
A polynomial solution for the 3-SAT problem

B.Sc. Geraldine Reichard
reichardgeraldine@yahoo.com

10.03.2023

Abstract

In this paper, an algorithm is presented, solving the 3-SAT problem in a poly-
nomial runtime of O(n3), which implies P = NP . This would solve the P/NP
problem.

The 3-SAT problem is about determining, whether or not a logical expression,
consisting of clauses with up to 3 literals connected by OR-expressions, that are
interconnected by AND-expressions, is satisfiable.

For the solution a new data structure, the 3-SAT graph, is introduced. It groups
the clauses from a 3-SAT expression into coalitions, that contain all clauses with lit-
erals consisting of the same variables. The nodes of the graph represent the variables
connecting the corresponding coalitions.

An algorithm R will be introduced, that identifies relations between clauses by
transmitting markers, called upgrades, through the graph, making use of impli-
cations. The algorithm will start sequentially for every variable and create start
upgrades, one for the variables negated and one for its non-negated literals. It will
be shown, that the start upgrades have to be within a specific clause pattern, called
edge pattern, to mark a beginning or ending of an unsatisfiable sequence.

The algorithm will eventually identify other kinds of pattern within the upgraded
clauses. Depending on the pattern, the algorithm either sends the upgrades on
through the graph, creates new following upgrades to extend the upgrade path, a
subgraph storing all previous upgrades, or if all connector literals of a pattern have
received upgrades of the same path or two corresponding following upgrades circle,
marks the upgrade as circling. If an upgrade circles, then it is unsatisfiable on
its path. It will be proven, that if after several execution steps of algorithm R, two
corresponding start upgrades circle, then the expression is unsatisfiable and if no
upgrade steps are possible anymore and the algorithm did not return unsatisfiable,
the expression is satisfiable.

The algorithm R is similar to already existing solutions solving 2-SAT polynomial,
also making use of implications using a graph.

1

mailto:reichardgeraldine@yahoo.com

A polynomial solution for the 3-SAT problem 2

1 Introduction
The decision problem 3-SAT deals with the question, wether a boolean expression with 3
literals per clause, is satisfiable or not, meaning it exists an assignment of variables, that
makes the boolean expression become true.
The expression consists of clauses, containing 3 literals at most. The literals within the
clauses are connected with disjunctions and the clauses with conjunctions. For example
the following expression e is a 3-SAT expression:

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ x4 ∨ ¬x5) ∧ (x1 ∨ ¬x4) ∧ (¬x1)

According to the theorem from Cook 3-SAT is NP-hard [1]. A polynomial solution of
3-SAT would mean the that P = NP .
Until now many randomized and deterministic algorithms have been introduced that
implement an efficient way to try out variable assignments. An example is the in 1960
introduced DPLL-Algorithmus [5]. This algorithm uses backtracking techniques. Another
example is a deterministic algorithm introduced in 2002 by Dantsin et al [3]. This reaches
for k-SAT a runtime of (2−2/(k+1))n and is based on local search. A similar randomized
algorithm was introduced 1999 by Schöning [6].
All of these 3 or k-SAT algorithms are not polynomial and try to test out assignment
most efficiently.
This is different with 2-SAT, which is solvable efficiently in polynomial runtime. An
example is the algorithm by Krom introduced in 1960, which uses a technique to utilize
implications between clauses [4]. If the negative and positive version of a literal appear in
two different clauses, for example in the expression (x1 ∨ x2) ∧ (¬x2 ∨ x3), a third clause
(x1 ∨ x3) is generated. An expression is unsatisfiable, if after a repetitive application of
the formula does not contain the clause (x1 ∨ x1) and the clause (¬x1 ∨ ¬x1). Is this the
case the expression is called consistent. If all clauses containing the same variable are
grouped together, the runtime is cubic (O(n3)). Even and Shamir could reach a runtime
of O(n2) with that method, by ordering the operations to be executed on the clauses [2].
They also introduced a backtracking algorithm that solves 2-SAT in linear time [2].
The technique introduced within the following paper uses a similar technique to Kroms
solution of the 2-SAT problem.
As in Kroms algorithm this algorithm R, introduced in this paper, will first group the
clauses to coalitions consisting of all clauses containing the same 3 variables and then
apply a technique called upgrade to detect circles. This upgrade paths represent one or
more executions of the implication-rule.

2 Definitions
First the 3-SAT graph and its components are defined. Let c be a 3-SAT clause, meaning
it has exactly 3 literals connected with disjunctions, as described within Definition 1.

Definition 1 Let c be a 3-SAT clause. c consist of exactly 3 unique literals, that are

A polynomial solution for the 3-SAT problem 3

connected by disjunctions. Each literal consists of a value of true or false and a corre-
sponding variable.

We say, that these literals are within the same form, if Definition 1.2 applies.

Definition 1.2 Let l1 and l2 be literals in a 3-SAT expression e. l1 and l2 are within
the same form, if they are within different clauses, but consist of the same variable and
are both either negated or non-negated.

Now we can define a coalition as a set of unique clauses of a 3-SAT expression, that
each contain 3 literals consisting of the same three variables. We also assume, that each
clause of a coalition contains a different combination of literals and that, if the expression
might contain 1-SAT or 2-SAT clauses, they are formed into equivalent 3-SAT clauses due
to help variables as described within Definition 2.

