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Some Speculations on Black Hole Evaporation and Quantum Gravity 

 

Randolph L. Gerl 

 

Abstract: A possible way to understand the preservation of information during black hole 

evaporation is explored and a new approach to quantizing General Relativity is considered. 

Black holes, like all physical objects, are subject to the energy-time uncertainty principle which 

means their spacetime characteristics must have quantum uncertainty. It is conjectured that this 

quantum uncertainty is what permits the escape of energy and information from black holes. It is 

further conjectured that spacetime and mass-energy can be quantized together (here termed 

metric quanta) by replacing spaces based on the real number line with a quantum information 

state. Eigenvalues of operators that act on the information state characterize the metric quanta 

and this means that differential equations do not ultimately describe nature. A formulation of 

General Relativity is explored that uses a quantization procedure which replaces the basis vectors 

for curvilinear coordinate systems with operators that act on the information state of the cosmos. 

This paper concludes with the possibility that these ideas can eventually be made into a workable 

theory. 

 

 

0. Introduction 

 

The speculations covered in this document necessarily involve extensions to conventional ideas. 

However, some conventional ideas are derived and covered as a necessary part of exploring the 

various conjectures. This text begins with the observation that quantum uncertainty applies to all 

physical things, including black holes. Next, quantum uncertainty and its relation to Hawking 

Radiation and quantum information is postulated and calculations are given for Schwarzschild 

black holes. Quantum information and its relationship to spinors is explored followed by a 

postulated quantization of spacetime and energy that respects all the symmetries of standard 

physical theory. This quantized approach replaces differential equations as the basic description 

of the cosmos and the limitations of differential equations is explored in the context of quantum 

state reduction. A toy model of quantized General Relativity is presented which explores how 

quantum gravitational uncertainties in the metric relate to uncertainties in curvature and the 

energy-momentum tensor. A final discussion and summary, listing the open questions and virtues 

of this approach, concludes the discussion. 
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1. Measurements And Observations 

 

It takes a certain amount of time to make any measurement or observation. And over that time 

interval, Δt, there is an intrinsic uncertainty in the energy of the measurement on the order of 

ħ/(2Δt). Furthermore, if the object under observation is large enough, light may not have enough 

time to travel across it in the time interval Δt. In this circumstance, the measurement may turn 

out to be incorrect since the object itself may have changed its size or state before the observer 

can see the change.  This would be the case if information about such changes could not reach 

the observer in the time interval Δt. So, for a measurement to be valid it should be conducted 

over a sufficiently long time so that all the relevant information can reach the observer. Time and 

information are both involved in the reduction of quantum states.  

 

Measurements, almost by definition, is information that must obtained over a certain amount of 

time. Because of relativity, the information may be out of date unless it can be shown that it has 

not been changed over the time interval that observations are being made. This time interval can 

be thought of as being defined by a characteristic distance. This motivates defining a certain time 

interval which, in this paper, is termed the quantum characteristic time Δt. This is the time it 

takes for a photon to encircle a spherical region containing an object, where the maximum width 

of the object is equal to the diameter of the spherical region. Nature, quantum mechanically 

observing itself, should need this characteristic time for state reduction and the expression of 

quantum information. The quantum characteristic time, which (from now on) will be referred to 

as the characteristic time, is defined to be: 

 

 

 

Where D is the diameter of a sphere enclosing an object with a maximum size D.  A quantum of 

energy ΔE = ħc/(2λ), with wavelength λ=πD, can be thought of as encircling the object and that 

energy is the uncertainty of the energy of the object. The wavelength in this case is the 

characteristic distance. It is reasonable to think of the required time for a photon to encircle the 

object as equal to the time needed for state reduction to occur, but the characteristic time is not 

limited to that. The characteristic distance is what defines the wavelength and therefore 

uncertainty in energy. All material objects are subject to the uncertainty principle: 
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    Equation (1) 

 

Any object, even macroscopic objects, have an intrinsic uncertainty in their mass-energy equal to 

ħ/2 divided by the characteristic time.  For a quanta of wavelength λ state reduction can take 

place anywhere within and around the space containing an object of size D. Within the time 

associated with that, quantum fluctuations take place with the uncertainty in energy. The 

fluctuations can be thought of as being confined to a sphere of diameter D and, because of the 

finite speed of light, the fluctuations inside the sphere cannot leave the sphere in less time than 

the characteristic time.   

 

 

2. The Characteristic Time for a Schwarzschild Black Hole 

 

A distant observer of a black hole observes the black hole in its own tangent space. In that 

tangent space, the observer says a Schwarzschild black hole has a diameter of 4GM/c2 which is 

twice its Schwarzschild radius. Relative to this observer’s tangent space, quantum fluctuations 

distort the black hole’s spacetime independent of the extreme gravitational time dilation that 

exists within the body of the black hole itself.  The equations of General Relativity show that 

changes in the warping of space cannot travel through space at speeds greater than the speed of 

light. So, changes in the warping of space at the event horizon cannot travel faster than the speed 

of light. Quantum fluctuations in a black hole’s geometry are also restricted by these physical 

limitations. Distant observers of black holes should agree that the characteristic time associated 

with a Schwarzschild black hole should equal the circumference of the black hole divided by the 

speed of light: 

 

 

Where R is the Schwarzschild radius. Substituting this into equation 1 and solving for ΔE gives: 

 

      Equation (2) 

 

This is the quantum uncertainty in the mass-energy of the black hole relative to distant observers. 

Temperature is just the average energy of a microscopic degree of freedom for a thermodynamic 

system (where that energy is divided by Boltzmann’s constant). The temperature associated with 
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the uncertainty of the mass-energy of the black hole is given by ΔE/kB and is simply the Hawking 

Temperature: 

 

    Equation (3) 

 

 

3. Hawking Radiation and Information 

 

The Hawking temperature, in this view, is the result of the fact that a black hole is a quantum 

mechanical object and the uncertainty in its mass-energy is nothing other than its observable 

quantum degree of freedom.  Dividing both sides of equation 2 by c2 gives the quantum 

uncertainty in the mass of the Schwarzschild black hole as calculated by distant observers: 

 

 

 

For a Schwarzschild black hole, its radius is proportional to its mass, R=2GM/c2.  Since the mass 

of such a black hole has an uncertainty of ΔM, its Schwarzschild radius must also have a 

quantum gravitational uncertainty given by ΔR=2GΔM/c2.  This means physical geometry itself 

must have a quantum uncertainty, that is related to Hawking radiation and information, and this 

leads to conjecture 1: 

 

Conjecture 1: The quantum gravitational uncertainty, in the correct quantized 

version of General Relativity, is responsible for Hawking radiation which results in 

the escape of energy and information from black holes in accordance with unitary 

laws. 

