The Dirac Comb and its Fourier Transform Marcello Colozzo

Abstract

We determine the Fourier Transform of the Dirac comb.

Definition 1 Denoting with $\delta(t)$ the Dirac delta function, we call **Dirac comb** the following bilateral series:

$$\sum_{n=-\infty}^{+\infty} \delta\left(t-t_n\right) \tag{1}$$

where the sequence $\{t_n\}_{n\in\mathbb{Z}}$ is assigned arbitrarily. If t is time, the quantity

$$u(t) = u_0 \sum_{n = -\infty}^{+\infty} \delta(t - t_n)$$
⁽²⁾

is called unit impulse train. If the sequence $\{t_n\}_{n\in\mathbb{Z}}$ is a random variable, (1) and (2) are respectively a random Dirac comb and a pulse train random.

The Dirac comb is said to be **periodic** if exists $T_c > 0 | t_n = nT_c$, $\forall n \in \mathbb{Z}$. The quantity T_c is the comb period.

Let us consider the particular case of a periodic comb and therefore, of a periodic train:

$$u(t) = u_0 \sum_{n=-\infty}^{+\infty} \delta(t - nT_c)$$
(3)

Theorem 2 The periodic Dirac comb or what is the same as a periodic train, is invariant in form under the Fourier transform:

$$u(t) = u_0 \sum_{n=-\infty}^{+\infty} \delta(t - nT_c) \xrightarrow{FT} U(f) = \frac{u_0}{T_c} \sum_{n=-\infty}^{+\infty} \delta\left(f - \frac{n}{T_c}\right)$$
(4)

that is, the Fourier transform is still a periodic, period Dirac comb $1/T_c$.

Dimostrazione. The Fourier transform of u(t) is:

$$U(f) = \int_{-\infty}^{+\infty} u(t) e^{-j2\pi ft} dt = u_0 \sum_{n=-\infty}^{+\infty} \int_{-\infty}^{+\infty} \delta(t - nT_c) e^{-j2\pi ft} dt$$
$$= e^{-j2\pi nT_c f}$$
$$U(f) = u_0 \sum_{n=-\infty}^{+\infty} e^{-j2\pi nT_c f}$$
(5)

That is, a bilateral series of imaginary exponentials. To explain this series we observe that since u(t) is periodic with period T_c , we can develop it into a Fourier series:

$$u(t) = \sum_{n=-\infty}^{+\infty} c_n e^{-j\frac{2\pi n}{T_c}t}, \quad c_n = \frac{1}{T_c} \int_{-T_c/2}^{T_c/2} u(t) e^{j\frac{2\pi n}{T_c}t} dt$$

Observing that $t \in \left[-\frac{T_c}{2}, \frac{T_c}{2}\right] \Longrightarrow u(t) = u_0 \delta(t)$, we have

$$c_n = \frac{u_0}{T_c} \underbrace{\int_{-T_c/2}^{T_c/2} \delta\left(t\right) e^{j\frac{2\pi n}{T_c}t} dt}_{=1} = \frac{u_0}{T_c}, \ \forall n \in \mathbb{Z}$$

It follows

$$u(t) = \frac{u_0}{T_c} \sum_{n = -\infty}^{+\infty} e^{-j\frac{2\pi n}{T_c}t}$$
(6)

which compared with (4) returns:

$$\sum_{n=-\infty}^{+\infty} e^{-j\frac{2\pi n}{T_c}t} = T_c \sum_{n=-\infty}^{+\infty} \delta\left(t - nT_c\right)$$
(7)

That is, a bilateral series of imaginary exponentials is less than a multiplicative factor, a bilateral series of Dirac deltas. By carrying out the appropriate substitutions in (7), we have

$$\sum_{n=-\infty}^{+\infty} e^{-j2\pi nT_c f} = \frac{1}{T_c} \sum_{n=-\infty}^{+\infty} \delta\left(t - \frac{n}{T_c}\right)$$
(8)

hence the assertion. \blacksquare

References

- [1] Sullivan D.M. Signals and Systems for Electrical Engineers I. 2018
- [2] Martins E. R. Essentials of Signals and Systems. 2023