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Abstract

In this article, we propose a new metaheuristic inspired by the morphogenetic cellular
movements of endothelial cells (ECs) that occur during the tumor angiogenesis process.
This algorithm starts with a random initial population. In each iteration, the best candi-
date selected as the tumor, while the other individuals in the population are treated as ECs
migrating toward the tumor’s direction following a coordinated dynamics through a spatial
relationship between tip and follower ECs. EC movements mathematical model in angio-
genic morphogenesis are detailed in the article. This algorithm has an advantage compared
to other similar optimization metaheuristics: the model parameters are already configured
according to the tumor angiogenesis phenomenon modeling, preventing researchers from
initializing them with arbitrary values. Subsequently, the algorithm is compared against
well-known benchmark functions, and the results are validated through a comparative study
with Particle Swarm Optimization (PSO). The results demonstrate that the algorithm is ca-
pable of providing highly competitive outcomes. Also the proposed algorithm is applied to
a real-world problem. The results showed that the proposed algorithm performed effective
in solving constrained optimization problems, surpassing other known algorithms.

Keywords: Tumoral angiogenesis optimizer, metaheuristic, global optimization, artificial
intelligence.

1 Introduction

Optimization is a broad concept that permeates various domains, from engineering design to
business planning, from internet routing to environmental sustainability. Businesses seek to
maximize profits while minimizing costs, engineers strive to optimize the performance of their
designs while minimizing expenses, and sustainability studies aim to minimize environmental
harm in resource exploitation. Nearly everything we do is, in some way, related to optimizing
something. Consider, for instance, vacation planning, where we seek to maximize enjoyment
while minimizing costs [?, ?, ?, ?, ?, ?, ?, ?, ?].

Mathematical optimization addresses these problems using mathematical tools. However,
it has the drawback that many algorithms, especially gradient-based search methods, are local
search techniques. Typically, these searches begin with an assumption and attempt to improve
the quality of solutions. For unimodal functions, convexity ensures that the final optimal solution
is also a global optimum. For multimodal objectives, the search may become trapped in a local
optimum. Another limitation lies in solving optimization problems with high-dimensional search
spaces; classical optimization algorithms fail to provide suitable solutions because the search
space grows exponentially with problem size, rendering exact techniques impractical. Moreover,
the complexities of real-world problems often prevent verifying the uniqueness, existence, and
convergence conditions that mathematical methods require [?, ?].
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Metaheuristics, on the other hand, are becoming powerful methods to solve many challenging
optimization problems. They are known for their ability to find global optima. Classic examples
include genetic algorithms, ant colony optimization, and particle swarm optimization, among
others. Metaheuristics find applications across science, technology, and engineering fields [?, ?,
?, ?].

In recent years, there has been a growing interest in nature-inspired, human behavior-
inspired, and physics-inspired metaheuristics, such as the Moth Search Algorithm, Grey Wolf
Optimizer, Gold Rush Optimizer, Bat-Inspired Algorithm, Ebola optimization search algorithm,
and the Gravitational Search Algorithm [?, ?, ?, ?, ?]. These algorithms address different opti-
mization problems, but there is no one-size-fits-all algorithm that provides the best solution for
all optimization problems. Some algorithms perform better than others for specific problems.
Hence, the search for new heuristic optimization algorithms remains an open problem.

In this paper, we introduce a novel optimization algorithm inspired by the morphogenetic
cell movements of ECs that occur during tumor angiogenesis, namely, the Tumoral Angiogenesis
Optimizer (TAO). This article is structured as follows: In Section 2, we describe an agent-based
model that explains the behavior of endothelial cells during angiogenesis. This model, along
with the PSO algorithm, inspired our optimization algorithm, which is detailed in Section 3. In
Section 4, a comparative study with the PSO algorithm is presented, considering test functions.
In the same section, two constrained optimization problems are addressed, specifically, the
problem of minimizing the Rosenbrock function with a cubic and a linear constraint, and the
Cantilever Beam Design Problem. Finally, conclusions and possible new researches are presented
in Section 5.