 

Quantum gravitationally, the Schwarzschild black hole can be thought of as having a region of 

uncertainty as to where the event horizon is.  This region of uncertainty can be thought of as a 

kind of shell, at the event horizon, with its thickness having a quantum gravitational expectation 

value of size ΔR=2GΔM/c2, relative to any distant observer.  Relative to such observers, the mass 

in the interior of the black hole is frozen in place due to extreme gravitational time dilation [4].  

One might be tempted to think of the region of uncertainty, ΔR, as a kind of atmosphere above 

the event horizon.  But it is really a region where the event horizon has the most probable 
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location for being found.  For the purposes of this paper, this region of uncertainty will be termed 

the Unruhsphere. The relative size of the region of radial uncertainty is given by: 

 

 

 

So, a Schwarzschild black hole can be depicted as in figure 1: 

 

 
Figure 1 

 

The Unruhsphere can be thought of as a kind of quantum overlap between the interior and 

exterior regions of a black hole. This quantum gravitational overlap allows energy and 

information “under” the event horizon to interact with quantum field fluctuations that exist 

“above” the event horizon.  This quantum gravitational uncertainty does not exist classically.  

Black holes, which must be subject to constant quantum fluctuations, lack a definite 

Schwarzschild radius just like an electron (in an atom) does not have a definite distance from the 

atomic nucleus. The Unruhsphere permits energy and information, that is held in place by 

extreme gravitational time dilation under the event horizon, to interact and influence quantum 

field fluctuations that exist above the event horizon. Conjecture 1 postulates that these 

interactions are unitary and preserve information. 

These interactions result in negative work being done on the black hole, by the quantum vacuum 

fluctuations above the horizon, and positive work being done on those fields by the black hole 

itself.  So, information inside black holes escapes with, and is encoded in, the Hawking radiation.  

The Hawking radiation is not necessarily thermal. Relative to themselves, black holes quickly 
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disintegrate and relative to distant observers’ black holes can persist for many trillions of years. 

Observers falling into a black hole would immediately find themselves being torn apart by the 

furious quantum gravitational and quantum field activity that converts them into Hawking 

radiation. 

 

 

 

4. Quantifying The Escape of Information from Black Holes 

 

The power output of Hawking radiation from a Schwarzschild black hole is given by the well-

known formula P=AσT4 where A is the surface area of the black hole, given by 4πR2 where R is 

the Schwarzschild radius, σ is the Stefan-Boltzmann constant, and T is the Hawking temperature.  

The result is Hawking’s well-known equation: 

 

    Equation (4) 

 

The time it takes for a Schwarzschild black hole to completely evaporate, assuming no mass-

energy is added to it, can be obtained by separating variables in equation 4 and integrating: 

 

 

 

Solving for the evaporation time gives: 

 

 

 

Over this time interval, all the mass-energy of the black hole is carried away as Hawking 

radiation and all the information inside the black hole is contained in the radiation in accordance 

with conjecture 1. The information content of a black hole is generally considered to be 

determined by its entropy.  Inverting equation 3 gives: 
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The entropy, S, is given by: 

 

     Equation (5) 

 

Substituting the inverted equation 3 into equation 5 gives the maximum entropy possible for a 

Schwarzschild black hole: 

 

  Equation (6) 

 

 

This expression for the maximum entropy, Smax, also equals (kBAc2/4Għ), where A is the surface 

area of the event horizon 4π(2GM/c2)2.  The maximum number of qubits contained in a system 

with entropy Smax is given by nmax: 

 

    Equation (7) 

 

The number of microstates possible is equal to the dimension of the Hilbert space describing the 

system and it equals 2^nmax. Dividing both sides of equation 6 by kBln(2) and using equation 7 

gives the maximum number of qubits that can be contained in a Schwarzschild black hole with 

mass M: 

 

    Equation (8) 
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It might be expected that the information content should be proportional to the mass (which is 

equal to the volume times the average density) instead of the mass squared. The fact that the 

information content is proportional to the square of the mass suggests that there is a lot more 

information present than might be naively assumed.  Differentiating equation 8 with respect to 

time gives: 

 

 

 

Substituting dM/dt from equation 4 yields the Schwarzschild black hole baud rate: 

 

 

 

This is the maximum rate at which information leaves a Schwarzschild black hole with mass M. 

The information is inside the Hawking radiation.  For a solar mass Schwarzschild black hole, the 

maximum baud rate is just under 153 qubits per second. The energy per qubit also varies 

inversely with the mass of the black hole.  Using the product rule on the above equation and 

using equation 4 we get: 

 

 

 

This shows that the energy per qubit is inversely proportional to the mass of the evaporating 

Schwarzschild black hole. 

 

 

5. The Bekenstein Bound on Information 

 

Equation 8 gives the maximum amount of information that black holes of that type can contain. 

The mass of a Schwarzschild black hole can be expressed in terms of its radius, M=Rc2/2G, and 

can be incorporated into equation 8 by replacing M2 with MRc2/2G. Doing this and letting 
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E=Mc2 gives the Bekenstein bound on the amount of information needed to characterize an 

energy content, E, in a region characterized by size R: 

 

    Equation (9) 

 

This bound is more general and so it applies to more than just black holes. This equation gives 

the maximum amount of quantum information, contained in a sphere of radius R, that contains a 

total mass-energy content E. Viewing R and E as independent variables, the bigger R becomes 

the more information there can be even when E is fixed. So, more information is needed as the 

volume of a space increases even when the energy content does not increase. So the Bekenstein 

bound on information suggests that quantum information may also be describing the spacetime 

“continuum” in addition to its energy content. The information content is quite large. To get a 

feel for how large, it is useful to consider a more ordinary situation. For a mass at a constant 

temperature, equation 5 can be integrated to give: 

 

 

 

And using equation 7 gives: 

 

 

 

This equation gives the amount of information in a mass M at temperature T. For equation 9 to 

give this value, R would have to be ħc/2πkBT. There is a lot of information in the cosmos and all 

that information is conserved.  For example, a 2.04-kilogram brick at a temperature of 70 degrees 

Fahrenheit contains 6.5107x1037 qubits of information. 
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6. Quantum Information 

 

Physical reality is quantum mechanical in nature and so, strictly speaking, there is no such thing 

as classical information. Quantum information, in an unreduced state, corresponds to states in a 

Hilbert space that are a superposition of many states. For a single qubit, an operator is needed, 

which acts on its Hilbert space, that defines the qubit and its relativistic quantum information that 

is measured and observed. The operator should be Hermitian, H†=H, and be parameterized in 

spacetime variables when an individual qubit is in an unreduced state. The approach to this 

problem used here follows that used in [1]. Spinors are nothing more than solutions to relativistic 

wave equations and they are useful in this task. A rank 1 spinor, also known as a flagpole spinor, 

contains four pieces of information that are used in the right-hand side of equation 10.  For 

example, R is the magnitude of a rank 1 spinor. Equation 10 maps that spinor information to a 

non-null four-vector but we know that a rank 1 spinor does not correspond to a non-null four-

vector. Rather, it corresponds to a null four-vector given by a different transformation (it is given 

by the transformation in Appendix B).  Nevertheless, it is useful to consider spacetime 

coordinates in a spherical form with the time dimension, w, given by w=ct, so that it is in the 

same units as the spatial dimensions. Those coordinates are expressed in terms of information 

from a flagpole spinor: 

