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Abstract

Classical mechanics has been a well-established field for many years, but there
are still some challenges that can be addressed using modern techniques. When
dealing with classical mechanics problems, the first step is usually to create a
mathematical expression called the Hamiltonian based on a known function called
the Lagrangian. This involves using standard procedures to establish relation-
ships like the Poisson bracket, canonical momenta, Euler-Lagrange equations, and
Hamilton-Jacobi relations. In this paper, we focus on a specific problem related
to the calculus of variations, which deals with finding the Lagrangian function
that, when used in the Euler-Lagrange equation, produces a given differential
equation. To tackle this problem, we employ two distinct methods to determine
the Lagrangian and, subsequently, the Hamiltonian for the cosmological equa-
tions derived from General Relativity. These equations describe the motion of
celestial objects in the universe and are of second-order in nature.

1 Introduction

The Hamiltonian and Lagrangian frameworks, which have evolved from Newtonian
mechanics, hold significant importance in both the fields of physics and mathematics.
These two distinct yet elegant approaches provide deep insights into the mathematical
foundations underlying our physical universe.
The Hamiltonian description of any system is characterized by a Hamiltonian denoted
as ”H” and a Poisson bracket that adheres to the Jacobi identity. The conventional pro-
cess for Hamiltonian and Lagrangian dynamics typically involves starting with knowl-
edge of the system’s Lagrangian. From there, various key components are derived or
constructed, including the Euler-Lagrange equations of motion, canonical momenta,
Poisson bracket relations, the Hamiltonian itself, and the Hamilton-Jacobi relations.
The primary objective of this thesis is to address the inverse problem in the calculus of
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variations, as described by [1], which poses the question: Given a set of second-order
differential equations

q̈i = f i(q, q̇, t) i = 1, . . . , n (1)

1. Does there exist a Lagrangian that yields Euler-Lagrange equations equivalent
to (1)?

2. If yes, how can we find all these Lagrangians?

We present two distinct approaches to tackle this problem. In both approaches, our
initial step involves determining the Lagrangian for the cosmological equations using
two specific methods. Subsequently, we proceed to obtain the corresponding Hamilto-
nian through a process known as Legendre transformation.
The cosmological equations are first derived from theEinstein’s field equations(EFE).
The general form of Einstein’s field equations is:

Gµν + Λgµν = kTµν (2)

where Λ and k are two undetermined constants. The constant k is determined by
ensuring that Newton’s gravitational field equation is correctly reproduced, while Λ
remains arbitrary. The specific value of k is found to be equal to 8πG

c4
. The Einstein

tensor Gµν is defined as follows: :

Gµν = Rµν −
1

2
Rgµν (3)

Hence, EFE can be written(in tensor form) as:

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (4)

where Rµν is the Ricci curvature tensor, R is the scalar curvature, gµν is the metric
tensor, Λ is the cosmological constant, G is Newton’s gravitation constant, Tµν is the
stress-energy tensor, and c is the speed of light in vacuum. Einstein’s field equations
are a set of symmetric 4× 4 tensors each having 10 components.
Originally, Albert Einstein’s equations of General Relativity did not include the cos-
mological constant Λ. However, he later introduced this constant into his equations to
achieve static cosmological solutions for understanding the large-scale behavior of the
universe. Subsequently, observations of the universe’s expansion in later years, as doc-
umented in references such as [2] and [3], indicated that the cosmological constant was
not necessary. However, recent astronomical observations have suggested that while
the cosmological constant is indeed small, it is not precisely zero, as discussed in [4].

1.1 Approach 1:Obtaining Lagrangian and Hamiltonian using
a one-time independent constant of motion

The method described here was initially proposed by Hojman in his work [1]. In
this particular approach, we begin with the equations of motion and a single time-
independent constant of motion. Using these two fundamental components, we proceed
to construct various key elements, including a Hamiltonian, Poisson bracket relations,
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a Lagrangian, canonical momentum, the Hamilton-Jacobi equation, and ultimately, the
second constant of motion.
Let’s consider a system S1

2n of 2n first order differential equations for 2n variables xa ,

ẋa = fa
(
xb
)
, a, b = 1, 2, 3, . . . , 2n (5)

We proceed to determine the Lagrangian that fulfills the aforementioned differential
equation, thereby solving the inverse problem within the calculus of variations frame-
work. In this approach, we’ve made the specific choice of setting the Hamiltonian as the
time-independent constant of motion. It is demonstrated that when a time-independent
constant of motion, denoted as C1, is known for a given system, the Hamiltonian struc-
ture can be established by selecting the Hamiltonian as H = C1. To illustrate this
concept, we consider a general second-order system as an example for deriving the
Hamiltonian structure.

q̈ = F (q)G(q̇) (6)

This approach for the second-order system is then applied to the well-known cosmolog-
ical equations and hence the Lagrangian and Hamiltonian structure is worked out in
details.