Definition 2 - Coalition Let c = (l1 ∨ l2 ∨ l3) be a unique clause within a 3-SAT
expression e. Let the corresponding variable from l1 be x1, the variable from l2 be x2 and
the variable from l3 be x3. Then C(x1,x2,x3) = {c1, .., ck} with k ≤ 8 ∈ N is the coalition,
that contains c.
Let c = (l1 ∨ l2) be a unique 2-SAT clause within a 3-SAT expression e, with x1 being the
corresponding variable to l1 and x2 being the corresponding variable to l2.
Then to all coalitions C ∈ e containing x1 and x2 and a third variable y ∈ e, clauses
c1 = (l1 ∨ l2 ∨ l3) and c2 = (l1 ∨ l2 ∨ ¬l4) with l3 = y and l4 = ¬yi will be added.
If there are no such coalitions, then a new coalition C(x1,x2,h1) will be created with h1 /∈ e,
containing clauses c1 = (l1 ∨ l2 ∨ l3) and c2 = (l1 ∨ l2 ∨ l4) with l3 = h1 and l4 = ¬h1.
Let c = (l1) be a unique 1-SAT clause within a 3-SAT expression e with x1 being the
corresponding variable to l1. Then for every coalition C , that contains x1 and two other
variables, four clauses will be added to C consisting of l1 combined with and all four unique
literal combinations out of the remaining variables. If there are no coalitions within the
expression containing x1, then a coalition C(x1,h1,h2) will be created containing all clauses
with l1 combined with all 4 combinations of literal assignments out of the help variables
h1 /∈ e and h2 /∈ e.

If a coalition contains all 8 possible clauses, then it is called full, which is explained
within Definition 3. Also a full coalition makes an expression unsatisfiable, as stated
within Theorem 1. This is because the expression demands for each possible literal as-
signment of the 3 variables also the inverse assignment.

Definition 3 A 3-SAT coalition is called full, if it contains 8 unique clauses consist-
ing of all combinations of 3 literals.

A visualization of a full coalition is shown in Figure 1.

A polynomial solution for the 3-SAT problem 4

x1

x2

x3
Figure 1: A graphic representation of a full coalition C(x1,x2,x3). The black dots represent
negated literals and the white dots non-negated literals. The triangles represent the
clauses.

Theorem 1 A 3-SAT expression e is unsatisfiable, if it contains at least one full coali-
tion.

proof. Let Esol be a solution of the 3-SAT expression e that contains a full coali-
tion C(x1,x2,x3). Esol assigns every variable x1, ..., xn from e a value of either true or false.
Let Esol(x1,x2,x3) ⊆ Esol be an assignment for the variables x1, x2, x3 from the full coalition
C(x1,x2,x3). Per definition of C(x1,x2,x3) being full, meaning it contains all possible unique
combinations of literals out of the three variables x1, x2 and x3, ∀ possible assignments for
Esol(x1,x2,x3)∃ a clause c, that claims the inverse assignment for each literal and because of
c being in E and E being defined as a 3-SAT expression, meaning its clauses are connected
with conjunctions, that makes also E unsatisfiable.

3 The 3-SAT graph
The 3-SAT graph for an expression e consists of a set of coalitions C and a set of nodes
V , one for every variable in the expression. Each node contains pointers to the coalitions,
that contain the nodes corresponding variable. This is stated within Definition 4.

Definition 4 - 3-SAT graph Let Ge be the corresponding graph to the 3-SAT expres-
sion e. Let Ve = {v1, .., vn} be the set of all nodes, that can be built out of the variables
x1, ..., xn, that appear within expression e with n ∈ N and let Ce = {C1, ..., Ck} be the
set of all unique coalitions, that can be built out of clauses c1, .., cj of expression e with
k, j ∈ N.
Each node vi ∈ Ve contains the corresponding variable xi and a set of coalitions Ci, that
contain variable xi.
Each coalition Ci within the graph consists of the 3 corresponding nodes to its variables
and its set of clauses.
Then the 3-SAT graph G for expression e is defined as Ge = Ve ∪ Ce.

A polynomial solution for the 3-SAT problem 5

For a sample expression E the 3-SAT graph is visualized in the following picture.

E = (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x3 ∨ x4)

∧(¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ ¬x2)
(1)

Figure 2: Visualization of the 3-SAT-graph for expression E.

3.1 Processing dependencies between coalitions

As proven within the last section, a single full coalition causes an expression e to be
unsatisfiable. But also there is the possibility of dependencies between clauses of different
coalitions.
For example two clauses from different coalitions within a 3-SAT expression E = (x1 ∨
x2 ∨ x3) ∧ (¬x3 ∨ ¬x4 ∨ x5) could form a single 4-SAT clause (x1 ∨ x2 ∨ ¬x4 ∨ x5) per
implication rule.
A series of executions of the implication rule could result in multiple 4-SAT clauses, that
could add up to a potential full 4-SAT coalition, which would make the expression un-
satisfiable without a 3-SAT expression being full within the initial graph. For example
by reducing a full 4-SAT coalition to 3-SAT by using help variables, there would be no
full 3-SAT clause within the expression, but it would still be unsatisfiable.
Also it could for example be possible, that multiple dependent 3-SAT clauses from differ-
ent coalitions could form a new 3-SAT coalition with different variables by implications,
that could be full.
Theorem 2 states, that only if there is either a full coalition within the expression already,
or if there is a way to generate a full coalition by making use of implications within one or
more execution steps of implication rules, then e is unsatisfiable and otherwise satisfiable.
Later it will be also proven, that the algorithm R, introduced in this paper, is able to
find this way of generating a full clause within a 3-SAT expression, if it is possible, in a
polynomial runtime.
The algorithm R will not apply the implication rule to form the expression, but send mark-
ers called upgrades trough the 3-SAT graph to detect possible implications of clauses either
within a coalitions or between different coalitions.
To do so it sends upgrades trough the 3-SAT graph, starting with a pair of two upgrades
called start-upgrades.

