame-
ter optimization techniques for machine learning models, comparing traditional
methods with advanced Bayesian optimization. The results obtained provided
significant insights into the benefits and challenges associated with each method.
Notably, while grid search and random search offered more straightforward
implementation and broad hyperparameter exploration, Bayesian optimization
showcased its power by efficiently narrowing down the search space and often
reaching better results with fewer evaluations.

The integration of SHAP values further enriched our analysis by offering
interpretable insights into the model’s predictions. This not only demonstrated
the importance of model interpretability in practical scenarios but also how
SHAP can complement any model optimization strategy. The visualization
tools, like confusion matrices and ROC curves, allowed for an easy comparison
of model performance across different optimization techniques.

In conclusion, the balance between model accuracy, interpretability, and
computational efficiency remains a pivotal concern in machine learning. While
Bayesian optimization emerges as a potent tool for hyperparameter tuning, un-
derstanding the model’s inner workings through tools like SHAP ensures that
our models are not just statistically sound but also transparent and trustworthy.
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5 Appendix

5.1 Code

The Python code used in this project is available on GitHub (in Jupyter Note-
book format) at the following link:

https://github.com/FaridSoroush/HyperP-Opt-Interpretation-ML

5.2 Figures

Figure 1: Confusion Matrix
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Figure 2: ROC
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(a) Random Search

(b) Grid Search

Figure 3: Feature Importance in Different Search Methods
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(a) random search

(b) grid search

(c) ayesian optimization

Figure 4: SHAP values for the first instance of different optimization models
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5.3 Tables

Table 1: Classification Report

Class Precision Recall F1-Score Support
setosa 1.00 1.00 1.00 10
versicolor 1.00 1.00 1.00 9
virginica 1.00 1.00 1.00 11
Accuracy 1.00 30
Macro avg 1.00 1.00 30
Weighted avg 1.00 1.00 30

Search Method Best Parameters Best Cross-validation Score

Random Search ’max depth’: 50,
’min samples split’: 10,
’min samples leaf’: 4, ’cri-
terion’: ’gini’

0.950

Random Search ’max depth’: None,
’min samples split’: 2,
’min samples leaf’: 1, ’cri-
terion’: ’entropy’

0.950

Grid Search ’criterion’: ’gini’,
’max depth’: None,
’min samples leaf’: 4,
’min samples split’: 2

0.950

Grid Search ’criterion’: ’gini’,
’max depth’: None,
’min samples leaf’: 1,
’min samples split’: 10

0.950

Table 2: Random and Grid Search Best Parameters and Scores

Search Method Test Score with Best Parameters (Random) Test Score with Best Parameters (Grid)

Both Methods 1.0 1.0

Table 3: Test Scores for Best Parameters
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Bayesian Parameter Best Value

Criterion 0.737
Max Depth 7.792
Min Samples Leaf 2.000
Min Samples Split 9.024

Table 4: Bayesian Optimization Best Parameters
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