1.2 Approach 2:Obtaining Lagrangian using Jacobi Last Mul-
tiplier

It is a well-established fact that a Lagrangian can always be found for any second-order
equation. However, what’s less commonly known is that the Jacobi Last Multiplier,
when known, can be employed to derive such a Lagrangian. This process effectively al-
lows us to solve the inverse problem within the calculus of variations, as discussed in [1].
This approach is applicable to numerous second-order ordinary differential equations,
which often take the following form:

ẍ = F (t, x, ẋ) (7)

can be described through a Lagrangian formulation due to the presence of Jacobi’s Last
Multiplier. Jacobi’s Last Multiplier is a solution to a linear partial differential equation,
as detailed in [5]:

d logM

dt
+

n∑
i=1

∂ (ai)

∂xi

= 0 (8)

where ∂t +
∑n

i=1 ai∂xi
is the vector field of the partial differential equation

Af =
∂f

∂t
+

n∑
i=1

ai (x1, . . . , xn)
∂f

∂xi

= 0 (9)

After determining the Lagrangian for the system, the next step is to compute the
Hamiltonian (H) using the well-established Legendre transformation.

H =
∑
i

q̇i
∂L
∂q̇i

− L (10)
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The Jacobi Last Multiplier is a valuable tool for finding the Lagrangian of a second-
order system. In recent years, it has also been employed to derive the first integral for
first-order ordinary differential equations[ODE].
In the following chapters, we’ll provide a detailed derivation of two cosmological equa-
tions using two different approaches: one based on classical laws and the other based
on Einstein’s General Theory of Relativity. We’ll explain how to obtain the
Hamiltonian using approach 3.1 in chapter 3 and will also apply this to cosmological
equations for the state of matter called dust. In chapter 3.3, we’ll go through the pro-
cess of obtaining Lagrangian using Jacobi’s method and apply this method to obtain
Lagrangian for cosmological equation(for dust case). The comparison of the Lagrangian
and Hamiltonian obtained from the two approaches will be done in the 4.

2 Cosmological Equations

Over the past few decades, there has been significant progress in our understanding and
description of the universe. The fundamental questions concerning the evolution of the
entire universe were first explored and analyzed by Friedmann in 1922, as referenced
in [6,7]. At that time, Albert Einstein’s General Theory of Relativity was already avail-
able, and Friedmann used this theory to derive a set of equations that characterized the
shape, properties, and evolution of the universe. This groundbreaking work revealed
that the universe was not static, contrary to previous beliefs. In 1934, Milne and Mc-
Crea made a noteworthy contribution by demonstrating that nearly the same equations
as those derived by Friedmann using General Relativity could also be obtained through
the application of Newtonian mechanics, as noted in [8–11]. This finding highlighted
the versatility of different theoretical frameworks in explaining the behavior of the cos-
mos. Central to the foundation of modern cosmology is the Cosmological Principle,
which statess that:
The universe is homogeneous(means there is no preferred observing posi-
tion in the universe) and isotropic(means there is no difference in struc-
ture of the universe as looked in different directions) on the large enough
scales.
An extension of the cosmological principle is the Perfect Cosmological Priciple
which states that in addition to being homogenous and isotropic, the universe also does
not change with time; there is no evolution. Therefore in an expanding universe new
matter must be continually created to account for the change in size.
There are two methods to derive the cosmological equations-

1. Using Newtonian Mechanics

2. Using Einstein’s equations of General Relativity

We’ll derive it by both methods.

2.1 Using Newtonian Mechanics

We’re aware that the universe is getting bigger, so we have to distinguish between how
objects move relative to other objects in space and how they move because the entire
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universe is expanding. The Cosmological Principle suggests that no matter where one
is in the universe, one can imagine an observer who sees the universe as the same in
all directions and uniform. These observers are known a co-moving observers, and
we can define a co-moving coordinate system, in which these observers remain at
rest; this means that co-moving coordinates are expanding along with the universe. The
proper distance r is the distance between two regions of space at a constant cosmological
time. As the universe expands, the proper distance between two co-moving observers
increases over time. By definition, the co-moving distance between two co-moving
regions of space remains fixed at all times. It is related to the proper distance as
follows :

r(t) = a(t)x (11)

where r is called the proper coordinate, x is called the co-moving coordinate and a(t)
is the scale factor. So, relative velocity between two points is

v21 =
d

dt
(r2 − r1)

= ȧ (x2 − x1)

=
ȧ

a
(r2 − r1)

By generalizing this formula between any two points, and defining the Hubble’s param-
eter H(t) = ȧ

a
, we get the Hubble’s law:

v = H(t)D (12)

Now, let’s imagine a sphere of uniform density ρ(t), with a radius R. This sphere is
assumed to expand according to the scale factor a, therefore we can define a co-moving
radius XR, and the radius of the sphere as a function of time is

R(t) = XRa(t) (13)

We consider a sphere that behaves according to Newton’s laws of motion, where every
point on the sphere is subject to gravitational attraction from all other points. However,
because the entire system only has one degree of freedom, which is the scale factor, we
can use the equation of motion for a single point to understand how the entire system
evolves. To illustrate this, let’s take a small mass mp positioned at a co-moving distance
xp from the center. The potential energy Ep is

Ep = −GMpmp

rp

where Mp is the mass contained in a sphere of radius rp :

Mp =
4

3
πρr3p

The resulting potential energy is:

EP = −4

3
πρGmpr

2
p
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The kinetic energy is

EK =
1

2
mpṙ

2
p =

1

2
mp

ȧ2

a2
r2p

From the law of conservation of energy[COE],

Etot = EP + EK

therefore,

Etot = −4

3
πρGmpr

2
p +

1

2
mpṙ

2
p

Isolating the derivative of a (
ȧ

a

)2

=
8πG

3
ρ+

2

mpr2p
Etot (14)

Differentiating the potential energy gives the force on the mass

Fp = −dEP

dr
=

8

3
πρGmprp (15)

Einstein thought that the universe was static and, end therefore introduced a second
force that could counteract the non zero acceleration, for all rp, and a non-empty
universe. Since this force had to be of the right intensity at all r, its form is bound to
have the same dependence on the radius as the gravitational force, leading to a potential
energy of this form:

EΛ = const × r2p = −m
Λc2

6
r2p (16)

where the dependence on m is obliged by the condition that all forces and accelerations
in the previous formulas are proportional to it, while the various constants are due to
the relativistic derivation of the same concept. The total energy is rewritten as

Etot = −
mpr

2
p

2

Kc2

6a2
(17)

Hence, with the added term for cosmological constant and new definitions, we can write
the First Friedmann Equation as:(

ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λc2

3
(18)

This equation needs to be solved for two functions: a(t) and ρ(t). The Newtonian
model provides an equation for ρ(t): Since the mass in the sphere is always the same,
as the sphere expands the density decreases, with a relation that is the inverse of the
increment in volume. Therefore ρ ∝ 1

a3
and differentiating with respect to time gives:

ρ̇ ∝ −3
ȧ

a2
(19)

dividing the equation for ρ̇ and ρ gives:

ρ̇ = −3Hρ (20)
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Now, multiplying (18) by a2 and differentiating w.r.t time,

2ȧä =
8πG

3

(
ρ̇a2 + 2ȧaρ

)
+

Λc2

3
2ȧa

dividing by 2ȧa, we get the Second Friedmann Equation

ä

a
= −8πG

6
ρ+

Λc2

3
(21)

Hence, the final two Friedmann equations are:(
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λc2

3
(22)

ä

a
= −8πG

6
ρ+

Λc2

3
(23)

2.2 Using Einstein’s equations:

The key notion of General relativity is that the presence of mass/energy determines the
geometry of space and the geometry of space determines the motion of mass/energy.
Einstein’s general theory of relativity is a geometric theory of gravity— gravitational
phenomena are attributed as reflecting the underlying curved spacetime. An invariant
(with respect to coordinate transformations) interval is related to coordinates of the
spacetime manifold through the metric in the form of:

ds2 = gµνdx
µdxν (24)

The Greek indices range over (0, 1, 2, 3) with x0 = ct and the metric gµν is a 4 × 4
matrix.
We study the universe that follows from the cosmological principle [12]. The cosmo-
logical principle states that: at each epoch (i.e. each fixed value of cosmological time
t) the universe is homogeneous and isotropic. It presents the same aspects (except for
local irregularities) from each point. Due to the symmetries that this principle implies,
we can set a cosmological time which allows us to have a reference time to study the
universe dynamics.
Now, the field equation in Newton’s theory of gravity, when written in terms of the
gravitational potential ϕ(x), is given by:

∇2ϕ = 4πGρ (25)

where ρ is the density of mass and G is the Newton’s constant. The Newtonian theory
is not a dynamic field theory as it does not provide a description of time evolution.
Namely, it is the static limit of some field theory, and thus has no field propagation.
The Newtonian equation of motion is

d2r

dt2
= −∇Φ (26)

Einstein in his theory of gravity, obtained the relativistic generalizations of equations
(25) and (26). In the theory of relativity, space and time are considered equally impor-
tant, and a successful application of relativistic principles naturally leads to a dynamic
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theory. Einstein’s field equations, which describe the gravitational interactions in gen-
eral relativity, can be expressed as [13]

Gµν + Λgµν = kTµν (27)

where Λ and k are undetermined constants.The constant k is determined by demanding
that Newton’s gravitational field equation comes out right but Λ remains arbitrary.The
value of k comes out to be 8πG

c4

The Einstein’s tensor Gµν is defined as:

Gµν = Rµν −
1

2
Rgµν (28)

Hence, EFE can be written(in tensor form) as:

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (29)

where Rµν is the Ricci curvature tensor, R is the scalar curvature, gµν is the metric
tensor, Λ is the cosmological constant, G is Newton’s gravitation constant, Tµν is the
stress-energy tensor, and c is the speed of light in vacuum. The Einstein’s field equations
are a set of symmetric 4× 4 tensors each having 10 components. The equations are
nonlinear, but they have a well-posed initial-value structure – that is, they determine
future values of gµν from given initial data. However, one point must be made: since
gµν are the components of a tensor in some coordinate system, a change in coordinates
induces a change in them. In particular, there are four coordinates, so there are four
arbitrary functional degrees of freedom among the ten gµν . It should be impossible,
therefore, to determine all ten gµν from any initial data, since the coordinates to the
future of the initial moment can be changed arbitrarily. In fact, Einstein’s equations
have exactly this property: the Bianchi identities