A polynomial solution for the 3-SAT problem 6

Theorem 2 If there is no way to form a 3-SAT expression e per repetitive execution of
implication rules in such a manner, that there is at least one full coalition, the expression
e is satisfiable, and otherwise unsatisfiable.

proof. ⇒ Let e be a 3-SAT expression, that is unsatisfiable, but cannot be formed
to a 3-SAT expression, that contains a full coalition via repetitive executions of impli-
cation rules. Let é be an expression that contains all clauses from e and all possible
clauses, that can be formulated out of e via applications of the implication rule. Because
the implication rule only formulates arguments, that are already contained within e, that
does not change the satisfiability of e. Each assignment esol, that satisfies e also satisfies
é.
Per Theorem 2 é should also contain no full clause and per definition, there could not be
new clauses added to é by using implication rules.
Because é being not full, for every coalition C(x1,x2,x3) in é, there are still assignment
ésol(x1,x2,x3) left for the variables within C(x1,x2,x3), for that there is no clause c ∈ C, that
does demand the inverse assignment to ésol(x1,x2,x3), which makes ésol(x1,x2,x3) satisfiable
within C(x1,x2,x3) and, because all implications are already priced in the graph of é, a
union of possible solutions for every coalition ésol = ésol(C1,...,Cn) with n ∈ N would be a
solution for é, meaning é is satisfiable. That would also make e satisfiable, which is a
contradiction to the unsatisfiability of e.
⇐ Let e be a 3-SAT expression, that is satisfiable, but can be formed to a 3-SAT expres-
sion é, that contains a full coalition. It is already proven, that a full coalition makes an
expression unsatisfiable and so é is unsatisfiable. Assuming the implication rules being
correct, the satisfiability of é is the same as the satisfiability of e, so e is also unsatisfiable,
which is a contradiction to the assumption of e being satisfiable.

The algorithm R makes use of implications between coalitions without changing the graph.
Instead, markers, called upgrades, will be processed throughout the graph.
Upgrades can be assigned to multiple literals and contain pointers to previous and follow-
ing upgrades. They are defined within Definition 4.

Definition 4 - Upgrade: An upgrade u within the 3-SAT graph G of an expression
e with a base literal l is defined a set of literals Lul

= {l1, .., lk} ⊆ e with k ∈ N. The
literal l is also stored with the set Lul

and is called the base literal of u. The variable
of l is called the base variable and the value of l, either true or false, is called the base
value. Also u contains pointers to one or more previous upgrades Uprev = {u1, .., uk}
and upgrade u can have following upgrades Ufollow = {u1, .., uj} with k, j ∈ N.

Also each upgrade is assigned an upgrade path. In the case of the start upgrade, the
path is empty.

Definition 4.1 - Upgrade Path: Let u be an upgrade. Then Pu ⊆ G, the upgrade
path of u, is defined as the sequence of upgrades, that lead from one or more start up-
grades to u. While there can also be multiple ways, that lead from the start upgrades to
u, every upgrade lying on a possible way is integrated within the upgrade path.

A polynomial solution for the 3-SAT problem 7

Definition 4.2 - Corresponding upgrade: Every upgrade u is created with a cor-
responding upgrade uc with the base literal of u, lu being of the inverse form to the base
literal of uc, lc, and Ucprev = Uprev. If it is not possible to create a corresponding upgrade
according to the algorithm R, then the upgrade step cannot be performed.

3.2 Patterns

Patterns are combinations of clauses, that transport upgrades to neighbor clauses in a
certain manner or let them run into a circle. This would mean, that an upgrade is un-
satisfiable on its path.

Start pattern First, the algorithm R will search for start pattern. Every start pattern
is also an edge pattern, but not every edge pattern has to be a start pattern. If an upgrade
later comes into contact with an edge pattern, it is called an end pattern and the upgrade
is then called circling.
The idea is, that every unsatisfiable implication sequence within the graph has to start
with a pattern, that consists of all four literal-combinations for two variables. The idea of
the proof will be, that if this would not by the case, then there are always two possibilities
left on how to satisfy the sequence and if the two would have different implications with
other clauses, this could not be called the start of the sequence.
To define an edge pattern, first a border pattern will be defined. This is half an edge
pattern and consists out of a clause combination of at least two clauses with one literal
of the same form and one literal inverse to the literal within the other clause. A border
pattern, defined within Definition 5 with an example shown within Figure 3, consists of
a clause combinations of at least two clauses, that contain, besides of the literals within
the upgrade, one common and one disjunct literal.
An edge pattern is defined within Definition 6.

Definition 5 - Border pattern Let u be an upgrade. We say, that u contains a border
pattern, if Lu contains literals l1 and l2, that belong to clauses c1 and c2 and if c1 contains
also a literal lF1, that is of the same form as a literal lF2 with lF1 , lF2 6= l1, l2, called the
common literals, and if c1 contains a literal l3, that is in the inverse form to a literal
l4 ∈ c2 with l3, l4 6= l1, l2. l1 and l2 are also called the connector literals. If R performs
an upgrade via a border pattern, u will be led on via the common literals of the pattern
to clauses of neighbor coalitions containing literals of the inverse form to the connector
literal with respect to the rules of upgrade connection.

A polynomial solution for the 3-SAT problem 8

x1

x2

x3

x1

x1

x2

x2x5

x6

u

u

u

(I) (II)

u
u

Figure 3: Two examples of border patterns. In (I) the two clauses from the pattern are
within the same coalition. Upgrades received by x1 are led on via all literals of the inverse
form to x2. If the upgrade is received via x2, then it can be led on via x1. Also an upgrade
could be received by two clauses from different coalitions and be sent via the common
literal, as shown in (II). In both cases the patterns fulfill the requirement of containing
one disjunct and one common literal.

Border patterns transport upgrades on without changing them. An edge pattern con-
sists out of two border patterns with inverse common literals, as defined within Definition
6.
First the algorithm will define initial starting pattern, which will always be an edge
pattern, defined within Definition 7. An edge pattern is shown within Figure 4.