 

   Equation (10) 

  

The most general 2x2 Hermitian matrix, using the coordinates in equation 10, is given by: 

 

 

 

Here the coordinates (w, x, y, z) are always real-valued.  The determinant of H is: 
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This is the invariant spacetime interval, squared, which is the same in any inertial frame of 

reference and in any differential region of warped spacetime in “free-fall” coordinates. So, in 

another inertial frame, the operator H’ is given by: 

 

 

 

The determinant of H’ is given by  which must equal the determinant 

of H due to relativistic invariance. To find the transformation that changes H to H’, the Hermitian 

character of these operators can be exploited by considering a 2x2 complex matrix, L: 

 

    Equation (11) 

 

Taking the conjugate transpose of this equation gives: 

 

 

 

Where H† = H and (L†)† = L have been used. The primed values in H’ must be real-valued, like 

they are in H, and this equation clearly shows that H’ must be Hermitian too.  So, setting w’=ct’ 

in the primed frame there are the following relations like equation 10: 

 

 

 

It must be emphasized that L is not necessarily Hermitian. Any matrix with complex entries 

satisfies (L†)† = L and so additional information is needed to fully specify L. As was pointed out 

above, it is clear that: 
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And since det(H’) = det(H) taking the determinant of equation 11 gives:  

 

 

 

This suggests det(L)det(L†) = 1 which is satisfied if det(L) = eir for some real number r.  The real 

number, r, can be set to zero, so that det(L) = 1, because any phase factor that det(L) contains has 

no effect on the 4-vectors used in H and H’.  From this, L is completely defined as the set of 2x2 

complex matrices defined by SL(2, C): 

 

 

 

As will be explained shortly, there is no loss of generality in finding the normalized eigenvectors 

of H (using equation 10) by using equation 10 in the special case where R = 1 and α = π/2.  And 

this gives: 

 

     Equation (12) 

 

And H now equals: 

 

 

 

This operator has eigenvalues and normalized eigenvectors given by: 
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     (Right Chiral Qubit) 

Equation (13) 

   (Left Chiral Qubit) 

 

These angles range over the values [0, π] for  and [0, 2π) for θ. These qubits can be expressed 

as linear combinations of the basis vectors  and  : 

 

 

 

 

 

Just as in quantum physics, the probability that these qubits will be in one of the basis vector 

states, after state reduction, is equal to the co-efficient of that state times its complex conjugate.  

For example, the probability that |QR> will be in the state   is equal to 

.  For the qubit |QR>, the state   corresponds to the 

classical bit 0 and the state  corresponds to the classical bit 1. For the qubit |QL>, the state   

corresponds to the classical bit 1 and the state  corresponds to the classical bit 0. If equation 10 

is used instead of equation 12, in calculating the eigenvalues, then the eigenvalues are: 

 

    Equation (14) 

 

But the normalized eigenvectors are the same as in equation 13. As mentioned previously, this 

means there is no loss of generality in these calculations and it also means the additional 

information, R and α, in equation 10 (two pieces of the flagpole spinor information) is not 

encoded into the qubits. Rather, that information is in the eigenvalues.  
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7. Relativistic Quantum Information and Spinors 

 

Rank one spinors contain four pieces of information, the spinor size, two angles, and the flagpole 

angle. That information was used in the right-hand side of equation 10.  Section 6 shows that this 

information is split: two angles are used in qubits (Equation 13) and the size and flagpole angle 

can be in the eigenvalues (Equation 14). This suggests that a spinor size and its flagpole angle 

information should be put into an operator that can act on the qubit so that a connection can be 

found between spinors and quantum information. The spinor size and its flagpole angle are 

information that must be provided by the physical system embodying the qubits. Relativity 

requires that the laws governing quantum information must be the same in all frames of 

reference. This suggests defining an operator, K, that contains the missing information in the 

qubit, namely size and flagpole angle, from the system containing the qubit. Assuming |QR> and 

|QL> correspond to spinors with the same parameters then the operator K has the following 

properties: 

 

   Equation (15-A) 

 

Where K is a matrix operator.  If K is simply a scalar function of the spinor parameters, then: 

 

    Equation (15-B) 

 

In these equations, SR and SL are right-chiral and left-chiral spinors respectively and R is the 

magnitude of the spinor. These equations allow for the transformations of qubits between special 

relativistic frames of reference. The qubits are mapped to their respective spinors, the spinors are 
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then transformed between frames of reference in the usual way, and the operators in the new 

frame of reference are used to get the qubits: 

 

 

 

K’ is easily found using the primed values of the spinor variables (R, ϕ, θ, α). These equations 

are only needed when doing a boost on qubits, they are not necessary when only doing a rotation 

on qubits. Qubits have a magnitude of 1 and rotations do not change their magnitude. The 

rotation operator is the same for both types of qubits in equation 13. So, rotations on qubits can 

be done by using the unitary rotation operator: 

 

 

 

Where θ are the rotation angles and σ are the Pauli matrices.  Since qubits have magnitude 1, i.e., 

<Q|Q> = 1, for any qubit |Q>: 

 

 

 

So, rotations do not need all the information that boosts do. A di-qubit, which could also be 

called a Dirac di-bit, can be defined as follows: 
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With these definitions, quantities and fields in physics can be expressed in terms of qubits. For 

example, let K1 and K2 be 2x2 matrices as defined by equation 15A and define the 4x4 matrix, J, 

by: 

 

 

 

And with the help of the Dirac matrices in the common basis: 

 

 

 

 

 

With these definitions, two vector quantities (Au and Bu), scalar and pseudoscalar quantities (ψ 

and ϕ), and an antisymmetric tensor, Fuv, can be formed from Dirac di-bits as follows: 
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A field of di-qubits can therefore correspond to scalar, pseudoscalar, vector, and tensor fields. 

The question arises: is it possible that quantum information is the basis for the fields that exist in 

nature? Can a unified theory of nature be formulated on information? It is also possible to take 

outer products and tensor products of qubits to obtain new quantities and define fields for them. 