Gµν
;ν = 0 (30)

in Einstein tensor Gµν there is a Ricci-tensor and a Ricci escalar. The metric with we’ll
calculate them is the one that we need to particularise our final expressions for the
homogeneous and isotropic universe. Therefore, now we’ve to find a metric gµν such
that it includes all the different aspects of the cosmological principle. This metric is
known as Robertson-Walker metric:

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
(31)

The Robertson-Walker metric describes an isotropic universe because it does not have
crossed terms between time and space so there is not any privileged direction [13].
And it also describes the homogeneous universe because of the spherical symmetry.
The factor a(t) is called the scale factor and is the temporal dependence between the
relative distance of two points of the universe. The scale factor is defined to be 1 at the
present time. The parameter k specifies the curvature of space. For the flat space, it’s
value is 0. It can take three values-+1, −1 or 0. From now on , the time dependence
of the scale factor can be implicit, so a(t) ≡ a.
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We need the Ricci tensor and Ricci scalar to particularise Einstein’s equations for
a homogeneous and isotropic universe. First we calculate the components of metric
tensor and then substitute them in Christoffel symbol formula which is

Γl
ji =

1

2
glm
(
∂gmi

∂xj
+

∂gmj

∂xi
− ∂gij

∂xm

)
(32)

We’ll then use it to get the Riemann tensor which is connected to the Christoffel symbol
as:

Rl
kji =

∂Γl
kj

∂xi
− ∂Γl

ki

∂xj
+ Γm

kjΓ
l
mi − Γm

kiΓ
l
mj (33)

2.2.1 Calculating metric tensor:

The metric tensor gij is a function that tells us how to compute the distance between
any two points in a given space. Its components can be viewed as multiplication factors
which must be placed in front of the differential displacements dxi in a generalized
Pythagorean theorem:

ds2 = g11dx
2
1 + g12dx1dx2 + g22dx

2
2 + . . . . (34)

In Euclidean space,gij = δij. Now, for the Robertson-Walker metric, we set :

x0 = ct x1 = r x2 = θ x3 = ϕ

The non-zero components of metric tensor gik and gik using equation (24) can be cal-
culated as :

g00 = 1, g11 = − a2

1− kr2
, g22 = −a2r2, g33 = −a2r2 sin2 θ (35)

g00 = 1, g11 = −1− kr2

a2
, g22 = − 1

a2r2
, g33 = − 1

a2r2 sin2 θ
(36)

Next, we’ll calculate the Christoffel symbols of Robertson-Walker metric:

2.2.2 Calculating Christoffel Symbols:

Robertson-Walker metric is diagonal and has a symmetric connection, so the majority
of the Christoffel symbols will be symmetric or null. The non zero components of Γl

ji

are :

Γ1
01 = Γ2

02 = Γ3
03 =

1

c

ȧ

a

Γ0
11 =

aȧ

c (1− kr2)
Γ0
22 =

aȧr2

c
Γ0
33 =

aȧr2 sin2 θ

c

Γ1
11 =

kr

1− kr2
Γ2
12 = Γ3

13 =
1

r

Γ1
22 = −r

(
1− kr2

)
Γ1
33 = −r

(
1− kr2

)
sin2 θ

Γ2
33 = − sin θ cos θ Γ3

23 = cot θ
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2.2.3 Calculating Riemann tensor:

Riemann tensor is defined as:

Rl
kji =

∂Γl
kj

∂xi
− ∂Γl

ki

∂xj
+ Γm

kjΓ
l
mi − Γm

kiΓ
l
mj (37)

Ricci Tensor Rki is the contraction of the Riemann tensor:

Rki ≡ Rl
kji (38)

and Ricci scalar R is the contraction of Ricci tensor:

R = gikRik (39)

So, we’ll calculate only those components of the Riemann tensor which have the same
top index as the middle bottom one. These components are enough to calculate Ricci
tensor.

R00 = Rm
tmt = Rr

trl +Rθ
tθt +Rϕ

tϕt =
3

c2
ä

a
(40)

R11 = R22 = R33 =
1

c2

(
ä

a
+

2ȧ2 + 2kc2

a2

)
(41)

Finally, we can write Ricci Scalar as:

R = gikRik =
6

c2

(
ä

a
+

ȧ2 + kc2

a2

)
(42)

2.2.4 Energy-momentum tensor Tµν:

We can conceptualize the universe as being filled with perfect fluid, as this type of
fluid adheres to the cosmological principle. A perfect fluid, by definition, is isotropic,
which means that it appears the same in every direction we can observe. Consequently,
the macroscopic speed of this fluid doesn’t favor any particular direction; it only has
a component related to time. i.e uα = (1, 0, 0, 0). The explicit expression for the
energy-momentum tensor is:

Tµν = (ρ+ p)uµuν − pgµν (43)

where uα is the macroscopic speed of the medium. Now we can find the energy-
momentum tensor for a perfect fluid. It has only diagonal components:

Ttt = ρgtt Tii = −pgii

Now, we’ve calculated all the components of Einstein’s equation. So now, we’ve to
plug all the elements into Einstein’s Equations (29). The only equations that will be
different from the null ones are those that have the same indexes since our metric is
diagonal [13]. Therefore, we start with the temporal part.