Definition 6 - Edge pattern Let u be an upgrade. We say, that u contains an edge
pattern, if Lu contains 2 border patterns, p1 and p2, and the common literals of p1 are
inverse to the common literals of p2 and the other common literal of p1 is equal to the
common literal of p2.

Definition 7 - Start upgrades: Let e be an edge pattern, then e can be chosen as
a start pattern for R, where the 2 corresponding upgrades created out of the disjunct com-
mon literals u1 and u2 are called the start upgrades. They will divide at the inverse literals
of their respective border pattern again into 2 corresponding upgrades each, having u1 or
u2 as previous upgrades. So there are 4 start upgrades after running trough the start pat-
tern.

A polynomial solution for the 3-SAT problem 9

x1

x2

x3

x1

x1

x1

x1

x2

x2

x2

x2

x3

x4

x5

x6u

u

u

u

u

x4

x3

x1

x3

x2

1

2

3

4

u

(II) (III)(I)

Figure 4: The first image (I) shows a starting edge pattern within a single coalition.
Initially for every combination out of the two literals, one upgrade is built, but they
merge back at x1 to one single start upgrade. The same happens in (III). In (II), all start
upgrades are passed on individually via the third literals.

Theoretically upgrades could merge together right at the beginning. The rule of up-
grade connection explains, how upgrades connect, if two or more upgrades are sent to the
same literal.

Definition 8: Rule of upgrade connection If an upgrade u attempts to upgrade to a
literal l, that already contains an upgrade uc, then...
(1) If u and uc are on disjunct upgrade paths, then, if uc is a leading upgrade, u will be
added as a previous upgrade to uc. If uc is no leading upgrade, then there will be created
a new leading upgrade ul with uc and u as previous upgrades.
(2) If Puc ⊆ Pu, then there is no need to perform the upgrade step.
(3) If Pu ⊆ Puc, then u will be assigned to l and be passed on.
(4) If an upgrade u and its corresponding upgrade ú attempt to upgrade to a literal l,
then their common previous upgrade uprev will be passed on to l. If all four start upgrades
attempt to upgrade to the same variable, then all the upgrade paths integrate the upgrade
is called neutral.

If an upgrade u is later led into an edge pattern, u it is called circling. If an upgrade
circles, then the algorithm will start with the backtracking process. A small circle is sown
within Figure 5 and defined within Definition 9.

A polynomial solution for the 3-SAT problem 10

x1

x4

x5

x2

x3

u
Figure 5: A small upgrade circle. After the start upgrade got send via x1, it reaches
another edge pattern, that lets the upgrade circle. Because now every start upgrade
circles, the expression is unsatisfiable.

After the start upgrade is sent, within the next coalitions, if there would be another
edge pattern, then the expression is called circling.

Definition 9 - Circling An upgrade u is called circling, if all connector literals of the
pattern also receives an upgrade u or from the path of u Pu. If two corresponding upgrades
circle, then their common previous upgrades circle. If a neutral upgrade circles, then the
expression is unsatisfiable.

Not only edge patterns can circle, but if an upgrade reaches a second edge pattern, then it
immediately circles. An upgrade has to reach both connector literals of a border pattern
to circle. If the upgrade is sent to a border pattern from the start upgrade, then it is led
on via the common literal of the border pattern as in Figure 6.

1

u

x4

x5x3

1
x2

1
x1

Figure 6: After the start upgrade is sent to a border pattern from x3 to ¬x3 by making
use of implications, it is led on from ¬x4 to x4.

It is also possible, that the sender and receiver clause are connected via two literals.
From the start pattern the upgrades will be sent on via the connector literals of the pat-

A polynomial solution for the 3-SAT problem 11

tern to all neighbor clauses with literals of the inverse form as stated in Definition 10 and
shown within Figure 7.

Definition 10 - Upgrade sending Let u be an upgrade. If u is within a pattern p,
that sends on u per definition of p via one or more literals ls ∈ Ls ⊆ Lu to the set of
receiving literals within neighbor clauses lr ∈ Lr with Lu ∩ Lr = ∅, then ∀lr ∈ Lr and
∀ls ∈ Ls : lr = ¬ls, with respect to the rule of upgrade connection, if the sender and
receiver clauses share one common variable. If they share two common variables v1 and
v2, then the upgrade is only sent via v1, if additional the literals with base variable v2 in
the sender and receiver clauses are of the same form.

x2

(I) (II)

u x1

x2

u

Figure 7: An upgrade is sent to neighbor clauses. If the sender clause is connected via
one inverse literal to all receiver clauses, that do not already have the upgrade, as shown
in (I). If two clauses share two common variables, then the upgrade is only sent, if the
clauses share besides off the sender and receiver inverse literal a literal of the same form
with the second common variable, as shown in (II).

Intermediate pattern If an upgrade contains two clauses with only one common vari-
able, one containing the negated form and one the non-negated form of literals with this
variable, this is called an intermediate pattern. For all literals of the negated and for all
literals of the non-negated form, a new following upgrade will be built and sent on via
the connector literals.

A polynomial solution for the 3-SAT problem 12

x3

x1

x3

x2
x5

x7
x8

x6

x6

u

u2

u1

u2

u1

Figure 8: From the starting edge pattern, an upgrade from ¬x5 to x5 is performed. Then
there is an intermediate pattern, because the upgrade u contains non-upgraded clauses
containing the true and false representation of x6 and also the two clauses have different
connector literals x7 and x8.

