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ABSTRACT 

 

 

A broad range of financial products bear credit risk. This paper presents an integrated approach to model 

credit risk. We focus on the impact of default dependence and rating migration on derivative security 

valuation, as correlated default risk is one of the most pervasive threats in financial markets. The 

numerical study shows that the model-implied credit spreads are very close to the market observed credit 

spreads. Both have the same patterns and trends. The numerical study also indicates that the calculated 

default correlation is consistent with the market default correlation observed, implying that the model is 

accurate for computing the market value of credit risk. 
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Credit risk is the danger that you will not receive an amount of money you are owed because the party 

that owes you the money is unable to pay you and defaults on its obligation. Credit risk exists whenever 

an institution has a relationship where a counterparty has an obligation to make payments in the future. 

Participants in derivatives market face significant counterparty credit risks, the counterparty may fail to 

perform on its contingent obligation. 

 

There are two primary types of models that describe default processes in the literature: structural models 

and reduced-form (or intensity) models. The structural models regard default as an endogenous event, 

focusing on the capital structure of a firm. In these models, defaults occur as soon as a firm’s asset value 

falls below a certain threshold. Unlike structural models, reduced-form models do not condition default 

explicitly on the value of the firm, and parameters related to the firm’s value needs not be estimated to 

implement the model. 

 

The reduced-form approach permits a lot of flexibility to obtain realistic default risk estimates, but the 

structural approach is useful for understanding the economic drivers of default risk (Nagel and 

Purnanadam (2020)). Many reduced form models also use distance-to-default as one of the state variables 

driving default intensity (Duffie, Saita, and Wang (2007), Bharath and Shumway (2008) Campbell, 

Hilscher, and Szilagyi (2008)). 

 

Credit valuation adjustment (CVA) is an adjustment made by an institution to the market value of an OTC 

derivative contract to take into account credit risk of the counterparty. CVA allows banks to quantify 

counterparty credit risk as a single, measurable number and becomes an integral part of all valuation and 

risk management and has taken on significantly higher importance and profile in recent times. 

 

CVA is an adjustment to the valuation of a portfolio in order to explicitly account for the credit 

worthiness of counterparties. The CVA of an OTC derivatives portfolio with a given counterparty is the 

market value of the credit risk due to any failure to perform on agreements with that counterparty. This 

adjustment can be either positive or negative, depending on which of the two counterparties bears the 

larger burden to the other of exposure and of counterparty default likelihood. 

 

Banerjee and Feinstein (2022) point out that CVA usually neglects adjustments in default probability of 

indirect counterparties while CVA captures adjustments in default probability of direct counterparties. 

Barucca et al., (2020) show that if counterparties A and B are embedded in a network of contracts, then 

indirect counterparties of B can have a very important impact on B’s default probabilities. 



 

Bo and Capponi (2014) derive an analytical framework for calculating the bilateral CVA for a large 

portfolio of credit default swaps. Brigo and Vrins (2016) propose a semi-analytic approach to address 

wrong way risk, while Glasserman and Yang (2018) use marginal distributions of credit and market risk 

to calculate CVA and wrong way risk.  

 

The use of generic algorithms for optimizing the portfolio CVA is explored in Chataigner and Cr´epey 

(2019). Cr´epey (2015) develops a way to calculate CVA under funding constraints using reduced-form 

backward stochastic differential equations. Abbas-Turki et al. (2022) use neural networks to reduce the 

computation time for a path-wise CVA calculation. 

 

This paper presents a new framework for calculating CVA with wrong way risk. Wrong-way risk is 

defined by the International Swaps and Derivatives Association (ISDA) as the risk that occurs when 

‘exposure to a counterparty is adversely correlated with the credit quality of that counterparty. 

 

We consider counterparty risk in presence of correlation between the defaults of the counterparty and 

investor by assuming distances to default for entities are correlated. Given distance to default, one can 

computes default and survival probabilities and then prices defaultable financial instruments.  

 

We find the impact of default correlation may be significant. The default rate for a group of credits tends 

to be higher in a recession and lower in a booming economy. This implies that each credit is subject to the 

same set of macroeconomic environments, and that there exists some form of dependence among the 

default time of the credits. 