Quantum information can be used to code up the kinds of quantities, and fields, that exist in 

nature, along with their operators. This raises other questions: in what ways can information-

based theories of nature be formulated? Are quantum fields sets of qubits that are in some type of 

unreduced quantum gravitational state? Before going onto these issues, it must be noted that 

|QR> and |QL> are interchangeable with the following operators (e.g. |QR>  = MLR|QL> ): 

 

 

 

These operators are unitary, and they are inverses of each other, and they satisfy: 

 

 

 

With these operators, it is possible to move chiral information into other operators. So, tensor 

products of qubits can have various equivalent representations. Lots of other operations can be 

performed on qubits. Null vectors associated with qubits are reflected through the x and z axes 

when their corresponding qubits are conjugated. The operator , when applied to a 

conjugated qubit, corresponds to a parity inversion on its associated null vector. Qubits and the 



 

18 
 

operations presented so far can be generalized from flat spacetime to warped spacetime. All 

locations in a warped spacetime have an associated tangent space with local Minkowski 

geometry. For that reason, the entire formulation of spinors can be used in warped spacetime [3]. 

Similarly, the entire theory of quantum information formulated here can be used at events in 

warped spacetime. This suggests that warped “quantum” spacetime should be formalizable in 

terms of quantum information. It also suggests that quantum fields can be formulated in terms of 

quantum information.  

 

 

8. 4-Volume Energy That is Invariant: ħ/2 

 

Standard physical theory is currently based on the real number line. The real number line, under 

its usual order, is dense: between any two real numbers, no matter how close together they are, 

there exists an uncountably infinite number of other real numbers between them. The question 

arises, is this the way nature really is?  Are space and time infinitely divisible? The answer to 

both questions is no because of the denseness of the real number line and the uncertainty 

principle. If time is modeled by the real number line, then at any instant of time there is no way 

time can `move’ to the `next’ instant in time. This is because if there were a `next' instant then the 

uncountable number of instants between the two would have been skipped over. And an instant 

in time, which lasts for no time at all, cannot exist because there is no time there. Time exists 

only insofar as there is a non-zero amount of proper time. Temporal extension along the time 

dimension is needed for existence.  Similar problems hold true for space and motion in space. On 

the real number line, it is possible to set up supertasks which, by their very nature, are self-

contradictory. By construction, a supertask forces an unending process to have an end state. It is 

also the real number line that makes singularities possible in physical theory: singularities in 

General Relativity and singularities in field theory. If the real number line corresponded to 

anything physical, then what could it be?  Perhaps an uncountably infinite number of massless 

singularities (i.e., points) arranged in the standard order of the reals? If that is to be taken 

seriously, then what sort of physical theory gives an infinite number of massless singularities? 

Real numbers are usually modeled as Dedekind cuts in standard analysis and that assumes that 

space is infinitely divisible. According to the uncertainty principle, it is not possible to have zero 

uncertainty in time because that would require an infinite amount of energy, nor is it possible to 

have zero uncertainty in space because that would require an infinite amount of momentum. 

Some of these problems can be partially bypassed using relativity.  From relativity, it is known 

that there is no flow to time so it might be conceivable that state reduction in time specifies 

“instants” and none of the uncountably infinite number of other “instants” between them. But 

other problems with the infinities remain and so that is not a satisfactory resolution. All of this 

suggests that the real number line, and spaces based on it, do not correspond to anything that 

exists in nature. Quantum physics suggests that all physical quantities are finite. Infinity is not an 

eigenvalue of any reasonable operator. 
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Removing infinities from physical theory has always been successful. From eliminating various 

ultra-violet catastrophes to the elimination of infinities in quantum field theory, every time 

infinities are removed from physical theory it has turned out to be the right course of action. This 

suggests that spacetime, mass-energy, and quantum fields should have some sort of quantization 

scheme that does not ultimately rely on the real number line but does retain all the symmetries 

that nature is known to have. That means the principles of locality, causality, relativity, unitary 

evolution, the strong equivalence principle, diffeomorphism invariance, the superposition 

principle, Born’s rule, and so on, remain true in a new quantization scheme.   

The quantization scheme in standard physics involves summing over all possible histories. The 

amplitudes for given events are found by summing over all possible paths and all possible 

interactions, in space and time, and the probability that state reduction yields a given state is 

determined by the complex square of the amplitudes for that state. Traditionally, it has been 

assumed that state reduction is truly random: that is, it is not determined by anything at all. It has 

been argued that this eliminates determinism. But the fact that each particle interacts with all 

other particles in the cosmos, prior to state reduction, suggests that the reduced state may be 

determined in some computational way by all the other particles in the cosmos. If that is true, 

then there must be an unknown physical law governing their interactions that is deterministic. 

Quantum physics only shows that state reduction is probabilistic, it does not rule out 

determinism.  

What is needed is a quantization scheme that quantizes spacetime and can be related to the 

quantization of quantum field theory. Quantum information may be a partial way to do this. 

Conjecture 2 provides one possible way that energy and spacetime could be quantized together. 

 

Conjecture 2: Spacetime and energy are fused together and made up out of a finite 

number of quantized units (for the purposes of this paper called metric quanta) that 

contain some spacetime and some energy. Each metric quantum is a “4-volume 

energy” in the amount of ħ/2 which is invariant in the sense of relativity. Quantum 

information, both in states and operators, organizes the metric quanta into the 

spacetime “continuum” and the mass-energy content of the cosmos, in such a way 

as to be experimentally consistent with quantum field theory and General 

Relativity. 

 

Conjecture 2 requires some clarification. Quantum information is analogous to normalized rank 

1 spinors and their operators as discussed in section 7. A metric quantum can be thought of as an 

invariant object where the four dimensions of spacetime contain a three-dimensional energy 

density (e.g., Joules per cubic meter). The energy density can be thought of as a kind of fifth 

dimensional quantity. The combined energy and spacetime of the metric quanta are a conjectured 

gravitational quantization of the spacetime continuum and its energy in the form of gravity and 

quantum fields. The conjecture means that the whole of physical reality, at every place and time, 

is made up out of an enormous number of metric quanta. Those metric quanta are governed by an 
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enormous amount of quantum information and the eigenvalues of all their operators. It also 

means that quantizing General Relativity necessarily involves a new type of quantization for the 

quantities in quantum field theory. Standard quantum field theory has to be a low energy 

approximation to quantum gravity. 

If the real number line can be replaced by metric quanta, quantum information and various 

operators, then quantum field theory needs to be reformulated so that it no longer depends on the 

real number line. The same thing is true with General Relativity. Reformulating General 

Relativity using this new approach necessarily involves abandoning the real number line of pure 

mathematics. It also entails that a finite amount of information quantifies physical systems rather 

than an infinite amount of information that is necessary for systems in classical physics. 

Replacing the real number line with metric quanta and quantum information also eliminates the 

infinities and singularities that traditionally can arise. 