Intermediate clause If a clause does not belong to a pattern, it is called an interme-
diate clause.
Intermediate clauses have three connector literals to other coalitions. If an upgrade reaches
an intermediate clause, it is not immediately sent on. Only if one other literal of the pat-
tern also received the upgrade or an upgrade within the same path, it is sent on and only
if all three literals received a respective upgrade, it circles, as defined within Definition 12.

x2

x3x1

Figure 9: An intermediate clause. Only if there are two incoming upgrades, for example
at x1 and ¬x3, an upgrade is sent via ¬x2.

Definition 12 - Intermediate clause If the literal set of an upgrade u Lu contains
a literal from a clause c, that cannot be assigned to any kind of pattern, c is called an
intermediate clause. c only passes on u, if two literals of c received u or another upgrade
from Pu and circles, only if all three literals received u or an upgrade from Pu.

A polynomial solution for the 3-SAT problem 13

4 The Algorithm
Now let us put the algorithm together. Figure 10 shows a sample execution of R. If there
is no full coalition within the graph making the expression unsatisfiable immediately, the
algorithm R starts by searching for an edge pattern. If an edge pattern is identified, the
start-upgrades are created and build the current set of upgrade U , that always contains
the current tips of all upgrade paths and their set of literals. The start upgrades are sent
on via the connector literals to all neighbor literals of the inverse form.
If one or more upgrades encounter another edge pattern or all connector literals of another
pattern have been upgraded, the upgrade circles. If it is a neutral upgrade, the expression
is unsatisfiable and if also the corresponding upgrade circles, all the common previous
upgrades circle. If the start upgrades circle, then the algorithm returns unsatisfiable.
If there is no edge pattern or circle, then all upgrades with border patterns will be sent on
to neighbor coalitions. If yes, then within the following neighbor clauses, the algorithm
will go back to the step checking for edge patterns or circles.

x1 x2

x3

x4 x5 x6

x7 x8 x9

u1 u2 u3
u4

uu

e1

u u8 u7

e2
u9

u10

u5

u6

u6

Figure 10: A sample execution of algorithm R. Starting at the edge pattern e1, 4 start-
upgrades u1, ..., u4 are created. They merge together at x3 building the neutral upgrade u.
u is sent via a border pattern from ¬x3 via x4 to ¬x4 at the coalition C(x4,x7,x8). There is
another edge pattern e2 creating the start upgrades u7, ..., u10. Two of the upgrades u7 and
u8 merge into the following upgrade u5 and u9 and u10 merge into u8, which is sent from x8

to ¬x8 to the intermediate clause (¬x7∨¬x8∨¬x4) in C(x4,x7,x8). Because u being a neutral
upgrade and u6 having the longer path according to the rules of upgrade connection and
because the intermediate clause now received two upgrades from a common path, u6 it is
passed on from ¬x7 to x7.

If there are no circles or border patterns within upgrades of the current set of up-
grades U , intermediate patterns are evaluated. If an upgrade encounters an intermediate
pattern, then 2 new following corresponding upgrades for the pattern are created and

A polynomial solution for the 3-SAT problem 14

the upgrades are sent on via the connector literals. Also the algorithm now starts at
the step evaluating circles or edge patterns again. When no upgrade steps are possible
anymore and the start upgrades do not circle, the algorithm tries to start from another
edge pattern, if there are edge patterns left without upgrades and repeats the execu-
tion steps. If afterwords still no corresponding start upgrades circle, then the algorithm
returns satisfiable. As soon as corresponding start upgrades circle, R returns unsatisfiable.

Now the algorithm can be described in pseudo-code:

Data: 3-SAT expression e
Result: Solution to the 3-SAT problem
Create the 3-SAT graph G for e;
for Every edge pattern in G do

Create the 4 start-upgrade Us = us1 , ..., us4 and add Us to U ;
Send the start-upgrades via their corresponding connector literals;
while Upgrade steps are possible do

while There are edge patterns or circles in upgrades u ∈ U do
Mark their previous upgrades as circling;
if Also the corresponding upgrade to one or more previous up upgrades
circles then

Jump back to the step of marking all of their previous upgrades as
circling for each occurance;

end
if Also all 4 start upgrades circle then

Return unsatisfiable;
end

end
for All upgrade u ∈ U containing a border pattern do

Send u on via the common variable of the border-patterns to neighbor
coalitions, if possible;
Jump back to the loop evaluating edge patterns;

end
if There is an intermediate pattern then

Create for all upgrades u with an intermediate pattern new upgrades
utrue and ufalse and send them on via the third literals of the clause;
Replace u in U by utrue and ufalse;
Jump back to the loop evaluating edge patterns;

end
end

end
Return satisfiable;

Algorithm 1: Algorithm R in pseudocode

A polynomial solution for the 3-SAT problem 15

5 Algorithm R is correct, within polynomial runtime
and terminates

Now, that algorithm R is defined, its runtime, termination and correctness will be proven.

5.1 Proof of correctness

Theorem 1 A 3-SAT expression e is unsatisfiable, if it contains at least one full coali-
tion.

proof. Let Esol be a solution for the 3-SAT expression e that contains a full coali-
tion C(x1,x2,x3). Esol assigns every variable x1, ..., xn from e a value of either true or false.
Let Esol(x1,x2,x3) ⊆ Esol be an assignment for the variables x1, x2, x3 from the full coalition
C(x1,x2,x3). Per definition of C(x1,x2,x3) being full, meaning it contains all possible unique
combinations of literals out of the three variables x1, x2 and x3, ∀ possible assignments for
Esol(x1,x2,x3)∃ a clause c, that claims the inverse assignment for each literal and because of
c being in E and E being defined as a 3-SAT expression, meaning its clauses are connected
with conjunctions, that makes also E unsatisfiable.

Theorem 2 The algorithm R returns the correct result of the decision problem for every
graph G.

First it is proven, that for each different pattern, the algorithm applies the correct rules
due to propositional logic.