 

Both unilateral and bilateral CVAs are considered. The conditional independence assumption of the 

reduced-form models is an interesting and important topic in academic research, although it is rarely 

mentioned in practitioners’ papers. To correct the weakness of this assumption, we also consider 

correlated and potentially simultaneous defaults. 

 

We conduct numerical study on the model. The numerical results highlight credit spreads and default 

correlations. Our results show that the model-calculated credit spreads are very close to the market 

observed credit spreads. Both have the same patterns and trends. The numerical study also indicates that 

the calculated default correlation is consistent with the market default correlation observed. 

 



The rest of this paper is organized as follows: Section 1 elaborates the credit risk model. Section 2 

discusses risky valuation. Section 3 describes the simulation and CVA. Section 4 presents numerical 

results. The conclusions are given in Section 5. 

 

 

1. Credit Risk Modeling 

 

The ability to measure and manage credit risk has never been more important. Let’s define the log-

solvency ratio as 
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Here, tV is the firm value and tK its debt value: firm is in default when tV falls below tK .  

 

Suppose x follows the process: 

dztdtkxtdx )())((  +−=           (2) 

where , and are constant drift, volatility, and mean reversion speed. z is the Wiener process. Then, 

indicator functions from Eq. (1) can be simulated as follows: 
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To proceed further, we need to calibrate Eq. (2) in the risk-neutral world. It can be done by matching term 

structure of the risk-neutral default probabilities extracted from the CDS par rates.  

 

The probability density function ),,( 0 txxf  is given by (see appendix), 
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The default probability, )(tpD , is determined as 
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Using Eq. (4) we obtain 
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Suppose market risk-neutral probabilities, )()( tp M

D , are available. For example, their values can be 

extracted from the CDS closing rates (bootstrapping). Then  
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To simplify our model, we choose 0= . Then, Eq. (6) reduces to 
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To match whole CDS term structure, we calculate time dependent parameter, t , in Eq. (7) as  
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The remaining unknown parameter is the initial distance to default 0y . We define this parameter by fitting 

instantaneous CDS spread volatility, )(tI , to the market spread returns (or implied) volatility, )(tM . 

The expression for )(tI is given by, 
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where S is the CDS par rate. The value of S, at least for investment grades and higher, can be 

approximated as  
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where R is the recovery rate. Then, Eq. (9) can be rewritten as 
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It follows from Eqs. (7, 8) 
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and Eq. (11) reduces to 
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Since 0y is constant, we cannot match whole CDS spread returns volatility term structure. Therefore, we 

choose yt 5= that corresponds to the most liquid CDS. In this case, Eq. (12) can be easily solved 
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Figure 1. The calculated and market data results for investment grades of the global CDS indices. 
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Figure 2. The calculated and market data results for non-investment grades of the global CDS indices. 

 

 

In Figures 1 and 2, we present the calculated results and market data on the CDS spread returns 

volatilities. Figures show that the fits are fairly well for investment grades and substantially deviates from 

market data (see https://finpricing.com/lib/IrBasisCurve.html) for non-investment grades. However, the 

portfolio has small part of deals with non-investment grades and their contribution to CVA can be 

regarded as negligible.  

 

We describe correlation structure of the simulated portfolio. It is assumed that counterparties are 

independent and CVA calculations for these counterparties can be done in parallel.  Then, procedure 

described below is applied for each counterparty. 

 

We assume that distances to default for counterparties, investor and reference names are correlated 

through Gaussian copula:  
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Here, 
T

sMMM ),..,( 1= are all market indices (credit, IR, commodities etc.) and )1,0(~ Nk is 

idiosyncratic component: k=1 and k=2 correspond to counterparty ‘1’ and investor ‘2’ respectively. 

We build correlation matrix, , with the elements: 
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where M is the correlation matrix of the market indices iM . 

 

Finally, we simulate distances to default 1y , 2y  and market risk factors
T

sMMM ),..,( 1= as 
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where
T

sKKK ),..,( 21 += are independent )1,0(N .  

 

 

2. Valuation Considering Default Risk 

 

For risky bond and credit default swap (CDS), consider cashflow at time T. Then, default probability,

),( TtpD , at time bucket t is calculated as 
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The value of the risky zero-coupon bond is given by 
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Here, ),( TtD and R are discount factor and recovery rate respectively. 