Since each metric quantum can be thought of as having some space, some time, and some 

energy, the amounts involved will not be definite until state reduction occurs and not all 

quantities may necessarily have definite values. In an unreduced state, a metric quantum must be 

in a superposition of all possible states and those states are in relation to other metric quanta. So 

metric quanta are not classical objects, but it might be useful to think of a metric quantum in a 

classical sense by the following equation (where ρ is a three-dimensional energy density): 

 

   Equation (16) 

 

Equation 16 should not be taken too seriously. Regions of spacetime are themselves made up of 

metric quanta and it is quantum information that provides the structure. And the region of 

integration itself has quantum uncertainties. Because nature is fundamentally quantum 

mechanical, the classical imagery involved in equation 16 is deceptive. Due to quantum 

uncertainty, the three-dimensional energy density, ρ, may only be in a partially reduced state 

when state reduction occurs for some of its properties. For example, if the integral takes the 

form: 

 

 

 

Then there can still exist an uncertainty between m and t. And if one of them is specified then so 

is the other but the function ρ may still not have a specific form. Conjecture 2 permits space, 

time, and energy as different expressions of metric quanta. Conjecture 2 also permits quantum 

information, and various operators on that information, to structure the metric quanta in such a 



 

21 
 

way as to make the physical world. Spacetime and its energy content is quantized in units of ħ/2. 

This quantization scheme can retain the symmetries of physical theory based on the real number 

line. For example, when a metric quantum describes a massive particle, relativistic mass and 

time dilation preserve its invariance:  where  is . Although 

if such a particle is considered to have a relatively long world-line then that world-line’s 

existence would need many metric quanta. 

Metric quanta offer new possibilities as to what quanta are. Traditionally, the quanta have been 

thought of as objects. The kinds of objects typically considered are infinitely small points, in 

which case the quanta are some types of naked singularities. The quanta have been postulated to 

be vibrations of strings that are infinitely thin, as in the string-theory paradigm. Both of those 

approaches bring infinity into physical theory: infinitely small points or infinitely thin strings. 

Other possibilities are that the quanta are tiny little black holes or tiny worm holes but infinities 

are still involved in constructions like that. The very notion of an object seems to be a classical 

notion. It is not clear how objects like these could do the complicated summing over histories 

that physical quanta do; no mechanism is given as to how that could work.  

Metric quanta suggests that the basic quanta of nature are not objects at all. Rather, they are just 

energy confined to a region of space, where the confinement is possibly due to quantum 

gravitation. For example, in the equation ħ/2 = mc2t, setting x = ct fixes the mass of a particle 

when x is fixed, and then the equation becomes ħ/2 = mcx. Of course, this requires that there 

exists some yet to be discovered theory that localizes the energy to a spatial region x. The 

obvious challenge is to try and formulate these ideas into a coherent theory. If that can be done, 

then a new picture of the cosmos can emerge. With metric quanta, it can be conjectured that 

when an individual “particle” undergoes a “sum over all histories” it can be thought that its 

associated metric quanta “cover” the whole of the “spacetime continuum” so that ρ in equation 

16 has an extremely small average value (that is until state reduction occurs). Equivalently, by 

the energy-time uncertainty principle, the metric quantum for a “particle” in an unreduced state 

can be thought of as encompassing all the energy in the cosmos when the time uncertainty is 

small enough. This is what is to be expected from equation 16 since equation 16 is a kind of 

uncertainty principle.  

 

From conjecture 2, the cosmos can be thought of as a large, but finite, number of metric quanta 

that relate to each other in unreduced states and are connected in a manner that is consistent with 

quantum field theory and General Relativity. The number of metric quanta is finite because the 

information content and energy content must be finite in accordance with the Bekenstein bound 

(explained below). Since the number of metric quanta is finite, the total amount of energy that 

exists must be finite, and conserved, and there cannot be an infinite amount of spacetime. The 

cosmos must be positively curved on the largest scales. A positively curved universe is closed, 

and its mathematics can be formulated so that the total energy is set equal to zero [2]. This means 

that energy lost by the gravitational field exactly equals energy gained in the form of non-

gravitational energy. The finite number of metric quanta imposes an additional constraint: it is 

not possible to have an infinite amount of gravitational energy since the total amount of energy 
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that exists must be finite. So, even though General Relativity allows for the possibility of an 

infinite amount of gravitational energy for a closed universe, conjecture 2 requires that boundary 

conditions are imposed on the field equations to prevent that. One way to do this is to define the 

gravitational energy-momentum tensor to be equal to the Einstein curvature tensor multiplied by 

the appropriate constant and then impose cutoffs on the volume integral of that gravitational 

energy-momentum tensor. According to conjecture 2, these boundary conditions must be a 

consequence of the correct quantized form of General Relativity. 

 

Removing infinities from physical theory eliminates any possibility of singularities, ultra-violet 

catastrophes, non-renormalizable quantities, and so on. In equation 16, if ρ is assumed to be an 

average density then it is impossible for a metric quantum to encompass an infinite amount of 

spacetime. Zero times an infinite quantity is nonsensical. There are functions, ρ, that satisfy 

equation 16 if the region of integration is infinite but that does not apply here. The removal of 

infinities from physical theory also requires that there must be a “big crunch” at some time in the 

future. Since the amount of spacetime is finite, there cannot be any new time after the big crunch 

nor any time before the big bang. So, the negative pressure in dark energy must cease at some 

time in the future just as any inflationary like expansion in the very early universe had to cease. 

Quantum gravity suggests cosmic inflation and the current dark energy inflation cannot be 

eternal (e.g., see [12], [13], and [14]) and that is necessary when removing infinities. 

 

Letting the total time between “big bang” and “big crunch” be Ttotal, and the total energy that 

exists is Etotal, (relative to the co-moving CMB rest frame) then the total number of metric quanta 

that make up the cosmos is (EtotalTtotal)/(ħ/2) = nmetric_quanta. That can be related to the total amount 

of information that exists using equation 9. In equation 9, assuming R is a constant distance that 

characterizes the size of spacetime, substituting the characteristic time 2πR/c=Ttotal gives nqubits: 

 

 

 

Applying the Bekenstein bound to the entire cosmos implies that the number of metric quanta 

that exists is approximately equal to 2ln(2) times the total information content of the universe 

(the number of qubits). The amount of quantum information calculated here is quite a bit more 

than the quantum information that can be estimated for the observable universe. However, qubits 

associated with gravitational energy are also included and the universe is larger than just its 

observable part. A consequence of Conjecture 2 is that the size of the cosmos is determined by 

the amount of quantum information that exists. 
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9. Do Differential Equations Ultimately Describe Nature? 

