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Abstract

A particular class of real manifolds (Hermitian spaces) naturally model
smooth, possibly complex n-spaces. We show how to realize such a space
as a restriction of a super-smooth stack using a compass. We also discuss
the classical relationship between iterated loop spaces and the configura-
tion space of a particle.

1 Background

1.1 Overview

We will trace our lineage back to, approximately, the early 1970s with works of
Segal, which centered around the applications of fiber bundles to quantum field
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theory, and McDuff, and to even earlier mathematical foundations in Boardman
and Vogt, in the 1960s. Chapter one gives some preliminaries on tangent vector
fields on smooth manifolds, and restrictions to the discrete case. Chapter two
describes the configuration space of McDuff, with some criteria for tensorability.
We also describe the E-spaces of Boardman and Vogt.

The mathematical and physical interpretations of configuration spaces differ
somewhat, and this is in part an attempt to reconcile these viewpoints. Config-
uration spaces were discussed in [15] in relationship to cross sections. This was
largely a mathematical treatise, although one may plausibly envision a compat-
ible physicalist interpretation.

We employ relatively simple methods here, i.e., we do not grapple with
knot theory or Gromov-Witten theory, but instead tackle symmetric products
of foliations on manifolds.

In the appendix we cover topics such as the categorification of the Taylor
expansion.

1.2 Imposing Discreteness on Smooth Spaces

Let C∞n be a smooth manifold of dimension d, possibly with corners, with or
without boundary. One can restrict to a submanifold of the same dimension1:

C∞n ↠ Cfin
n

so that the tangent vectors

tanvec(x) = (ṽ ⊗ h̃)(x) (1)

about the point x yield the following compass2:

Ωk∼∞
x = Compp

giving us x as the inf-pole and some discretized point k corresponding to a
point “at infinity.” McDuff [1] used this discretization to model the creation and
annihilation of antiparticle pairs, where

lim
→

p = sup(Compp) ; lim
←

= inf(Compp)

Here, we choose to let k be any generic cardinal invariant within the com-
pactly generated (presentable), smooth category SmFld of smooth fields. We
have

(lim n
n→∞

)↠ k

which “realizes” the smooth motion of a quasi-quantum as a particle in a
Hermitian manifold

1In doing so, one obtains a boundary, ∂Cfin
n ⊂ int(C∞n )

2See [2] for a brief introduction to compasses
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R4 ≃ C∞†

In [3], it was shown that if a boundary existed for C∞n , then it was unreal-
izable as a pullback locally within R4. We generalize this here to Rd for any
dimension.

1.3 Tangent vectors

Axiom 1 Let (eq. 1) be valid for any point p ∈ Cfin
n . Then, we say p obeys

the “tangent space axiom.”

Proposition 1 If p obeys the tangent space axiom, then Compp is stable.

Proof : Since there exists a neighborhood U(p) of p, and since the space is
assumed to be Hausdorff, then there exists both a right and left limit of the
directional derivative taken at p, lying inside U(p)

∀p ∈ spaces obeying Axiom 1 ∃ lim p⃗
↔
∈ U(p)

1.3.1 Subcategories of □

We denote the class of spaces obeying (Axiom 1) by □̂, and let it be a full

subcategory of □ (see [3] for more information). Objects of □̂ are spaces and
morphisms are diffeotopies.

We can extend □̂ by taking its union with the class of pure potentials,
□̂∩Pur, and denote this by □̂Ext. Since Pur is a smooth category [4], □̂Ext is
also smooth (as can be easily demonstrated by the axiom of extension [5]). We
then have the map

A ∈ □̂ Mor−−−→ A′ ∈ □̂Ext

giving us a Morita equivalence between the underlying algebras of □̂ and its
extension.3

The class of subcategories of □ is given by two pieces of data:

1. A full subcategory □̂ of □

2. An extension □̂Ext of □̂ into the union with Pur

Which correspond to the set □(A,A′) = □A.4 We can show that this set is
actually a poset by imposing an arbitrary relationship R on □A such that the
generalized cocycle condition holds. That is to say, for a partial flag variety:

□̂ ≃ A ⊂ □̂Ext ≃ A′ ⊂ □̂ExtExt
≃ A′′

3See [6] for more information.
4See [7, sect. 2b]
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we obtain the transitive relationship ARA′RA′′, which corresponds to the
extension of the Morita equivalence class A/Mor of the algebra A to encompass
boundaries beyond the limit k of a generic sequence of operators acting on
geometric realization of the algebra.