Lemma 2.1 - intermediate pattern If an upgrade u contains an intermediate pattern,
then the algorithm R applies the implication rule correctly.

proof. Let u be an upgrade. If u contains an intermediate pattern, it means, that
the upgrade contains two or more literals of unique intermediate clauses containing the
negated and non-negated form of a literal l, that is not yet on the upgrade path of u. Let
this two clauses be c1 and c2 with c1 = (lu ∨ l2 ∨ l3) and c2 = (lu2 ∨¬l2 ∨ l4) and let lu and
lu2 be literals, that are already within the upgrade u, and l2, l3 and l4 be literals, that are
not yet within u. R would create two new upgrades. Let them be u2t for the non-negated
literal l2 and u2f for the negated literal ¬l2. The upgrades are correspondent to each
other and both have u as a previous upgrade. Afterwards R will sent on the upgrades via
l3 and l4 to neighbor clauses, if there are such clauses with literals ¬l3 and ¬l4, that do
not already contain u or an upgrade from its path Pu. Lets assume, that one of these
neighbor clauses is c3 = (¬l3 ∨ l5 ∨ l6). Then we can write the clause c1 = (lu ∨ lu2 ∨ l3)
also as (u∨u2t ∨ l3) or(u2t ∨ l3) , because the literals are now represented by the variables
of the received upgrades and their paths and u2t is the latest upgrade on the path . Then

A polynomial solution for the 3-SAT problem 16

we get the following equation applying the implication rule:

(u2t ∨ l3) ∧ (¬l3 ∨ l5 ∨ l6)⇔ (u2t ∨ l5 ∨ l6) (2)

Also u2f could be sent on to another neighbor clause c4 = (u2f ∨ l7 ∨ l8)

(u2f ∨ l4) ∧ (¬l4 ∨ l7 ∨ l8)⇔ (u2f ∨ l7 ∨ l8) (3)

The sending displays applications of the implications rules. Also if both upgrades
circle, then also all of their common previous upgrades circle, because the negated and non-
negated form of a literal cannot be satisfiable at the same time. So if both corresponding
upgrades circle, then also the common previous upgrade cannot satisfy the expression and
circles. If the circling upgrade has also a corresponding circling upgrade, the information
is further backtracked throughout the upgrade path.

Lemma 2.2 For a border pattern with two literals of the same form, the algorithm R

applies the implication rule correctly.

proof. Let c1 = (lu ∨ l2 ∨ l3) and c2 = (lu2 ∨ ¬l2 ∨ l3) be clauses, with lu, lu2 ∈ Lu,
meaning lu is within the set of literals of u and l2, l3 /∈ Lu. According to Definition 5,
c1 and c2 build a border pattern, because besides of the two connector literals from the
upgrade, they share the common literal l3 and contain also inverse literals l2 and ¬l2.
Then the algorithm R will pass upgrade u on via neighbor clauses containing the negated
form of the connector literal l3, if the rules of upgrade connection are applied correctly.
This is correct, because according to propositional logic:

(lu ∨ l2 ∨ l3) ∧ (lu2 ∨ ¬l2 ∨ l3)⇔
(u ∨ l2 ∨ l3) ∧ (u ∨ ¬l2 ∨ l3)⇔

(u ∨ l3)

(4)

In this equation, the literals within the upgrade were replaced by the upgrade, which is
just a matter of notation. Of course the upgrade carries all the information about the
literals containing it. By dissolving the border pattern, the algorithm R simply makes
use of the implication rule, stating, that l2 and ¬l2 can both be erased, because it is
not possible to fulfill both literals at the same time. So the literals do not need to be
considered for the upgrade path. Only l3, the common literal, remains. It could become
another connector literal, if there are clauses with ¬l3, that do not contain u or an upgrade
from Pu.

Lemma 2.3 If an upgrade u contains an edge pattern, then u cannot be satisfied within
Pu. This is applied by R correctly.

A polynomial solution for the 3-SAT problem 17

x1

x2

x3

Figure 11: No upgrade will be passed on, because there are circles at x2 and x3.

proof. Assuming, that receiving an upgrade means, that the implication rule was ap-
plied correctly in previous steps and that the upgrade contains the edge pattern, as de-
scribed within Definition 11.2, then it contains two border patterns. Let them be p1 and
p2. Also the definition states, that the connector literal of one pattern has to be inverse
to the connector literal of the other pattern. In the proof of Lemma 2.2. it is shown, that
a border pattern like p1 can be formulated also as p1 = (lu1 ∨ lc), where lu1 is a literal
within an upgrade u and lc is the connector literal. Per definition the second patterns can
be written as p1 = (lu2 ∨ ¬lc) with lu2 being another literal within u:

(lu1 ∨ lc) ∧ (lu2 ∨ ¬lc)⇔ lu1 ∧ lu2 (5)

That means, that the upgrade literals from the patterns have to be both satisfied, which
is impossible due to implications. So the upgrade circles, meaning it cannot be satisfied.
However, this does not mean, that the whole path Pu is yet unsatisfiable. But it will later
be proven, that edge patterns are necessary for an upgrade path to start dissolving and
eventually be unsatisfiable.

Lemma 2.4 For an intermediate clause, R applies the implication rules correctly.

proof. For an intermediate clause R does not perform an upgrade, as soon as not at
least two of its literals received upgrades and only circle, if it receives an upgrade on all
of its three connector literals. Let c1 = (x1 ∨ x2 ∨ x3) be an intermediate clause. If it
receives an upgrade u at x1, there are still two other choices to fulfill c1, x2 and x3. The
algorithm will not transport the upgrade u on via x2 or x3 in this case. This is because,
if there are still two options open to fulfill the clause, the decision for one literal has not
yet to be made. Only if the clause receives an upgrade from Pu or u at another connector
literal, an upgrade will be sent on eventually to neighbor clauses.