 

Contemporary physics understands the evolution of the universe in terms of differential 

equations. This means that the initial or boundary conditions contain the information content of 

the universe and physical laws evolve those initial or boundary conditions over time according to 

the differential equations that are said to describe nature. The equations are evolved forward in 

time based on the initial or boundary conditions and, apart from state reduction, the evolution is 

clearly deterministic. For this approach to describe nature, the activity taking place at any place 

and time must receive its instructions on how to behave from the past. This approach works 

extremely well in most situations. But are differential equations fundamentally the right 

approach? In quantum mechanics, reduced states cannot be calculated from the differential 

equations. So, state reduction offers a counter example to the traditional approach. As mentioned 

previously, abandoning the real number line, and spaces based on it, suggests that the universe 

and its physical laws should not fundamentally be based on differential equations. However, 

differential equations still have problems with boundary and initial conditions coming from the 

past. For example, in the situation visualized in figure 2, a gravitational body receives its 

instructions on how to behave from a future event, relative to its own time and place. 

 

 

 
Figure 2 
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The gravitational body in figure 2 can be a planet, a star, or even a galaxy. The source in figure 2 

is a light source that emits a photon and, quantum mechanically, half of the wave function for the 

photon resides along path A and the other half of its wave function resides along path B. In both 

paths, the photon’s course is bent around the gravitational body due to the warping of space. The 

receiver can be an astronomer on Earth who receives the photon emitted from the source. 

Suppose the distance from the source to the gravitational body is one billion light years and the 

distance from the gravitational body to the receiver is also one billion light years. Then it takes 

about two billion years for the photon to travel from the source to the receiver. It is assumed that 

the gravitational body has no horizontal motion at all relative to the receiver. The receiver’s 

instruments can be configured to detect either the wave-like behavior of the photon or the 

particle-like behavior of the photon.  

If the receiver’s instruments are configured to detect the wave-like behavior of the photon then, 

after receiving the photon, the horizontal motion of the gravitational body, relative to the 

receiver, should remain unchanged. And, since its horizonal speed was zero to begin with, it 

should be zero after the photon arrives. But if the receiver’s instruments are configured to detect 

the particle-like behavior of the photon then the state of the system undergoes state reduction 

forcing the photon to have traversed a particular path. In the case it traversed path A then the 

horizontal momentum of the photon would be changed, during its journey, from traveling to the 

right to traveling to the left. By conservation of momentum, the change in the photon’s 

momentum must be compensated for by a change in the momentum of the gravitational body. 

The gravitational body must now have horizonal momentum causing it to travel to the right 

relative to the receiver. In the case state reduction caused the photon to have traversed path B 

then the horizonal momentum of the photon would have changed from traveling to the left to 

traveling to the right and, by conservation of momentum, the gravitational body would have to 

start traveling to the left relative to the receiver. In the case of state reduction, the gravitational 

body gets its moving instructions from a billion years in its own future. Whether or not the 

gravitational body starts moving to the left or to the right depends on whether the receiver, in this 

case an astronomer on Earth, chooses to configure the receiving instrument to measure either the 

particle-like or wave-like nature of the receiving photon. 

In this example, the gravitational body’s behavior is not entirely determined by initial or 

boundary conditions in its past. Its behavior cannot be entirely calculated using differential 

equations with only past initial and boundary conditions. A new paradigm is needed here that 

replaces differential equations, and spaces based on the real number line. Conjecture 2 postulates 

that a new, yet to be fully developed theory, can be formulated where quantum information and 

metric quanta replace differential equations in describing the cosmos. A possible approach to 

doing that is explored in the next section. 
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10. A Toy Model of Quantized General Relativity 

 

The solutions of General Relativity are either a metric tensor, given an energy-momentum tensor, 

or an energy-momentum tensor, given a matric tensor, or both an energy-momentum tensor and a 

metric tensor if only partial information of either tensor is given. A given solution can be 

specified entirely by a metric tensor which corresponds to a given energy-momentum tensor. 

Since energy, momentum, and their states have an intrinsic quantum uncertainty (and since the 

energy-momentum tensor is proportional to the Einstein curvature tensor) it necessarily follows 

that spacetime curvature should have a quantum uncertainty. And, therefore, the metric tensor 

should have quantum uncertainty since its curvature does. In general, every symmetric metric 

tensor corresponds to a specified curvilinear coordinate transformation. Associated with a 

curvilinear coordinate transformation is a set of basis vectors, defined at each location on the 

manifold, and the dot product of any two basis vectors defines a component of the metric tensor. 

In this section, these basis vectors are promoted to operators acting on a quantum information 

state. In section 7, it was shown that information states, with appropriate operators, could define 

two vector quantities (Au and Bu), scalar and pseudoscalar quantities (ψ and ϕ), and an 

antisymmetric tensor, Fuv, and so it is natural to think that fields, including gravitational fields, 

could also be described as operators acting on an information state.    

 

The law of conservation of quantum information states that the total amount of quantum 

information that exists is conserved. The total amount of quantum information that exists must 

be immense and, since infinities should be removed from physical theory, the total amount of 

quantum information should be finite as explained in section 9. In this toy model, the quantum 

information state is a pure state, but toy models could be created that include mixed states. So, in 

this model, the total quantum information that exists is defined to be the state |Ψ> as follows: 

 

   Equation (17) 

 

Here, n, is the total number of qubits that exist. Obviously, n must be an extremely large number, 

and nobody knows why it is so big. The bigger n is the bigger |Ψ> is and the bigger |Ψ> is the 

more operators there can be that act on that information state. And, therefore, there are more 

observables in the universe. The fact that the universe is large is because there is an enormous 

amount of quantum information that exists. And, based on the reasoning in section 9, the reverse 

is true. The qubits, denoted by |Qk>, can be any of the types of qubits described in sections 6 and 

7, appropriately normalized as needed. Changing the type of qubit used only results in changes in 

the operators to be discussed next. If the qubits are the kind specified in equation 13 then 

<Ψ|Ψ>=1 should hold true. Observables are eigenvalues of operators acting on the state |Ψ>. As 

discussed in section 8, the real number line needs to be removed from physical theory and 

replaced with something else. In this toy model, the relativistic spaces that use the real number 
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line are replaced by the quantum information vector in equation 17. Something similar needs to 

be done with the other fields in nature but that will not be explored here. In this kind of 

approach, the whole of physical theory can be formulated without the real number line. This 

model beings with the manifold for the curvilinear coordinate transformation. The manifold basis 

vectors are:  

 

  

 

The index zero corresponds to the time dimension, and the indices 1, 2, and 3 correspond to x, y, 

and z dimensions respectively. In all these calculations, the summation convention applies to 

subscripts and superscripts and the sum is from zero to three for both Greek indices and non-

Greek indices. The basis vectors for the curvilinear coordinate system are given by operators, g, 

acting on |Ψ> returning a basis state, |ΨK>, and their covariant form is given by equation 18.  

 

     Equation (18) 

 

These basis vectors for the curvilinear coordinate system define the metric for the entire cosmos: 

from “big bang” to “big crunch”. Therefore, equation 18 gives the entire history of the cosmos. 