2 Angiogenic cell movements mathematical model

Morphogenetic cell movements generate diverse tissue and organ shapes, and questions arise
regarding whether these movements share common principles and how cells coordinate behav-
iors. Angiogenesis, a morphogenetic cell movement, involves the emergence of new vascular
networks. Vascular ECs work collectively to form dendrite structures, with several molecular
players identified. However, the cellular mechanisms underlying angiogenesis remain largely un-
known. Understanding these processes would bridge the gap between molecules and angiogenic
morphogenesis.

To gain deeper insights into morphogenesis, a group of researchers developed a system that
combines time-lapse imaging with computer-assisted quantitative analysis. This approach al-
lowed for a thorough investigation of the behaviors of ECs driving angiogenic morphogenesis in
an in vitro model [?]. The discoveries revealed that EC behaviors are considerably more dynamic
and intricate than previously believed, with individual ECs frequently changing their positions,
including instances of tip cell overtaking [?]. The phenomenon of dynamic tip cell overtaking
had also been reported by another research group [?]. These revelations led the researchers to
ponder the following question: How are the movements of individual ECs integrated into the
highly dynamic and complex multicellular process that culminates in the formation of ordered
architectures? Mathematical and computational modeling strategies have proven invaluable
for shedding light on the biological intricacies underlying angiogenic morphogenesis, especially
when employed alongside quantitative experimental approaches [?, ?, ?, ?]. Over time, a vari-
ety of models, encompassing continuum, discrete, and hybrid approaches, have been developed
to explore different facets of angiogenesis across various biological scales [?, ?, ?]. Recent ad-
vancements have introduced cell-based models, such as cellular potts and agent-based models,
designed to uncover the biological implications of angiogenesis predictively. These models en-
able the dissection of the molecular and cellular mechanisms involved in processes like sprouting
[?, ?, ?, ?] and cell rearrangement [?].

In [?], one-dimensional an agent-based model was developed in order to simulate the behav-
iors of ECs during the elongation of blood vessels. In this models, individual ECs are represented
as agents aligned along the axis of vessel elongation, which forms an emerging sprout in the vas-
cular network. Each cell (agent) behaves autonomously in accordance with a set of specific
rules: For each step, t, each agent, i, has a position, xi(t), a cell migration speed, vi(t) (vi = v1
or v2, where v2 < v1), and a cell migration direction, Di(t) (D = +1 (anterograde) or Di = −1
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(retrograde)). For each step, vi and Di satisfy the following rules:

1. Speed transition rule: If vi(t) = v1, it can change to vi(t + 1) = v2 with a probability p.
If vi(t) = v2, it can change to vi(t+ 1) = v1 with a probability s. In the absence of these
conditions, motility remains unchanged, i.e., vi(t+ 1) = vi(t).

2. Direction transition rule: If Di(t) = −1, then with a probability r, motility changes to
Di(t+1) = +1. If at the last step Di(t) = +1, then with a probability s, motility changes
to Di(t + 1) = −1. In the absence of these conditions, the direction remains unchanged,
i.e., Di(t+ 1) = Di(t).

Furthermore, from the set Xt = {xj(t)}j , we consider maxXt and max {min{xj , xk}}j ̸=k,
which are respectively the largest and second largest elements among the set Xt. We define
(i, t) satisfying a tip EC restriction condition if maxXt −max {min{xj , xk}}j ̸=k > d, where d is
the tip-follower threshold for restriction of tip EC movement. If the tip EC restriction condition
is satisfied, vi(t) = v2 is adopted as the tip EC speed. This models the fact that more mature
ECs play a crucial role in controlling or regulating the mobility of tip ECs.

The agents update their position based on the following equation:

xi(t+ 1) = xi(t) + vi(t+ 1)Di(t+ 1), (1)

together with the tip EC restriction condition.

3 Tumoral Angiogenesis Optimizer

In this section, we will explain our optimization algorithm. As we have just seen, during the
angiogenesis process, there are local rules that ECs follow, but there is also global communi-
cation through which more mature ECs can regulate the migration speed of tip ECs during
the formation of new blood vessels. These cells migrate towards the direction where there is a
gradient of growth factors, such as vascular endothelial growth factor (VEGF), which attracts
cells to the tissue where vascularization is needed. In the context of tumor angiogenesis, tumors
can secrete a signaling protein to stimulate the formation of new blood vessels that grow towards
the tumor to supply it with oxygen and nutrients, which is essential for its growth and survival.