This proves Lemma 2, because it is proven, for every kind of pattern.

Lemma 3 Every unsatisfiable upgrade sequence begins and ends with edge patterns.

A polynomial solution for the 3-SAT problem 18

proof. An edge pattern is defined as a combination of two border patterns with the
common literal of one pattern being inverse to the common literal of the other pattern.
Because of that every clause of the pattern has two of its literals already eliminated from
being able to satisfy the expression, because their inverse counterpart is already within
the pattern. The upgrades from an edge pattern get only transported on via one literal
per clause, if the sequence is unsatisfiable, because the connector literals of each clause
also need to have an inverse counterpart within the graph.
With no other pattern, this is possible. Let c = (x1 ∨ x2 ∨ x3) and ć = (¬x3 ∨ x4 ∨ x5)
be clauses that are not within an edge pattern. By eliminating x3 using the implication
rule, one literal from c would be dissolved, but the literals x4 and x5 would be added for
x3 creating c3 = (x1 ∨ x2 ∨ x4 ∨ x5). So the number of literals, that would need to be
eliminated for the expression to be unsatisfiable has then increased by 1.
The only way to break even or reduce the number of literals in total is, if two clauses
share one or two common literals and one clause contains a literal, that the other contains
in its inverse form. For example if c = (x1 ∨x2 ∨x3) and ć = (¬x3 ∨x2 ∨x5). The clauses
would build a border pattern. If connector literals x5 and x1 have also implications with
other clauses, also x3 would be eliminated, because it would then exist in the negated and
non-negated form within the path. But this would not resolve x2.
To also resolve x2 another border pattern is needed, demanding ¬x as a common literal,
because an intermediate clause for example, would bring two new literal arguments into
play, not just one, that also needs to be satisfied, so we can only work with an already
reduced pattern, another border pattern. But this is the definition of an edge pattern.
Only an edge pattern has only one connector per clause for a starting pattern and thus
could be, if dissolved by following circling upgrades, mark the beginning of the unsatis-
fiable upgrade sequence, meaning, that it would contain the start upgrades, because the
two first literals, that would also be the last to be dissolved are within the edge pattern.
The same goes for the ending. If the ending would not be an edge pattern, then the
upgrade sequence could always be extended by upgrading via another connector literal.
The only way for it to run into a corner would be an another edge pattern. But it has
to be noted, that the same edge pattern could be beginning and ending of a sequence
theoretically. For example, if the upgrades from that pattern target all connector literals
of another pattern.

Lemma 4 The rules of upgrade connection are applied correctly by R

proof. The rule of upgrade connection states, that:

If an upgrade u attempts to upgrade to a literal l, that already contains an upgrade
uc, then..
(1) If u and uc are on disjunct upgrade paths, then, if uc is a leading upgrade, u will be
added as a previous upgrade to uc. If uc is no leading upgrade, then there will be created
a new leading upgrade ul with uc and u as previous upgrades.
(2) If Puc ⊆ Pu, then there is no need to perform the upgrade step.
(3) If Pu ⊆ Puc , then u will be assigned to l and be passed on.

A polynomial solution for the 3-SAT problem 19

(4) If an upgrade u and its corresponding upgrade ú attempt to upgrade to a literal l,
then their common previous upgrade uprev will be passed on to l.
In the case (1) the idea is, that if multiple upgrades u1 and u2 with disjunct paths Pu1

and Pu2 are sent to the same literal l, then they connect to an upgrade uc, that has u1

and u2 as previous upgrades. Pu1 and Pu2 connect to Puc . This makes no different for
the satisfiability, because if l ∈ Lu1 , Lu2 , u1 and u2 will only behave differently, if they
encounter another upgrade and eventually merge, because then the upgrade paths will be
evaluated. But because Pu1 and Pu2 are still integrated within Puc , this makes no differ-
ence. Also because of the other rules, if a path Puc from a new upgrade un is integrated
within another path Pun Puc ⊆ Pun , then the upgrade with the longer path will be passed
on and if a leading upgrade is encountered while backtracking, the corresponding upgrade
does not need to circle for the information to be backtracked.
The second case (2) will not happen, because assuming the case would occur, then the
current upgrade u would have already been sent to the receiving literal l of uc in the step,
were the upgrade u, that is also part of Puc per definition reached the receiving literal and
this contradicts u attempting to upgrade to l again.
For the third case (3), the rule of upgrade connection states, that only the upgrade with
the longer path, u, is passed on. This is correct, because the longer path already contains
the upgrade path of the upgrade with the shorter path, uc, and the shorter path Puc would
sooner or later also adapt to the longer path anyway.
The fourth rule (4) states, that an upgrades u can merge with its corresponding upgrade
ú. This is because an upgrade u and its corresponding upgrade ú contain upgrade paths
Pu and Pú, that only differ in one literal l, that is negated on one path and non-negated
on the other path. If the paths merge, the negated and non-negated literal would dissolve,
because Pu and Pú could never both satisfy l. So the literal can be eliminated from the
common re-connected path and only the common previous upgrade needs to be passed
on.

Lemma 5 The backtracking steps of R run correctly

proof. If an upgrade u circles, then it is not satisfiable, because all literals from a pattern
p, that are not already present in its negated and non-negated forms within the pattern,
have been excluded due to implications. So the upgrade is in conflict with p. When Pu

cannot satisfy u, then the definition of circling states, that if the upgrade corresponding
to u, ú, also circles, also all common previous upgrades circle. This is correct, because the
paths of Pu and Pú only contain one different upgrade, u on Pu and ú on Pú, that have per
definition of being correspondent inverse base literals, that could not be satisfied at the
same time. If two corresponding upgrades cannot be satisfied, then all of their common
previous upgrades circle. That means, they now build the current tip of the upgrade path.
If also the upgrade correspondent to the previous upgrade circles, then the step will of
course be repeated, until it is not possible anymore or corresponding start upgrades circle.
If corresponding start upgrades circle, then Pu is an unsatisfiable sequence, because no
assignment could satisfy a subset of the expression e and if an expression contains an
unsatisfiable subset, it could not be satisfied, because for a solution esol for e, there has

A polynomial solution for the 3-SAT problem 20

to be an assignment for every literal l ∈ e solving e, and if there is no correct assignment
for a subset Ls of all literals within the expression Le, with Ls ⊆ Le, there also will not
be a correct solution for e. This is why the algorithm R has to start sequentially at all
edge patterns, before returning satisfiable.