The operators, g, are Hermitian. Taking the conjugate transpose of an equation like equation 18 

gives: 

 

    Equation (19) 

 

Here because the operator is Hermitian. The inner product of Equation 18 and 19 

gives the metric as a linear function of the Kronecker delta: 
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   Equation (20) 

 

Switching the order of the inner product between the two equations gives: 

 

   Equation (21) 

 

In general, the operators in these two different orders will not commute. This means that there 

must be quantum uncertainty in the metric, and it must be the difference between equation 20 

and 21 which can be expressed in terms of a commutator: 

 

   Equation (22) 

 

There must be an enormous number of operators, g, to describe the whole of the quantized 

spacetime “continuum”. The exact form of these operators will depend on how the quantum 

information is organized in equation 17 and so the operators themselves have yet to be specified. 

For example, the operators could use positional encoding. The information should have a 

representation like that. There must also be contravariant operators and they will be distinguished 

from their covariant counterparts using the tilde symbol.  

 

    Equation (23) 

 

Because the reciprocal basis vectors are orthogonal, we want <Ψα|ΨK>=δα
K. Imposing this 

condition means that the operators must satisfy: 
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Assuming <Ψ|Ψ>=1, the operators must satisfy: 

 

 

 

The contravariant form of the metric can be found by the same procedure used in equations 19 

through 21 but using equations like equation 23 instead of equations 20 and 21. The result is: 

 

 

 

Just like its covariant counterpart, the metric expressed in its contravariant form has a quantum 

uncertainty and its equation is like equation 22 except the contravariant operators are used. In 

ordinary Riemannian geometry, the metric can change basis vectors to their reciprocal 

counterparts and vice versa. For example: 

 

     Equation (24) 

 

This imposes another condition on the operators. Define the following vectors: 

 

 

 

Requiring these vectors satisfy equation 24 means: 
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Taking the dog product of both sides of this equation with  gives: 

 

 

 

And equating operators on both sides gives: 

 

 

 

This means that the operators are constrained by identities that involve all the information in the 

cosmos. This is not surprising since quantum gravity is expected to behave like quantum field 

theory where quantum gravity obeys Feynman like path integrals. The contravariant and 

covariant form of the metric are inverses of each other. Imposing this constraint gives yet another 

relationship between the operators: 

 

 

 

Assuming <Ψ|Ψ>=1, the operators must satisfy: 

 

 

 

The quantum uncertainty in the metric, defined in equation 22, must be relatively small since the 

classical form of General Relativity works so well in describing nature. But the question arises, 

how do uncertainties in the metric correlate with uncertainties in curvature and energy states? 

What is needed is to put the uncertainties in the metric through the machinery of the field 

equations for gravity and see what uncertainties they require for the energy-momentum tensor. In 

this toy model, metric uncertainties will be assumed to have the form: 

 

    Equation (25) 
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In equation 25, on the right-hand side there is no implied sum over the indices m and k. When the 

Kronecker delta is equal to 1, there are no uncertainties because the diagonal components are 

subtracted from themselves according to equation 22. That does not mean they cannot have 

quantum uncertainty in relation to other observables. The denominator in the term ħ/(EmTk) 

contains an energy, not necessarily related to characteristic time, and a characteristic time that 

will, in general, depend on the specific situation and keep the metric uncertainty relatively small. 

The operators corresponding to quantum uncertainties of Christoffel symbols of the first kind 

will be zero since the terms in equation 25 are constants. 

 

 

 

Quantum uncertainty in Christoffel symbols of the second kind are given by: 

 

 

 

Differentiating the identity gmng
no=δn

o gives the useful relations: 

 

 

 

In these and subsequent calculations differentials and small differences are treated as 

interchangeable. All of this allows the expression for uncertainty in Christoffel symbols of the 

second kind to be expressed in terms of uncertainty in the covariant form of the metric: 

 

   Equation (26) 

 

Uncertainties in Einstein curvature need to be expressed in terms of the uncertainties in the 

metric and the Christoffell symbols found so far. An arbitrary change in the Einstein tensor is 

given by: 
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  Equation (27) 

 

The Ricci tensor variation is: 

 

  Equation (28) 

 

The Ricci scalar variation is: 

 

   Equation (29) 

 

Equation 27 can be expressed as: 

 

  Equation (30) 

 

 

Equation 28 with the indices used in equation 29 are: 
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  Equation (31) 

 

Using equation 25, and the four equations that come after it, substitution gives: 

 

   Equation (32) 

 

Combining this with equation 26 gives: 

 

   Equation (33) 

 

A helpful term can be defined. Define: 

 

    Equation (34) 

 

Taking a partial derivative of equation 33, and using equation 34, gives: 

 

    Equation (35) 

 

Although partial differentiation in equation 35 should be replaced with an operator, in this 

approximation simple partial differentiation has been used. Using this equation, and equation 33, 

the following relations can be found: 
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   Equation (36) 

 

Substituting these into equation 28 gives: 

 

  Equation (37) 

 

Doing the same thing for equation 31 that was done for equation 28 gives: 

 

  Equation (38) 

 

Equation 38 can be written more succinctly by introducing a new term ω: 

 

 

 

Equation 30 needs to be expressed in terms of equations 37 and 38 and lowering or raising the 

metric as needed. To this end, it is useful to recall that: 
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   Equation (39) 

 

So, the third right-most term on the right-hand side of equation 30 becomes: 

 

   Equation (40) 

 

The second right-most term on the right-hand side of equation 30, with the help of equation 38, 

becomes: 

 

    Equation (41) 

 

Where the ω indexed term contains the terms from equation 38. The first right-most term on the 

right-hand side of equation 30 becomes: 

 

    Equation (42) 

 

Equation 37, expressed in terms of ω, becomes: 

 

    Equation (43) 

 

All the variations in the curvature terms, equations 40 through 43, can be collected and be 

substituted into equation 30 with the indices of equation 40 being raised by the metrics. The 

result is: 
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   Equation (44) 

 

The bracketed term in equation 44 can be labeled as  and substituting  and letting 

the differentials become differences gives: 

 

   Equation (45) 

 

In this toy model of quantized General Relativity, equation 45 says how quantum gravitational 

variations in the metric relate to quantum variations in the energy momentum tensor and those 

variations are linear in metric variations at any spacetime location. The toy model used in this 

section is very simple. The variations are assumed to be “directionless” starting with equation 27. 

More complicated toy models could be produced if the variations were not “directionless” but 

varied along a particular co-ordinate direction defined by the basis vectors given by equation 18. 

Equation 45 says that the quantum uncertainties in energy and momentum of quantum fields, for 

example, must produce quantum uncertainties in the metric, i.e., spacetime. So, the quantizing of 

quantum fields, and their energy states, must be part of the quantization of the gravitational field. 

The canonical quantization procedure in quantum field theory must be a low energy 

approximation to a different and more general quantization scheme that includes gravity.  