 

Similarly, par spread, ),( TtSCDS , for CDS with maturity T is calculated as 
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where day-count fraction 4/1=  for most quoted CDS. 

 

We show that in our model, the price of zero coupon risky bond is a martingale under forward measure.  

 

The price of the risky zero coupon bond is 

 ),()1(),0(0 TtpLimRRETDf STtT →−+=  

where survival probability ),( TtpS is given by 
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By definition we have 
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It follows from Markov’s property of the process Eq. (2) 
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By integrating both parts of Eq. (15) on Ty , one can obtain 
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Then, Eq. (15) reduces to 
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Comparison of Eqs. (14, 17) yields 
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Then, 0f is given by, 
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that confirms the proof. 

 

 

3. Simulation and CVA 

 



In this section, we describe algorithm for multi-step simulation and CVA calculations. Suppose )0()( i

ty

is the distance to default of credit name ‘i’ at time bucket t: at t=0, 
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Calculate survival probabilities )()( tp i
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Simulate two independent uniforms ]1,0[~, 21 uu .  

 

Consider a unilateral case where counterparty is in default, but investor is not in default, calculate two 

correlated normal variables 1 and 2 as 
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For a unilateral case where counterparty is not in default, investor is in default, we calculate two 

correlated normal variables 1 and 2 as 
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Simulate independent normal variables )1,0(~),2( NjK kj  and calculate values: 
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In the unilateral case where counterparty is in default, the distance-to-default is 
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Simulate independent normal variables )1,0(~),2( NjK kj  and calculate the values.  

       



In the unilateral case where counterparty is not in default, investor is in default, the distance-to-default is 

given by 
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For a given scenario ‘m’, calculate bilateral CVA with netting as 
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The bilateral CVA with no netting is calculated as 
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and 2N is the bivariate standard normal cumulative distribution function. Sum over index ‘k’ covers all 

instruments/deals that should be priced. 

 

Simulate )1,0(~),1( NjK kj   
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For counterparty, investor and reference names, calculate variable: 
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For counterparty, investor and reference name check condition  
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If rating trigger is not applied, repeat step 1. Otherwise, continue procedure. 

 

Up to trigger rating (trig), calculate cumulative probability
)(i

Mp as 
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where kkp ,1− are risk-neutral transition probabilities.  

 

When simulation is completed, calculate total CVA as 
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where mn and tbn are numbers of MC scenarios and time buckets respectively.  

 

We describe correlation structure of the simulated portfolio. It is assumed that counterparties are 

independent and CVA calculations for these counterparties can be done in parallel.  Then, procedure 

described below is applied for each counterparty. 

 

We assume that distances-to-default for counterparties, investor and reference names are correlated 

through Gaussian copula  
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Here, 
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idiosyncratic component: k=1 and k=2 correspond to counterparty ‘1’ and investor ‘2’ respectively. 

We build correlation matrix, , with the elements, 
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 where M is the correlation matrix of the market indices iM . 

 

We apply Cholesky decomposition: 
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Finally, we simulate distances-to-default 1y , 2y  and market risk factors
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4. Numerical Results 

 

In Figure 4, we present CVA(t) results for 10y CDS based on unconditional (standard MC) and 

conditional MC simulations: total CVA is presented in Table I.   

 

   

Figure 4. Bilateral CVA(t) for BBB 10y CDS: notional is 100$ and recovery rate is 0. Counterparty A and 

B have rating A while, Reference Name has rating BBB.  
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 Table I. Bilateral CVA for BBB 10y CDS: Notional is 100$ and recovery rate is 0. 

 

 

Using Monte-Carlo simulation we have calculated the default correlation at one year horizon for two 

issuers with the same rating. Historical and calculated results are presented in Table II. It is seen that 

model correlations are consistent with those historical observed. 

 

 

 

Table II. One-year historical and model default correlations for different ratings  

 

 

Time dependence of default correlations is presented in Figures 5 and 6. Obviously, time dependence of 

model default correlations is in a good agreement with exact results. 