Theorem 3 The algorithm R returns a correct solution to the 3-SAT problem.

Beginning of induction With Theorem 1 it was already proven, that R runs correctly
with a single coalition C1. If C1 is full, then the algorithm R returns unsatisfiable and
otherwise satisfiable.
Also a full coalition consists of 2 contradicting edge patterns, with the beginning edge
pattern being in a circle with the ending edge pattern. It is the smallest possible kind of
unsatisfiable sequence.

Induction step With already proven, that each unsatisfiable sequence begins and ends
with edge patterns in Lemma 3, it can be assumed, that the beginning of the sequence
has been an edge pattern and that already n patterns have been visited by the algorithm.
For the pattern n + 1, it could be an edge pattern, intermediate pattern, border pattern
or an intermediate clause. Within Theorem 2, it was already proven, that for all those
cases, the algorithm R runs correctly and is able to identify all circles correctly.
The fact, that the algorithm starts from every edge pattern within the graph G, if not
already visited, makes sure, that no edge pattern is left out.
And that also in case of multiple upgrades in place, the rules of upgrade connection are
applied correctly, which is proven in Lemma 4.
In Lemma 5 it is proven, that in case of a circle, the backtracking process runs correctly.
So the correctness of every following step is also proven, proving the correctness of R.

Theorem 4 The algorithm R has a runtime of O(n3).

proof. The 3-SAT graph can be built up in a runtime of O(n2), because for every clause,
that connects to neighbor clauses, the algorithm has to go through every existing clause
in the worst case.
The algorithm R runs through the graph making use of implications starting at edge pat-
tern. Finding the edge patterns might also take O(n2) time. Then sending upgrades
trough the graph can be done in O(n3), because every literal only gets visited once at
most, but maybe by more than one upgrade. The complexity of the upgrades is within
O(n2), because the set of all upgrade U is a subset of G and there is at most one new
upgrade per literal, because they either merge together to one upgrade, if disjunct, or a
single new upgrade is created as a following upgrade. If two or more upgrades are sent to
the same literal, the algorithm has to run through both paths eventually to check, if they
are equal, disjunct or one is a subset of the other. That costs time of O(n). All in all the
runtime of this step will be O(n3).

A polynomial solution for the 3-SAT problem 21

If an upgrade and its corresponding upgrade circle, then the algorithm might also back-
track through the upgrade path, a subgraph of the 3-SAT graph, having also a complexity
of O(n). This could happen in the worst case at every step, making the runtime of this
step also cubic in O(n3) time.

Theorem 5 The algorithm R terminates.

proof. The algorithm visits in every execution step one literal of the graph G, that has
a complexity of O(n), in which it in the worst case backtracks trough two upgrade paths,
at most one normal or already connected leading upgrade and the incoming upgrade. The
upgrade paths are defined as a subgraphs of G, have also a complexity of O(n) and are
disjunct. If every literal was visited, then the algorithm terminates, which proves Theo-
rem 5.

All in all, the correctness, the polynomial runtime of O(n3) and the termination of R
are proven

6 Conclusions
The algorithm R creates a new data structure, the 3-SAT graph, which can more easily
display dependencies between clauses of input expressions for the 3-SAT problem, by
ordering them into coalitions and making use of dependencies between different coalitions.
Also different kinds of clause patterns are defined. In that manner, a solution of the 3-SAT
problem can be found without just trying out different assignments, but by making use
of implications. That makes it possible to find a solution within polynomial runtime by
sending markers, called upgrades, through the graph, creating the upgrade paths, storing a
history of previous implications and dissolving it, if circles, marking contradicting variable
assignments, are found. The approach is similar to existing graph algorithms solving
2-SAT in polynomial runtime already. The runtime of the algorithm R has a worst case
complexity of O(n3). With some optimizations, it should be possible to reduce the runtime
algorithm R runtime to be within O(n2).

A polynomial solution for the 3-SAT problem 22

References
[1] Stephen A. Cook. The complexity of theorem-proving procedures. Symposium on

Theory of Computing, 1971.

[2] Shamir A. Even S., Itai A. On the complexity of time table and multi-commodity
flow problems. SIAM Journal on Computing, 5, 1976.

[3] Edward A Hirsch Evgeny Dantsin, Andreas Goerdt. A deterministic (2-2/(k+1))n
algorithm for k-sat based on local search. Theoretical Computer Science, 8, 1979.

[4] Melven R. Krom. The decision problem for a class of first-order formulas in which all
disjunctions are binary. Mathematical Logic Quarterly, 13, 1967.

[5] H. Putnam M. Davis. A probabilistic algorithm for k-sat and constraint satisfaction
problems. Foundations of Computer Science, 1999.

[6] Uwe Sch"oning. A probabilistic algorithm for k-sat and constraint satisfaction prob-
lems. Foundations of Computer Science, 1999.

	Introduction
	Definitions
	The 3-SAT graph
	Processing dependencies between coalitions
	Patterns

	The Algorithm
	Algorithm R is correct, within polynomial runtime and terminates
	Proof of correctness

	Conclusions
	Bibliography