 

 

11. Conjectured Properties of Quantum Gravitation and Unification 

 

In the previous sections, it has been conjectured that the physical cosmos consists of an immense 

number of metric quanta governed by eigenvalues of operators that operate on the total 

information state of the universe (given by |Ψ>). It is assumed that the operators involve the 

constant ħ/2 so that their eigenvalues specify how space, time, energy, and fields are configured 

through the whole of cosmic history. However, the speculations in this paper are obviously 

incomplete. Questions arise within the paradigm outlined here. How do nature’s quantum fields 

relate to the information state and what are their operators? The quantization of spacetime used 

quantum information to define a “quantized” curvilinear coordinate system but the exact form of 

those operators is unknown. Spaces based on the real number line, and the real number line 

itself, have largely been removed from the theory. The state, |Ψ>, only partially eliminates the 

use of the real number line. An obvious problem is that the real number line was substantially 

used in sections 6 and 7 in defining quantum information. To rectify this problem, the qubits 

defining the information state, |Ψ>, should be reformulated in such a way that each qubit’s state 
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is a function of all the other qubit states (instead of being defined as functions of two real angles 

ϕ and θ) and that eliminates the manifold and the metric that lives on it. An obvious problem and 

open question in this approach is specifying the mathematical relationship between all the qubits; 

it is not at all clear how to do that. How that mathematical relationship between the qubits should 

be formulated isn’t known but it makes sense that the state of each qubit is a function of all the 

others. Formulating the Feynman path integral in terms of quantum information necessarily 

involves summing over all information amplitudes.  

 

12. Summary 

 

The open issues of this paper, outlined in section 11, show that this approach to quantum gravity 

is incomplete. Nevertheless, the basic principles presented here offer solutions to issues 

commonly encountered when trying to extend standard physical theory. By removing the real 

number line (and infinity) from physical theory, the problem of singularities is avoided. Metric 

quanta, governed by information and eigenvalues of operators, permit a kind of quantization of 

General Relativity and that approach should work for the other fields in nature. Even though the 

real number line, spacetimes based on it, and mathematics based on those spaces is eliminated, 

integration, differentiation and differential equations should still be useful for calculating the 

behavior of large systems within the generalized quantization that has been presented here. This 

is because, in the theory outlined here, the `granularity’ of physical systems will be much finer 

grained than the Planck quantities and by many orders of magnitude. Each instance of state 

reduction involves all the information and energy that exists everywhere else. The basic ideas in 

this paper about quantum gravity can be summarized as follows: operators, that contain quantum 

information, and are functions of ħ/2, act on the total information state of the cosmos. Their 

eigenvalues specify the characteristics of metric quanta and the number of metric quanta 

approximately equals 2ln(2) times the number of qubits. As proof of principle, a toy model of 

quantized General Relativity was given but toy models for other quantum fields could also have 

been given. None of these models rely on spaces based on the real number line. The basic ideas 

in this paper about black hole evaporation can be summarized as follows: quantum gravitational 

uncertainties permit the escape of energy and information during black hole evaporation. The 

ideas in this paper provide the building blocks for a more complete and fully formulated theory. 

 

 

 

 

 

 

 



 

37 
 

 

Appendix A 

The Unruh Temperature 

 

The uncertainty principle gives the minimum uncertainty of the energy of a physical system. 

That energy is given by: 

 

 

 

In a relativistic inertial frame, this uncertainty can be thought of as permitting the existence of 

virtual quanta over the time interval Δt. The smaller Δt is, the bigger ΔE can be. Overall, these 

virtual quanta do not give a quantum temperature to the space in the inertial frame. However, this 

is not necessarily true in a non-inertial frame of reference. A constantly accelerating observer in 

Minkowski spacetime views that spacetime in Rindler coordinates. The Minkowski spacetime, 

parameterized in terms of Rindler coordinates with the acceleration taking place along the x-axis, 

has the line element: 

 

 

 

In the non-inertial frame of reference, the “Rindler frame”, virtual quanta that exist over some 

time interval Δt’ will fall down the potential ax/c2 gaining more energy on average than they 

would if there was no acceleration present. Therefore, the uncertainty principle will behave 

differently than it does in an inertial frame, relative to observers in the Rindler frame. Because 

the virtual quanta gain more energy, on average, from the ax/c2 potential, they must exist for less 

time than they would if that potential was absent. So, in the Rindler frame, the uncertainty 

principle is: 
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This is because ds/dw=(1+aΔx/c2) is the average percentage increase in energy of the virtual 

quanta falling an average distance of Δx down the potential. Multiplying out the above equation 

gives: 

 

 

 

Defining ΔE’’=ħ/2Δt’ to be the energy available over time Δt’ if no acceleration were present 

then the above equation becomes: 

 

   Equation (A1) 

 

The term δ(ΔE’) describes the difference between the uncertainties of the energies between 

quantum fluctuations in a Rindler frame of reference and quantum fluctuations in an inertial 

frame of reference. The uncertainty in time, Δt’, must equal the characteristic time associated 

with the size of the system, Δx, that contains the extra energy δ(ΔE’). The characteristic time for 

Δx is πΔx/c and this must equal Δt’: 

 

 

 

Substituting this equation into equation A1 gives: 

 

 

 

Because of conservation of energy, δ(ΔE’) is only a virtual energy that must be returned to the 

quantum vacuum after time Δt’. But, because of the acceleration, the quantum vacuum acquires a 

quantum temperature in the amount δ(ΔE’)/kB: 

 

    Equation (A2) 
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This is the well-known Unruh temperature. The temperature is proportional to the acceleration.  

Setting the acceleration to a=GM/R2, with R=2GM/C2, into equation A2 gives the Hawking 

temperature for a Schwarzschild black hole: 

 

 

 

This can be interpreted as the temperature that an observer, far away from the black hole, 

observers the black hole to have with acceleration a at its event horizon according to the distant 

observer. 

 

 

Appendix B 

Rank 1 Spinor Transformations and their corresponding null vectors. 

 

A spinor, |s>, corresponds to a null vector with an associated flagpole angle, α, given by the 

below transformation, where w=ct and σi are the Pauli matrices: 

 

    Equation (B1) 

 

Note that the last relation in equation B1, giving the flagpole angle α, involves only taking the 

transpose of the spinor, not its conjugate transpose, and the radical in the denominator is always 

positive. So, given a spinor |s>, it is straightforward to calculate the flagpole (x, y, z, α) and w 

always equals . The spinor can be reconstructed from its flagpole, (x, y, z, α), by 

letting w equal the positive value of  in equation B2: 
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   Equation (B2) 

 

The usual technique for taking square roots of complex numbers, DeMoivre’s formula, yields 

two solutions for k=0 and k=1. Using k=0 in equation B2 gives the spinor |s> and using k=1 gives 

the spinor -|s>. So, technically speaking, a flagpole spinor needs a sign bit in addition to the 

numbers (x, y, z, α). 
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