 

 

 

# MC scenarios Bilateral CVA

Uncond (5 mln) 0.199

Cond (100K) 0.197

Cond (10K) 0.211

Cond (5K) 0.184

Rating Asset Correlation Historical Default Correlation Model Default Correlation

A 28.74% 0.65% 0.77%

BBB 13.21% 0.59% 0.38%

BB 14.28% 1.68% 1.61%



 

Figure 5. The calculated and exact [6] default correlation for investment grade A: asset correlation is 30%  

 

 

Figure 6. The calculated and exact default correlation for investment grade BBB: asset correlation is 30%  

 

 

5. Conclusion 

 

As interest in CVA modelling has increased, so too has the attention paid to the role of wrong-way risk in 

CVA. Wrong-way risk is a correlation between the exposure to a counterparty and the probability of that 

counterparty defaulting. 
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In this article, we derive our CVA formulas rigorously from the principals of the fundamental 

counterparty risk and mitigation arrangements. Both unilateral and bilateral CVAs are considered. 

 

This paper presents a convenient framework that models credit risk based on correlated distances-to-

default. Initial distance-to-default can be calibrated by fitting CDS spread volatility to market spread 

return volatility. Distance-to-default at any future time can be obtained via our model simulation. Given 

the dynamics of distance-to-default, we derive default probability and survival probability. Furthermore, 

we can price a risky portfolio and calculate CVA accordingly.  

 

This framework can easily incorporate various credit mitigation techniques, such as netting agreements 

and margin agreements, and can capture wrong/right way risk. The model gives an integrated view of 

credit risk including default risk and credit migration. It provides a useful tool for risky valuation. Our 

theoretic results indicate that the model is a good fit for defaultable portfolio valuation and CVA. 

 

The main goal of this paper is to deepen our understanding of the links between the importance aspect of 

default, credit migration, and valuation. The numerical study shows that the model can predict credit 

spread and default correlation very well, implying that the model is accurate for computing the market 

value of credit risk. 
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Appendix. Probability density function for processes with the barrier 

 

According to Eq. (4) we have the standard Brownian motion  
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Here, )(t , )(t and k are drift, volatility and mean reversion speed: x is the log-solvency ratio. The 

objective is to find probability density function, ),,( 0 txxf , where dxtxxf ),,( 0  is the transition 

probability to arrive in the vicinity of x at time t starting from 0x at time zero. It is well known that 

),,( 0 txxf  should obey forward Kolmogorov equation 
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Taking derivatives on the right side of Eq. (2A) we get 
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The function ),,( 0 txxf obeys the following initial and boundary conditions: 
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Here, )( 0xx − is the delta-function. To proceed further, we add new function f
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Then, Eq. (3A) is given by 
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We change variable 

)(txz = (6A) 

and Eq. (5A) reduces to 
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Finally, we change variable 
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Then, Eq. (7A) reduces to 
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To solve Eq. (8A) we use Laplace transform method. Specifically, we introduce a new function under 

Laplace transform 
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Note, the function ),,( 0 pzzf  obeys the same boundary condition (4A). Thus, if transform (9A) is 

applied to Eq. (8A) we obtain  
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Integration of the left part of Eq. (10A) yields 
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By substituting Eq. (11A) into Eq. (10A) we finally obtain 
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This equation represents the classical problem for building fundamental solution [Green function]. The 

first step is to solve homogenous equation 
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Solution of Eq. (13A) is trivial 
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To solve non-homogenous Eq. (12A), we write general solution as [it is written in any book on the partial 

differential equations] 

)(,
)()2/(

)()(

)(,
)()2/(

)()(

0

0

2

201

0

0

2

021

zz
zW

zuzu
f

zz
zW

zuzu
f





=





=




.       (15A) 

Here, )(1 zu and )(2 zu are the two independent solutions of the homogeneous Eq. (8A) and )( 0zW is the 

Wronskian of Eq. (12A): 
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To calculate )(1 zu and )(2 zu we use the boundary conditions (4A): 
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where coefficients A and B are calculated from the boundary condition 
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By substituting Eqs. (16A, 17A) into Eq. (15A) we obtain 
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Original function of the Laplace transform (14A) is well known and result is 
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Finally, ),,( 0 txxf is given by 
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