Example 1 Let C be a complex space and A its underlying algebra. The Rie-
mann sphere, C ∪ {∞} extends the algebra of this space to a new algebra A′.

According to [6]5., in order for our theory to be quantum, we must allow for
tensoring of manifolds:

MA ⊗MA′
≃−→MA⊔A′ (2)

U(p)⊗ U(p′) ≃−→ U(p⨿ p′) (3)

2 Configuration space

Here we will discuss the configuration space of McDuff.
Let EM be a bundle over a manifold M; McDuff showed that the homotopy

type of the bundle is equivalent to the homotopy type of a configuration space
C̃± of some set of particles P± which may have a positive or negative charge.
In his model, all particles had pairwise separation ≥ 2ε, and only particles of
the same parameters could annihilate one another. McDuff proved this fact by
invoking quasifibrations on a disc centered about some particle p.

Here, we add the following ingredient: every particle p± has an associated
truth value τ(p±) in the structure sheaf OX of the particle. The bijection

τ(p±)↔ ȧ(p)

corresponds to a referential instantiation by an agent at a particular modal
frame, corresponding physically to either the existence or non-existence of the
partical in a position at a time t=0. That position is determined by the variable
θ, which determines the anisotropy between the absolute frame generated by
T ⊐ OX . This is called a “state,” and is given by a bijective map of algebras

TA
MorExt←−−−−→ OXA′ .

We can more succinctly summarize the results of McDuff’s wonderful treat-
ment of configuration spaces if we introduce a canonical fiber bundle, Γ∆, over
OA by letting each δi-small neighborhood about p take its fibers in Γ∆. In this
way, we derive the structure sheaf of the particle by

OX = Hom(OA, fib(OA)) ≃ Γ∆

5The notation used by Segal differed from ours. Very elegantly, he wrote Ox = lim
←

H∂D.

The vacuum expectation value, Θk, is taken by tensoring over all Oxk
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2.1 Symmetric Product

Let
m
⊗ be the m-fold symmetric product. For every neighborhood U(p±), we

having an incoming connection, inΓ∆ , and an outbound connection outΓ∆ .

Axiom 2 (Looping) Given a collection of neighborhoods
∑n

i=0 Ui(p±), the m-
fold symmetric product of incoming connection yields an outbound connection
about a fixed point. Formally:

inΓ∆
(Ui(p±)

m
⊗ Ui(p±)) = outΓ∆

(∗) (4)

This gives us a fairly nice agreement with the vision of Boardman and Vogt
of configuration spaces as iterated loop spaces. See, for instance, [7] and [8]. We
obtain the following exact sequence:

Γ∆ : inΓ∆ → inΓ∆ → ...→ outΓ∆ ;

the sequence is long whence the symmetric product is taken about a smooth
space, and short whence this space is discrete. We make the identification

Ho(Ui(p±)) = Ho(Rn)

by letting the l.h.s. be equal to P, and letting the r.h.s. be equal to C̃±.

2.2 Superposition

We denote the superposition of all the particles in P by ΨP(♡). This notation
is due to O. Hancock, and is a very succinct representation of the “pure space”
over a particle. Always, when such a superposition is considered, it is either
over Pur, or over □̂Ext. That is to say:

ΨP(♡) ∼ Pur ⊓ p⃗±

In some sense, the wordline of a particle may be considered as a classical
analogue of the structure sheaf OPur of the particle over a probabilistic space.
For technical reasons, we let the probability space be metrizable, and denote its
metric by µ.