This global communication among ECs reminds us of the PSO algorithm, which was initially
introduced by James Kennedy and Russell Eberhart in 1995 [?], where global communication
plays a central role and inspires us to formulate our algorithm as follows:

TAO is initialized with a population of random solutions within the problem’s search space.
The initial migration speeds are all set to v1, and the initial migration directions are all set to
1, i.e., vi(0) = v1 and Di(0) = 1 for each individual i in the initial population.

In each iteration, the algorithm seeks optima by updating the individuals in the population,
and the solution with the best fitness is referred to as “the tumor”, and the other solutions,
referred to as “cells,” migrate through the problem’s search space towards the tumor following
the following dynamics:

xi(t+ 1) = xi(t) + vi(t+ 1)Di(t+ 1)(tumor(t)− xi(t)) + γtr, (2)

where xi(t) and tumor(t) are, respectively, the position of cell i and the best solution in iteration
t. The migration speed, vi(t), and migration direction, Di(t), follow the rules 1 and 2, explained
earlier, with respect to the direction from cell xi(t) to tumor(t). Additionally, for each cell,
the distance it has traveled throughout the algorithm is recorded, and this information is used
to check if the restriction of tip EC movement is satisfied. To simulate the branching of blood
vessels, we use the random vector r, which allows us to modify the direction of tumor(t)−xi(t)
above its normal plane. This provides diversity among the cells and ensures good exploration.
The parameter γ is a learning parameter, which, based on our empirical study, should be in the
range [0.2, 0.7].

Parameters v1, v2, p, s, q, and d already set according [?], which, since the search spaces
can be rescaled, provides an advantage compared to other metaheuristics where calibrating the
involved parameters can be a very challenging task. From the pseudocode ??, it is relatively
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Algorithm 1: Tumoral Angiogenesis Optimizer Algorithm

Data: Objective function, f(x), model parameters, population size, max number of
iterations and search region

Result: Approximate optimum, x+, and f(x+)
Initialize the cells population;
Initialize the cellular migration speed;
Initialize cellular migration directions;
Tumor(0) = the best search cell;
while t < Max number of iterations do

Check if tip EC restriction condition is satisfied;
foreach Cell do

Check rules 1. and 2.;
Update the positions of the cells from equation (??);
Tumor(t) = the best search cell;

return Tumor and f(Tumor).

straightforward to implement TAO algorithm in any programming language. Table ?? shows
values used in this paper.

v1 v2 p q r s d
5.332 0.938 0.0416891 0.234 0.194 0.240 55

Table 1: Parameter values used in this paper.

4 Validation and comparation

4.1 Unconstrained optimization problems

In order to evaluate the performance of our algorithm, we applied it to 6 standard benchmark
functions. The function descriptions are detailed in Table ??.

Given the stochastic nature of the meta-heuristic algorithms, their performance cannot be
accurately assessed based on a single run. In order to evaluate the approach comprehensively,
multiple trials with independently initialized populations are conducted. Consequently, this
study reports results obtained from 30 trials, with a population size of 100 and maximum
number of 500 iterations employed for both low- and high-dimensional problems.

Function Name Dimension Range Minimum

F1 =

n∑
i=1

x2
i Sphere 20 [−100, 100]n 0

F2 =

n∑
i=1

100
(
xi − x2

i−1

)
+ (xi−1 − 1)2 Rosenbrock 10 [−30, 30]n 0

F3 = x2 + y2 + 25
(
sin2(x) + sin2(y)

)
Eggcrate 2 [−2π, 2π]2 0

F4 =

n∑
i=1

(xi + 0.5)2 Step 30 [−5.12, 5.12]n 0

F5 = 10n+
n∑

i=1

[
x2
i − 10 cos(2πxi

]
Rastrigin 10 [−5.12, 5.12]n 0

F6 = −
n∑

i=1

sin(xi)

[
sin

(
ix2

i

π

)]20
Michalewicz 5 [0, π]n -4.6877...