Rtt −
1

2
Rgtt − Λgtt = 8πGρutut (44)
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−3
ä

a
+ 3

ä

a
+ 3

(
ȧ

a

)2

+ 3
1

K2a2
− Λ = 8πGρ(t) (45)

Rearranging the terms, (
ȧ(t)

a(t)

)2

=
8πG

3
ρ(t) +

Λ

3
− 1

K2a2(t)
(46)

This is the first Friedmann equation. We’ll now take the spatial part:

Rii −
1

2
Rgii − Λgii = 8πG(−p)gii (47)

therefore,

− ä

a
− 2

(
ȧ

a

)2

− 2

K2a2
+ 3

ä

a
+ 3

(
ȧ

a

)2

+
3

K2a2
− Λ = −8πGp (48)

or,
ä(t)

a(t)
+

1

2

(
ȧ(t)

a(t)

)2

= −4πGp+
Λ

2
− 1

2

1

K2a2(t)
(49)

Now we do 2×(49)- (46), we get:

ä(t)

a(t)
= −4πG

3
(ρ(t) + 3p) +

Λ

3
(50)

This is the second Friedmann equation.
Therefore, in the derivation of Friedman equations, whether in the framework of relativ-
ity or Newtonian physics, we’ve obtained dynamic expressions that describe a universe
that is non-static, isotropic, and homogeneous under general conditions.

3 Construction of Lagrangian and Hamiltonian struc-

ture using time-independent constant of motion

In this section, we’re going to understand in detail how can we write the Lagrangian and
Hamiltonian structure for a system starting from just one time independent constant
of motion [1].
Consider a system of 2n first order differential equations for 2n variables xa,

ẋa = fa
(
xb
)
, a, b = 1, 2, 3, . . . , 2n (51)

The Hamiltonian structure for the system consists of Hamiltonian(H), a Poisson Bracket
relation which can be described in terms of a matrix called Poisson Bracket matrix Jab.
Poisson Bracket can be written in the following form for defining J [14]

{F,G} =
∂F

∂zi
J ij ∂G

∂zj
(52)

where,

J =

(
0 I

−I 0

)
(53)
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where I is the 3N dimensional unit matrix. The significance of (25) is that the Poisson
Bracket relation is covariant under arbitrary transformations of the phase coordinates
zi [15], that is if

zi = zi(z) (54)

are new coordinates, F (z) is the function F (z) expressed in the new coordinates,and

J
ij
=

∂zi

∂zm
Jmn ∂z

j

∂zn
(55)

transforms as rank-two contravariant tensor.And since the Poisson bracket follows the
anti-symmetric property and Jacobi identity [15],

J ij = −J ji (56)

and

J im∂J jk

∂zm
+ J jm∂Jki

∂zm
+ Jkm∂J ij

∂zm
= 0 (57)

changing the indices from i, m, j, k to c, d, a, b and writing the above expression in
compressed form,

Jab
,d J

dc + J bc
,d J

da + J ca
,d J

db ≡ 0 (58)

this is the well-known Jacobi identity for the Poisson bracket matrix. Hence, Hamilton
equations can be written as:

fa (xc) = Jab∂H

∂xb
≡ [xa, H] (59)

When we’ve the knowledge of the Lagrangian for a system, we can readily derive its
Hamiltonian structure, including canonical momenta, the Hamiltonian itself, and the
Poisson Bracket relations. However, if either the Lagrangian is unknown or does not
exist for a given system, we can’t apply the conventional methods. In this section,
we introduce a novel approach for constructing the Hamiltonian structure of a second-
order system, where the presence of a single constant of motion enables us to establish
both the Hamiltonian and Lagrangian structures. Furthermore, this method allows
us to completely solve the problem. We apply this innovative approach to determine
the Lagrangian and Hamiltonian for the cosmological equations derived in the previous
section.

3.1 Construction of Hamiltonian Structure

Let us consider a system of two first ODEs for two variables xa

ẋa = fa
(
xb
)
. a, b = 1, 2 (60)

We assume that one-time independent constant of motion C1(x
b) is known. Then, this

constant satisfies the following equation:

∂C1

∂xa
ẋa = 0 (61)
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i.e
∂C1

∂xa
fa
(
xb
)
≡ 0. a, b = 1, 2 (62)

Constructing the Hamiltonian structure for the system requires the knowledge of Hamil-
tonian(H) and Poisson bracket matrix Jab.In two dimensions there is essentially one
anti-symmetric matrix, hence

Jab =

(
0 µ

(
xb
)

−µ
(
xb
)

0

)
(63)

The function µ(xb) is determined by Hamilton’s equations condition

fa (xc) = Jab∂H

∂xb

If we choose H = C1,

fa (xc) = Jab∂C1

∂xb
(64)

Now due to (35) the gradient of C1 is perpendicular to f , therefore Jab ∂C1

∂xb is parallel to
fa in 2-dimensional space. Thus (37) determines the function µ(xb) uniquely. Hence, if
a time-independent constant of motion C1(x

b) is known, the Hamiltonian structure is
defined by choosing the time-independent constant as the Hamiltonian, and the Poisson
Bracket matrix is completely determined by Hamilton’s equation conditions.