The realization of a quantum is denoted by:

q̂ ⋆µ OPur −→ q ; q ∈ Rn

Or as a closure:

(q̂, q̂′) ; q̂ ̸ Rq̂′

Zanthius6 proposed that something similar to a quasi-quantum (q̂) may exist
as a sort of “strange attractor,” where high probabilities of attraction converge

6Real name unknown; private conversation

5



(presumably asymptotically) to the instantiation of gravitational effects. This
elegantly seems to unify the principles of relativity with quantum effects in a
phenomenologically consistent manner.

However, one seems to be missing something from this theory. Namely, the
underlying topological stack on which quantum gravitational phenomena emerge
is left anonymous. Here, we propose that Rn be a sufficient general manifold for
realizing this stack. We must include the following caveat - the realization of
the stack A is not an ordinary (concrete) realization, but a projective realization
onto the topology in which quanta actually emerge.

2.2.1 Quasi-quanta

Quasi-quanta were first invoked by P. Emmerson in [9] and were expanded upon
in [3]. To provide a brief summary, a quasi-quantum, q̂, has an a-priori exis-
tence which is not yet tied to an existential quantification. The type-dependent
inclusion, ∈•, in a subclass of Man gives us an existential quantification

∃•p± ∈Man

where Man is the category of manifolds. We restrict to the category of real
manifolds in the case where an n-tuple of quasi-quanta is realized as a physical
quantum. The realization of quasi-quanta is given by a basepoint preserving
homomorphism Sn × Simpl −→ Sn, which preserves the endpoints of a pre-
determined interval. This interval is given by

(−∞, 0]× [0,∞) −→ (−∞, 0,∞)

In our case7, and in Segal’s case, a specialization ∞ ⇝ k can be made to a
discrete cardinal k. This assignment of an infinitary ideal to a discrete cardinal
approximates a certain locally constant section of the smooth manifold C∞n at a
place. This will be referred to as the truncation of C∞n with respect to a metric
µ.

I shall argue that truncation acts effectively as a form of quantization to
instantiate action, as projected by the absolute frame A to the real manifold
Rn. This is Emmerson’s thesis on quasi-quanta.

This thesis is essentially metaphysical, as it takes some objects (i.e., the
“energy numbers”) to be a-priori to others, such as the reals. The real numbers
are obtained by the restriction E|∞→k. We obtain not just one map, E −→ R,
but a whole slough, via hom(E,R). In this way, it makes sense to define a
sort of generalized connection between the two, and even more abstractly, a
generalized connection ΓExt between a ring and its overring. In order to define
such a construction, we assign an index set I to each ring under the operation
⋆. We then have

I⋆(Rng) : Rng −→ Rng

∣∣
τ∈OX

7c.f. [10]
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giving us the faction-level correspondence between the elements of the ring
and their localized (refracted) truth values. This corresponds to the canonical
operator product expansion:

A(x)B(y) = Σ
i
ci(x− y)Ci(y)

where y is a point, A and B are operator-valued fields, Ci are operator-valued
fields, and ci are analytic functions over O \ {y}. The sums are convergent in
the operator topology within O \ {y}.

Example 2 Let StratM be a stratified manifold, and let EP : y −→ ξ be an
exit path. Then, we have the equivalence

A(x)B(y) ∼ G(y, ξ)

if x=y.

2.2.2 Exit Paths

The projection Pur ×Man −→ M gives rise to a stratification, γ over some
object of ManH. The morphisms in this category correspond to sections of
holonomy fibers, and they are the fundamental units (currency) of the kinetic
action of observables in the vector space over ManH. This formalism may be
written as

EP : (Pur ×Man)γ −→ StratM

The micro-coordinates of q̂ are picked out (selected) by γ, and the selection
equation

S = θ exp(π0(γ))

holds across all locally constant sections of the sheaf of torsors over StratM .

2.3 E-spaces

We kindly refer the reader to [7, theorem A] for the masterful articulation of
Boardman and Vogt. Stated verbatim,

Theorem A. A CW-complex X admits an E-space structure with π0(X) a
group if and only if it is an infinite loop space. Every E-space X has a ‘’classifying
space” BX, which is again an E-space.