F7 =
n∑

i=1

ix2
i Sum Squares 30 [−10, 10]n 0

Table 2: Classical benchmark problems.
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In order to compare the performance of TAO algorithm we will use standard PSO. Let’s
remember that the PSO algorithm has the following equations to update the velocities and
positions of the particles for each particle i:{

vi(t+ 1) = wvi(t) + c1r1(pibest − xi(t)) + c2r2(gbest − xi(t))

xi(t+ 1) = xi(t) + vi(t+ 1),
(3)

where vi(t), xi(t) and pibest are, respectively, the velocity, position and personal best value of
particle i at time t. Furthermore, w is the inertial weight, c1 shows the individual coefficient,
c2 signifies the social coefficient, r1, r2 are random numbers uniformly distributed in [0, 1], gbest
is the global best, and shows the best solution found by all particles (entire swarm) until tth
iteration. Usually c1 = c2 ∈ [1.8, 2.0]. We used c1 = c2 = 2 [?].

The inertia weight w is inspired by the particle swarm optimization algorithm and is calcu-
lated using the equation:

w = wmax − wmax − wmin

tmax
t, (4)

where t is the current iteration step, tmax is the maximum iteration step, wmax is the maximum
inertia weight, and wmin is the minimum inertia weight. Usually, wmax = 0.9 and wmin = 0.4
[?, ?].

The initial velocities in the PSO algorithm are set to zero, as empirical evidence has shown
this to be the most effective approach [?].

(a) The eggcrate function.
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(b) Convergence curve of TAO algorithm.

Figure 1: Using TAO algorithm with population size = 50 and maximum number of iterations =
50, we obtain the approximation x+=(1.3119482e-9, 3.9670538e-9), and f(x+) =4.5444231e-16.

The statistical results of TAO and PSO on the benchmark problems presented in Table
indicate that the proposed algorithm outperforms both in all cases.

4.2 Constrained optimization problems

In this subsection, we will consider optimization problems with constraints.

4.2.1 Rosenbrock function constrained with a cubic and a line

Let us first consider the problem of minimizing the Rosenbrock function subject to two inequality
constraints: one is a cubic constraint, and the other is linear. This is a nonlinear constrained
optimization problem with a global optimum at x∗ = (1, 1), with f(x∗) = 0.
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Function Parameters PSO TAO
Beast 0.0416891 1e-07

F1 Mean 1.7180551 1.0434957
Standard deviation 1.4389095 0.8459855

Beast 2.7253815 0.0058221
F2 Mean 8.5999977 6.9607255

Standard deviation 4.6557892 5.0302997
Beast 0.0000000 0.0000000

F3 Mean 0.0000000 0.0000000
Standard deviation 0.0000000 0.0000000

Beast 0.306966 5.5e-06
F4 Mean 0.7906888 0.0010151

Standard deviation 0.2765826 0.0015117
Beast 1.6399746 0.9899181

F5 Mean 7.3307733 8.4788214
Standard deviation 3.5371322 5.4759516

Beast -4.8693888 -4.6458954
F6 Mean 4.6169278 -3.9887314

Standard deviation 0.141926 0.5212977
Beast 0.6684421 0.181605

F7 Mean 8.0236676 1.9926416
Standard deviation 6.2222502 1.7023876

Table 3: Statistical results of benchmark functions.

min
(x,y)∈[−100,100]2

f(x, y) = (1− x)2 + 100(y − x2)2 (5)

Subject to:

g1(x) : (x− 1)3 − y + 1 ≤ 0

g2(x) : x+ y − 2 ≤ 0.

In order to address the problem, we will introduce a penalty function to transform the
constrained problem into an unconstrained problem. One way to do this is to define the function:

F (x, y) = f(x, y) + r1 max{g1(x), 0}+ r2 max{g2(x), 0},

where functions max{gi(x), 0} measure the extent to which the constraints are violated, and ri
are known as penalty parameters, which must be estimated [?, ?]. Thus, problem (??) can be
rewritten as:

min
(x,y)∈[−100,100]2

F (x). (6)

Using the metaheuristic proposed in this article we obtain r1 = 0.01, r2 = 0.05 and the approxi-
mate solution: x+ = (0.93744360.8786004), with f(x+) = −0.0040689. This results in a relative
error of approximately ϵ ≈ 0.0965690.

