The Dirac Comb and its Fourier Transform
 Marcello Colozzo

Abstract
We determine the Fourier Transform of the Dirac comb.

Definition 1 Denoting with $\delta(t)$ the Dirac delta function, we call Dirac comb the following bilateral series:

$$
\begin{equation*}
\sum_{n=-\infty}^{+\infty} \delta\left(t-t_{n}\right) \tag{1}
\end{equation*}
$$

where the sequence $\left\{t_{n}\right\}_{n \in \mathbb{Z}}$ is assigned arbitrarily. If t is time, the quantity

$$
\begin{equation*}
u(t)=u_{0} \sum_{n=-\infty}^{+\infty} \delta\left(t-t_{n}\right) \tag{2}
\end{equation*}
$$

is called unit impulse train. If the sequence $\left\{t_{n}\right\}_{n \in \mathbb{Z}}$ is a random variable, (1) and (2) are respectively a random Dirac comb and a pulse train random.

The Dirac comb is said to be periodic if exists $T_{c}>0 \mid t_{n}=n T_{c}, \forall n \in \mathbb{Z}$. The quantity T_{c} is the comb period.

Let us consider the particular case of a periodic comb and therefore, of a periodic train:

$$
\begin{equation*}
u(t)=u_{0} \sum_{n=-\infty}^{+\infty} \delta\left(t-n T_{c}\right) \tag{3}
\end{equation*}
$$

Theorem 2 The periodic Dirac comb or what is the same as a periodic train, is invariant in form under the Fourier transform:

$$
\begin{equation*}
u(t)=u_{0} \sum_{n=-\infty}^{+\infty} \delta\left(t-n T_{c}\right) \underset{F T}{\longrightarrow} U(f)=\frac{u_{0}}{T_{c}} \sum_{n=-\infty}^{+\infty} \delta\left(f-\frac{n}{T_{c}}\right) \tag{4}
\end{equation*}
$$

that is, the Fourier transform is still a periodic, period Dirac comb $1 / T_{c}$.
Dimostrazione. The Fourier transform of $u(t)$ is:

$$
\begin{gather*}
U(f)=\int_{-\infty}^{+\infty} u(t) e^{-j 2 \pi f t} d t=u_{0} \sum_{n=-\infty}^{+\infty} \underbrace{\int_{-\infty}^{+\infty} \delta\left(t-n T_{c}\right) e^{-j 2 \pi f t} d t}_{=e^{-j 2 \pi n T_{c} f}} \\
U(f)=u_{0} \sum_{n=-\infty}^{+\infty} e^{-j 2 \pi n T_{c} f} \tag{5}
\end{gather*}
$$

That is, a bilateral series of imaginary exponentials. To explain this series we observe that since $u(t)$ is periodic with period T_{c}, we can develop it into a Fourier series:

$$
u(t)=\sum_{n=-\infty}^{+\infty} c_{n} e^{-j \frac{2 \pi n}{T_{c}} t}, \quad c_{n}=\frac{1}{T_{c}} \int_{-T_{c} / 2}^{T_{c} / 2} u(t) e^{j \frac{2 \pi n}{T_{c}} t} d t
$$

Observing that $t \in\left[-\frac{T_{c}}{2}, \frac{T_{c}}{2}\right] \Longrightarrow u(t)=u_{0} \delta(t)$, we have

$$
c_{n}=\frac{u_{0}}{T_{c}} \underbrace{\int_{-T_{c} / 2}^{T_{c} / 2} \delta(t) e^{j \frac{2 \pi n}{T_{c}} t} d t}_{=1}=\frac{u_{0}}{T_{c}}, \forall n \in \mathbb{Z}
$$

It follows

$$
\begin{equation*}
u(t)=\frac{u_{0}}{T_{c}} \sum_{n=-\infty}^{+\infty} e^{-j \frac{2 \pi n}{T_{c}} t} \tag{6}
\end{equation*}
$$

which compared with (4) returns:

$$
\begin{equation*}
\sum_{n=-\infty}^{+\infty} e^{-j \frac{2 \pi n}{T_{c}} t}=T_{c} \sum_{n=-\infty}^{+\infty} \delta\left(t-n T_{c}\right) \tag{7}
\end{equation*}
$$

That is, a bilateral series of imaginary exponentials is less than a multiplicative factor, a bilateral series of Dirac deltas. By carrying out the appropriate substitutions in (7), we have

$$
\begin{equation*}
\sum_{n=-\infty}^{+\infty} e^{-j 2 \pi n T_{c} f}=\frac{1}{T_{c}} \sum_{n=-\infty}^{+\infty} \delta\left(t-\frac{n}{T_{c}}\right) \tag{8}
\end{equation*}
$$

hence the assertion.

References

[1] Sullivan D.M. Signals and Systems for Electrical Engineers I. 2018
[2] Martins E. R. Essentials of Signals and Systems. 2023