Construction of Lagrangian Structure

Suppose (q1, q2, ....qn, (p1, p2, ....pn) are the canonical coordinates on a phase space. If
each of them is expressed as a function of u and v, then the Lagrange bracket of u and
v is defined as,

[u, v]p,q =
n∑

i=1

(
∂qi
∂u

∂pi
∂v

− ∂pi
∂u

∂qi
∂v

)
(65)

If the structure is symplectic, then the canonical coordinates (q, p) may be expressed
as functions of coordinates u and the matrix of Lagrange Brackets

[ui, uj]p,q , 1 ≤ i, j ≤ 2n (66)

We’ll denote the Lagrange bracket matrix by σab(changing the description from p, q to
a, b). The Lagrange Brackets matrix also follows an anti-symmetric condition and is
the inverse of the Poisson bracket matrix. Thus,

σab =

(
0 1

µ(xb)
− 1

µ(xb)
0

)

σab = −σba

and,
Jabσbc = −δac (67)
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Now, Hamilton’s equations can be written as

ẋa = Jab∂C1

∂xb
(68)

Multiplying both sides by σca we get the Lagrangian form of Hamilton’s equations:

σcaẋ
a +

∂C1

∂xc
= 0 (69)

The Lagrangian L(q, q̇) can be written as:

L = pq̇ −H (70)

Now consider the Lagrangian L = L
(
xa, ẋb

)
L = L

(
xa, ẋb

)
= l1 (x

a) ẋ1 −H (71)

Since we made the choice H = C1(x
b), therefore

L = L
(
xa, ẋb

)
= l1 (x

a) ẋ1 − C1 (x
a) (72)

where l1(x
a) is defined by

∂l1
∂x2

=
1

µ
(73)

Since a and b both take two values 1,2 we can write the Euler-Lagrange equations for
(46):

∂l1
∂x2

ẋ2 +
∂C1

∂x1
= 0 (74)

and

− ∂l1
∂x2

ẋ1 +
∂C1

∂x2
= 0 (75)

These are equivalent to the Hamilton’s equations (43). the function l1(x
a) is determined

upto and addition of arbitrary function f1(x
1). This modifies the Lagrangian (45) by

a total time derivative, hence Euler-Lagrange equations (47) and (48) remain invariant
under the change.

3.2 Dynamics of a general second order system

Consider a second order system defined as:

q̈ = F (q)G(q̇) (76)

This second-order equation can be written as two dimensional first order system.So we
define:

x1 ≡ q (77)

and,
x2 ≡ q̇ (78)

The equations of motion can be written as:

ẋ1 = x2 (79)

14



and,
ẋ2 = F

(
x1
)
G
(
x2
)

(80)

Now, we’ve to find the time-independent constant of motion C1. Therefore we have to
write equation (49) in the following form before integrating:

q̈

G(q̇)
= F (q) (81)

Integrating, we get ∫
q̈

G(q̇)
dq =

∫
F (q)dq + C1 (82)

or, ∫
q̈

G(q̇)
q̇dt =

∫
F (q)dq + C1 (83)

or, ∫
q̇

G(q̇)
dq̇ =

∫
F (q)dq + C1 (84)

Hence, time-independent constant C1 can be written as:

C1(q, q̇) = −
∫

F (q)dq +

∫
q̇

G(q̇)
dq̇ (85)

Therefore, the hamiltonian H is given as:

H
(
x1, x2

)
= −

∫
F
(
x1
)
dx1 +

∫
x2

G (x2)
dx2 (86)

and the Poisson Bracket matrix can be written as

Jab =

(
0 G (x2)

−G (x2) 0

)
(87)

The momentum p can be written as:

ṗ = −∂H

∂q̇
(88)

hence momentum p is given as

p =

∫
dx2

G (x2)
(89)

Now consider the following functional form of G(q̇):

G(q̇) = q̇ (90)

for this form, the time-independent constant, the Hamiltonian, and the canonical mo-
mentum take the following form:

C1 = −
∫

F (q)dq + q̇ (91)

p =

∫
dq̇

q̇
= ln q̇ (92)

H(q, p) = −
∫

F (q)dq + ep (93)

We’ll now apply the above approaches and results for obtaining the Lagrangian and
Hamiltonian for the cosmological equations that we derived in chapter 2.
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3.3 Lagrangian and Hamiltonian structure for the cosmologi-
cal equations:

For writing the Lagrangian and Hamiltonian for cosmological equations, we consider a
special state of matter called dust for which P = 0. We’ll be focusing our discussion on
the flat universe model i.e. k = 0 and as of the present discussion we will not consider
cosmological constant. Hence taking into account the points, Friedmann equations take
the following form: (

ȧ

a

)2

=
8πG

3c2
ρ (94)

2
ä

a
+

(
ȧ

a

)2

= 0 (95)

Now, substituting the value of
(
ȧ
a

)2
from (94) into (95) we get:

2
ä

a
+

8πG

3c2
ρ = 0 (96)

or,

ä = −
(
4πG

3c2
ρ

)
a (97)

From equation (20),
ρ̇

ρ
= −3

ȧ

a2
(98)

Integrating both sides, we get

ρ =
k1
a3

(99)

Substituting ρ in (97)

ä = −
(

4πG

3c2a2

)
k1 (100)

Now, we find the time-independent constant for (100). Choosing x1 = a and x2 = ȧ we
can write the constant C1 using (85) as:

C1 = −
(
4πG

3c2a

)
k1 +

ȧ2

2
(101)

Putting k1 = ρa3

C1 = −
(
4πG

3c2

)
ρa2 +

ȧ2

2
(102)

Dividing throughout by a2 and substituting the value of
(
ȧ
a

)2
from first Friedmann

equation, we get:
C1 = 0 (103)

Hence, we use another constant C ′
1 as:

C ′
1 = f(a, ȧ)C1 (104)

16



Now, differentiating C ′
1 w.r.t time

dC ′
1

dt
= f ′(a, ȧ)ȧC1 + f(a, ȧ)Ċ1 = 0 (105)

Hence, we’ve seen that:

1. C1 is a constant of motion and hence can be taken as the Hamiltonian

2. The first Friedmann equation can be satisfied provided C1 vanishes.

3. We can multiply C1 by any function of a and ȧ to get a new constant C ′
1(which can

also be taken as the Hamiltonian) which satisfies both the cosmological equations.

Now, the task that remains is to choose f . We’ll choose the function f(a, ȧ) in such a
way that the Hamiltonian whose role is played by C1 is the linear combination of:

1. Matter Hamiltonian(Hm) - which depends on density ρ or k1

2. Gravitational Hamiltonian(Hg) - which depends on a and ȧ

i.e
H = Hg +Hm (106)

Therefore, we choose f as:

f(a, ȧ) = − 3c2

4πG
a (107)

hence the Hamiltonian H can be written as:

H = C ′
1 = f(a, ȧ)C1 = k1 −

3c2

8πG
aȧ2 (108)

Hence, H = Hg +Hm , where

Hm = k1 = ρa3,Hg = − 3c2

8πG
aȧ2 (109)

Now, the Hamilton’s equations are given as:

∂H
∂x2

= µẋ1 (110)

∂H
∂x1

= −µẋ2 (111)

where µẋ1 = q̇(in our case ȧ) and µẋ2 = −ṗ. Hence

µ = − 3c2

4πG
a (112)

therefore,

p = − 3c2

4πG
aȧ (113)
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Now, substituting ȧ into H, we get

H = Hm −
(
2πG

3c2a

)
p2 (114)

This is our final expression for Hamiltonian. Now, Lagrangian is given as :

L = pq̇ −H = p
∂H
∂x2

−H (115)

Therefore,

L = −Hm +
3c2aȧ2

8πG
(116)

This is our final expression for Lagrangian. We can verify through Hamilton’s equations
that the Hamiltonian given here gives back the cosmological equations we started with.
Hence the functional form of our Hamiltonian is correct.

Constructing Lagrangian using the method of Ja-

cobi’s Last Multiplier(JLM)

In this section, we’re going to discuss the link between Jacobi’s last Multiplier(JLM) [16]
and the Lagrangian of a second-order system [17]. We know that for any second-order
differential equation, there always exists a Lagrangian. But it is also that if we have
the knowledge of a Jacobi Last Multiplier, we can always find the Lagrangian for that
system. Also, the Multiplier provides a straightforward and easy method to derive the
Lagrangian whereas if one follows the standard procedure, one has to face a lengthy
procedure to obtain a Lagrangian(and the corresponding Hamiltonian). Many second-
order ODEs) of the form ẍ = F (t, x, ẋ) admit a Lagrangian description because of the
existence of Jacobi Last Multiplier. Jacobi presented a series of lectures on dynamics
in Berlin during 1847. Of the 38 lectures, three were devoted to what he termed
an ‘un nouveau principe de la mécanique analytique’, which suggests that
Jacobi thought that this was an important development in the subject of Classical
Mechanics [18]. Jacobi’s Last Multiplier is a solution of the linear partial differential
equation, [5]

d logM

dt
+

n∑
i=1

∂ (ai)

∂xi

= 0 (117)

where ∂t +
∑n

i=1 ai∂xI
is the vector field of the partial differential equation

Af =
∂f

∂t
+

n∑
i=1

ai (x1, . . . , xn)
∂f

∂xi

= 0 (118)

or it’s equivalent associated Lagrange system

dx1

a1
=

dx2

a2
= . . . =

dxn

an
=

dt

1
(119)
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An important property of the Last Multiplier is that the ratio of two multipliers say
M/M ′, is a solution of (68) [5], or equally a first integral of (69). Every multiplier M
is a solution of the linear partial differential equation

∂ (Ma1)

∂x1

+
∂ (Ma2)

∂x2

+ · · ·+ ∂ (Man)

∂xn

= 0 (120)

or it’s equivalent,
n∑

i=1

ai
∂(logM)

∂xi

+
n∑

i=1

∂ai
∂xi

= 0 (121)

Conversely, every solution M of this equation is a Jacobi Last Multiplier[JLM].