4.2.2 Cantilever Beam Design Problem

The Cantilever Beam Design Problem is a significant challenge in the fields of mechanics and
civil engineering, primarily focused on minimizing the weight of a cantilever beam. In this
problem, the beam consists of five hollow elements, each with a square cross-section. The goal
is to determine the optimal dimensions of these elements while adhering to certain constraints
(see figure ??).
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The mathematical expression governing this problem and its associated constraints are rep-
resented by equation (??).

min
0.01≤x1,x2,x3,x4,x5≤100

f(x1, x2, x3, x4, x5) = 0.06224(x1 + x2 + x3 + x4 + x5) (7)

Subject to:

g(x) :
61

x3
1

+
37

x3
2

+
19

x3
3

+
7

x3
4

+
1

x3
5

≤ 1.

In order to address problem (??), we reformulate it as an unconstrained problem as follows:

min
0.01≤x1,x2,x3,x4,x5≤100

F (x1, x2, x3, x4, x5), (8)

where F (x1, x2, x3, x4, x5) = f(x1, x2, x3, x4, x5) + rmax{g(x)− 1, 0} and r = 4.455068564365.
Subsequently, we apply TAO algorithm using a population of 100 individuals and a maximum
of 300 iterations. Then, we obtain r = 4.455068564365 and the approximate solution: x+ =
(6.01601588, 5.30917383, 4.49432957, 3.50147495, 2.15266534), with f(x+) = 1.33652057.

Table 4 lists the best solutions obtained by TAO and various methods: artificial ecosystem-
based optimization (AEO), ant lion optimizer (ALO), coot optimization algorithm (COOT),
cuckoo search algorithm (CS), gray prediction evolution algorithm based on accelerated even
(GPEAae), interactive autodidactic school (IAS), multi-verse optimizer (MVO), symbiotic or-
ganisms search (SOS) and hunter-prey optimizer (HPO) [?].

Figure 2: Cantilever Beam Design Problem.

The comparative outcomes are presented within Table ??. These results clearly demonstrate
that the TAO algorithm we propose presents a superior solution for addressing this problem.

Algorithm Optimal values Optimal weight
x1 x2 x3 x4 x5

TAO 6.01601588 5.30917383 4.49432957 3.50147495 2.15266534 1.33652057
HPO 6.00552336 5.30591367 4.49474956 3.51336235 2.15423400 1.33652825
AEO 6.02885000 5.31652100 4.46264900 3.50845500 2.15776100 1.33996500
ALO 6.01812000 5.31142000 4.48836000 3.49751000 2.15832900 1.33995000
COOT 6.02743657 5.33857480 4.49048670 3.48343700 2.13459100 1.33657450
CS 6.0089000 5.30490000 4.50230000 3.50770000 2.15040000 1.33999000
GPEAae 6.0148080 5.30672400 4.49323200 3.50516800 2.15378100 1.33998200
IAS 5.9914000 5.30850000 4.51190000 3.50210000 2.16010000 1.34000000
MVO 6.0239402 5.30601120 4.49501130 3.49602200 2.15272610 1.33995950
SOS 6.0187800 5.30344000 4.49587000 3.49896000 2.15564000 1.33996000

Table 4: Comparison results for the cantilever design problem.
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5 Conclusiones

In this paper, we introduce a novel metaheuristic algorithm named the Tumoral Angiogenesis
Optimizer (TAO), drawing inspiration from the morphogenetic cellular movements of ECs that
occur during the tumor angiogenesis process. Based on the results obtained from mathemat-
ical benchmark functions, TAO outperforms the standard PSO. Furthermore, our algorithm
has demonstrated successful solutions to two constrained optimization problems. Notably, in
the context of the Cantilever Beam Design Problem, it outperformed several well-established
metaheuristics.

This article can be expanded and improved with several research directions for future stud-
ies. First of all, it can be improved by studying the process of tumor angiogenesis in more
detail. Secondly, it would be interesting to consider more test functions and practical real-world
problems. Finally, the phenomena of cell appearance and death can be considered.
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