Definition 1 A “homotopy-everything H space” (E-space) is an H-space in
which all coherence conditions hold.

An E-space E has quotient uniformity for Y relative to a functor f, which
has been denoted by Himmelberg [12] as f(U), where

f = X ×X → Y × Y
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For suitably chosen bases, we have the homotopy groups π0(X) and π0(Y ),
and also hom(X,Y ). In an E-space, this hom-set commutes under the group
operation. A remark made at the end of the paper introducing quotient uni-
formities suggested that, for distinct timelike equivalent particles (p ∼ p′)/ ∈R,
there ought to be a distinct neighborhoods

(U(p) \ p′)≁(U(p′) \ p)

This implies that for sufficiently small tangent vectors (tanvec(p, p
′)) << 1,

there exists a connection
(p, p′)

Γ∆−−→ U(p, p′),

and a larger neighborhood

Σ
i
Ui(p, p′) =

i
∩ pi ∼ (p, p′) ∈R Mn

which covers both of the two. The localization procedure represents finding
the real part of a complex equation, but goes much further, in that it can express
the similar behavior of overrings in general to extend their algebraic parts via
the inclusion of some transcendental element, which forces the new members of
the overring. These members are bijective onto some set of numbers, which can,
in principle, be arbitrarily extended to inordinately large sizes.

The choice of E-spaces as models of configuration spaces were described
beautifully as early as 1973.

Definition 2 The configuration space of n points in a topological space X is8

Confn(X) := Xn − (x1, ..., xn) ∈ Xn|xi = xj for some i ̸= j

Example 3 Conf2(R2) ≃ R3 × S1

8Verbatim, [14]
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3 Appendix A

3.1 Super-smoothness

Super-smoothness generalizes a variety of physical phenomena, such as super-
fluids, supersolids, and superconductivity. These processes all arise naturally by
letting ∂n

n→∞
= k. One must imagine that a countable cardinal asymptotically

approximates an uncountable one as it is forced and extended towards infinity.
This is in line with the gravitational effects of a rigid body: decreasing the
distance function between two objects, thus increasing their velocity, under the
condition that they never physically contact unless they are of the same nature
but opposite sign (charge).

Thus,

lim
←−
I ∈ C∞n = k(ℏ) = τ(x)

gives us the generalized force-field equation, where x is a product of orthog-
onal vectors on a formally framed manifold.

3.1.1 Projections from the structure sheaf

Axiom 3

Cov(q̂i) =
i
∩pi iff pi = q̂i

This gives us:

µ(pi)
⋆
= µ(q̂i)

so the metrics (stalks of Oµ(ẋ)) agree at a locally constant point ẋ = xyz on

a real manifold. The map Oµ(ẋ)
I−→ |x| is monic. [13, Lemma 2.14]

This implies the existence of a universal filter on A with an open bijection
onto Sets, such that for every element x ∈ Sets, there is a class x/ ∼F= (ẋ, |x|).
This means that, for classes of broadly different cardinalities, there are certain
faithful extensions, which are adjoint to their dual filters, which biject onto the
ground set.

The energy numbers [11] have a non-physical presentation, and a physical

representation. This is represented by the bridge E θ←→ R. This bridge is
vaguely physical, in that it mediates between quasi-quanta and actual quanta.
As a result, it represents orientation-dependent anisotropy between possible and
necessary modal frames.

Ψ(♡) = hom(Eθ,Rθ)
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3.1.2 Good enough to do algebra

Borrowing from [16], we note that there are specific subrings of E and R which
are “good enough to do algebra,” or in other words are “almost algebraic.” This
means the following diagram, where the squiggly arrow represents specialization
to a point-like spatial location, is commutative:

E A

x R

Remark 1 This diagram represents retrocausality, when the map A ⇝ x is
taken to be a map from t = 0→ t < 0. Thus, in order to preserve causal order,
we impose:

Axiom 4 x occurs at time t=0

which forces x to be contained within □ : e× e
θ−→ p±.