3.4 From JLM to Lagrangian:

We now present the link between the Lagrangian and Jacobi Last Multiplier for the
second order ordinary differential equation [17].
Consider a second-order system:

ÿ = F (t, y, ẏ) (122)

From equation (67), we can write

d

dt
(logM) +

∂F

∂ẏ
= 0 (123)

or,

M = exp

[
−
∫

∂F

∂ẏ
dt

]
(124)

The relation between the Lagrangian and Jacobi Last Multiplier is:

∂2L

∂ẋ2
= M (125)

which in our case can be written as

M =
∂2L

∂ẏ2
(126)

where L = L(t, y, ẏ) is the Lagrangian sought. This means that if know one Last
Multiplier M , then we can obtain L by two successive integrations:

L =

∫ (∫
Mdẏ

)
dẏ + f1(t, y)ẏ + f2(t, y) (127)

where f1 and f2 are arbitrary functions(constants of integration). Given that La-
grangians that vary only by a total derivative concerning time with respect to a dif-
ferentiable function lead to identical equations, we have the option to establish equiv-
alence classes among Lagrangians. These classes differ only by the total derivative of
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an arbitrary function, which is referred to as a gauge function, as discussed in [17].
Consequently, we can select a gauge function g(t, y) such that:

f1 =
∂g

∂y
(128)

f2 =
∂g

∂t
+ f3(t, y) (129)

Rewriting the Lagrangian in terms of gauge function,

L =

∫ (∫
Mdẏ

)
dẏ +

dg

dt
+ f3 (130)

Now, g is an arbitrary gauge function but the equation (72) is derivable by the above
Lagrangian and therefore the Euler-Lagrange equation must give the second-order dif-
ferential equation we started with. This means f3 is not arbitrary, but it has to satisfy
the Euler-Lagrange equation:

− d

dt

(
∂L

∂ẏ

)
+

∂L

∂y
= 0 (131)

We now consider the following general form of equation of Painleve type [19] and find
its Lagrangian using the above method:

ÿ + A(y)ẏ2 +B(t, y)ẏ + C(t, y) = 0 (132)

Now, from equation (73) we can write,

d

dt
(logM)− 2A(y)ẏ −B(t, y) = 0 (133)

solving for multiplier M , we get

M = exp

[∫
(2A(y)ẏ +B(t, y))dt

]
(134)

Now we will consider different cases for different forms of ÿ :

1. ÿ = 0
In this case ,

d

dt
(logM) = 0 (135)

So, now we take M=1 and therefore Lagrangian comes out to be

L =
ẏ2

2
+

dg

dt
(136)

2. ÿ = ẏ2

y

In this case,
d

dt
(logM) +

2ẏ

y
= 0 (137)
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therefore,

− logM =

∫
2
ẏ

y
dt =

∫
2
dy

y
= 2 log y (138)

hence,
M = 1/y2 (139)

and

L =
ẏ2

2y2
+

dg

dt
(140)

We’ll now apply the above procedure for finding the Multiplier and hence the La-
grangian for cosmological equations.
Comparing the second Friedman equation (95) with equation (132), we get,

A =
1

2a
,B = 0, C = 0 (141)

Now,form equation (134), we can calculate the multiplier M, which comes out be a,
hence

M = a (142)

therefore using equation (130) to calulate the Lagrangian,

L1 =
aȧ2

2
(143)

which can also be written as :

L1 = C1
aȧ2

2
(144)

Since our Lagrangian has a gauge freedom we can add any constant to it say L2.
Therefore, we choose L2 as:=

L2 = Hm (145)

so,

L = C1
aȧ2

2
+ L2 (146)

Now, H can be found using Legendre transformation:

H = Hm − C1
aȧ2

2
(147)

As before the Hamiltonian H should vanish. Therefore,

Hm = C1
aȧ2

2
(148)

Dividing both sides by a3 and substituting for
(
ȧ
a

)2
from Friedmann equation, we get

the value of the constant C1

C1 =
3c2

4πG
(149)

hence,

L =
3c2

8πG
aȧ2 −Hm (150)

which is exactly the same Lagrangian we obtained in the previous section.
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4 Conclusions

Through our analysis, we successfully derived the Lagrangian and Hamiltonian struc-
tures for the cosmological equations using two entirely distinct and independent meth-
ods. Remarkably, we found that the results obtained from both methods were identical.
In the first approach, we leveraged a time-independent constant of motion to first de-
termine the Hamiltonian and subsequently the Lagrangian. On the other hand, in the
second approach, we employed a more straightforward and efficient technique known
as Jacobi’s Last Multiplier to directly find the Lagrangian. One notable finding was
that the Lagrangian we obtained exhibited gauge freedom. This means that we can
add any constant value to it without altering the functional form of the Hamiltonian
or any other quantities derived from the Lagrangian. To validate the consistency of
our results, we performed reverse calculations and confirmed that the Lagrangian and
Hamiltonian we derived indeed produced the same cosmological equations we initially
started with.
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