e× e e

e p±

θ

Here, e × e is the main diagonal of an entourage, which is covariant with
respect to the tangent momentum about p±. The above diagram is a corner

of a spacetime cuboid, which forms an exit path □
√
2e −→ p±. Such an image

may be used to model quantum thermodynamics. [17]
The mathematical form of the “exit path” corresponds to a physical change

in a thermal reservoir in which the catalyst is preserved. Here, θ denotes a
cross-section of the main diagonal of the chosen entourage. Some restrictions
of the Swampland conjectures model this bridge as a diffeomorphism of baby
universes, which are a special case of bordism. The below diagram gives the
unfolding of a cross section into its mutually orthogonal components:

e e× e e

p±

f−1 g−1

θ−1

By [4], there corresponds a path groupoid (e×e)<1> over the main diagonal
which exists in the space of paths over the underlying manifoldM.

We have the Morita equivalence eA
Mor←−→ eA by applying (f ◦f−1)∨(g◦g−1),

which gives us a map θ−1 ∨ θ → p±. All of this goes to show that the above
diagram is contractible to e× e.
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3.2 The Path Groupoid Construction

For a manifold M = [0, 1], we have M<n> denoting the space of smooth n-
dimensional paths overM.

Example 4 M<1> yields the class of first-order differentials overM.

Strictly speaking, it was showin in [4] that it is sometimes easier to treat
problems arising over a manifold as if they were objects in the path groupoid
over said manifold.

Mii Mij Mjj

1 1 1

<> <><>

When the matrices represented by i and j are sent to 1-objects (0-cells, 0-
manifolds), they become commutative and associative, and so any technique
for transforming these matrices into number-objects represents a tactic for con-
structing E-spaces.

j

ωk Ωj
i {i, j}

i

This fulfills the wish that there be some compass Compp. Here, omegak is

the groupoid magma, transforming End(Ωj
i ) into a commutative, associative,

and unital object, thus forming a monoid Monk.

γi,i γi,j

A

γj,i γj,j

•,j

j,• j,•

•,j

Let the above diagram be denoted by Γ−1. Here, A is the pushout of all
of the corners, which model cross-sections in a high-energy lattice. A distinct
choice of orientation determines a basepoint pair (ξ, ξ′), which, when coupled to
a constant map ∞→ k in A yields i or j for each character with 1

2 probability.
We form the interval Iξ by (−ξ, y, ξ′] × [y, ξ′, ξ) = (−ξ, ξ) and define the

integral
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∫
I
=

∫ ξ

−ξ

dω

dt

by Taylor expanding the radial volume of each tubular neighborhood about a
zero-manifold of choice. Letting 2ε be the minimum piecewise distance between
points α, α′ yields the function

i ∈
∫
I
= i

2
<< i′ = d(α, α′)

which is effectively a Boolean algebroid. This ensures that a topological
realization, and more specifically a configuration space which can realize quanta,
is totally disconnected, so we have RManTot giving us the desired discreteness.
This is a reflexive realization of FDHilb, the category of finite-dimensional
Hilbert spaces.

Definition 3 The Taylor expansion of order r (or r jet) of a function f at
p is defined to be the equivalence class

jrp := [f ]rp ∈ Jr
p = C∞(X)/mr+1

p

A result of E. Borel [18] says that the “Taylor expansion map”

jp : C∞ → J∞p

is surjective.
In order to construct an r-jet, we pick a representative r-cell in (call it ιr)

in the path groupoid J∞p
<1> over the algebra of observables. We then consider

a cross-section of the main diagonal X ×X of the geometric representation of
the algebra. We then define s(p) by

s(p) = [a0(p) + a1(p)(x− p) + ...+ ar(p)(x− p)r] ∈ Jr
p

and assign to each transformation θ : X×X −→ G to a G-equivariant object
the connection Γ∆(s(p)).

X X ×X G

G Γ∆

prdiag θ

γiθ

γj

The quotient algebra

A•(X(r)
∆ ) := A0,•(X ×X)/a•r

in particular is a differential graded algebra (dga). See [19] for more details,
and for constructing Dolbeault dgas based at a point.
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