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Close-orbiting black hole pairs are macroscopic
quantum-gravitational systems
By Warren D. Smith, warren.wds@gmail.com, August 2023. Version 2 after detected/corrected factor-2
error & reader comments & questions mostly by David J. Broadhurst, Sept.2023.

Abstract. Close-orbiting pairs of near-equal black holes (M≈m) are a new kind of macroscopic quantum
object because (I show) they have inherent mass-uncertainty ΔMtotal>(M+m)/380. These are the largest and
heaviest macroscopic quantum systems ever found, the first observable physical system plausibly requiring
quantum gravity for an accurate description, and the first which plausibly will enable learning about quantum
gravity via direct observation.

Ingredient #1: Energy-time uncertainty principle

The vast majority of quantum mechanics textbooks say that ΔEΔt≥ℏ/2 where ℏ≈1.055×10-34 joule seconds,
unfortunately without providing any precise meaning for ΔE or Δt and without telling the reader what,
exactly, this supposed inequality even means. Fortunately, some precise statements are available. Bauer &
Mello 1976 considered an unstable quantum system with "survival probability" Q(t) as a function of time
t≥0, and probability-density ρ(E) for its initial energy E. If the system were described by a wavefunction
Ψ(x,t) then Q(t) with 0≤Q(t)≡|∫Ψ*(x,0)Ψ(x,t)dx|2≤1 is the probability the system remains in its initial state
Ψ(x,0) after time t.

Define the "Bauer-Mello timespan" τBM≡(1/2)∫t>0Q(t)1/2dt. For any system obeying the classic "exponential
decay law" Q(t)=exp(-t/L) this definition would exactly yield its mean lifetime τBM=L. And any Q(t) falling

proportionally to t-γ (or faster) when t→∞, for any fixed exponent γ>2, will yield a finite τBM.

A measure of the energy-width of the system is WE=1/maxEρ(E). The Bauer-Mello theorem then may be
written τBMWE≥πℏ/2=h/4 or equivalently (which I prefer)

maxE ρ(E) ≤ 4 τBM / h    where    h=2πℏ≈6.626×10-34 joule seconds.

Bauer & Mello's constant 4 is best possible in the sense that their inequality becomes an equality in the
classic exponential decay case Q(t)=exp(-t/τ) when the energy necessarily is described by the Cauchy density
ρ(E)=2π-1Γ/(4[E-E0]2+Γ2) where Γ is the width of the energy-interval where ρ(E)≥maxEρ(E)/2=ρ(E0)/2 and
Γ and τ obey the linewidth-lifetime relation Γτ=ℏ.

Experimental confirmations: For the 134.24 keV excited state of Re-187, Mössbauer & Wiedemann 1960
measured the linewidth Γ=(4.4±0.5)×10-5eV using the Mössbauer effect (the line shape indeed is Cauchy to
within measurement errors), deducing τmean=15.2±1.7 picoseconds. Blaugrund et al 1963 confirmed that

http://en.wikipedia.org/wiki/M%C3%83%C2%B6ssbauer_effect
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prediction by measuring τ=14.5±2.0 ps using a microwave method. Steiner et al 1969 deduced
τmean=2.73±0.02 nanoseconds from the Mössbauer linewidth of the 77.34keV level of Au-197 (superb fit to
Cauchy lineshape in their fig.2), whereas delayed-coincidence timing found 2.65±0.029 (Gupta & Rao 1972)
and 2.78±0.043 (Lynch 1973) which I combine to get 2.69±0.05. This 1.5% agreement plausibly① is the best
obtainable by Mössbauer methods. Steiner et al obtained their excited Au-197 by beta decay (719 keV) of Pt-
197 (19.9-hour halflife) inside crystalline platinum. Their absorbers were gold foils of numerous precisely
controllable thicknesses, allowing excellent extrapolation to zero thickness, all this at temperature 4.2°K. It
helps that both Pt and Au have the maximally-symmetric FCC crystal structure (nearest neighbor distances
277 and 288pm) to help cancel out extra-nuclear fields; and that gold is fully soluble as a solid solution in
platinum up to 100 atomic%. In hundreds of experiments, there has never been a case where any Mössbauer
linewidth was less than ℏ/τmean by any significant number of experimental error bars. Thus all Mössbauer
experiments support the validity of the Bauer-Mello inequality, while the above two support the precise
optimality of their numerical constant. One to two orders of magnitude more precision came when Oates et al
1996 used trapped ultracold Na atoms to precisely measure the natural linewidth Γ=9.802±0.022 MHz=
(4.054±0.009)×10-8eV of the 3p2P3/2 excited state, while Volz et al's adjacent paper measured its lifetime
τ=16.254±0.022 nanosec using beam-gas-laser spectroscopy, agreeing within the experimental errors with the
predicted ℏ/Γ=16.237±0.035 nanosec.

Other precise statements were obtained by Mandelstam & Tamm 1945, for example Q(t)≥cos(tΔE/ℏ)2 when
0≤t≤(π/2)ΔE/ℏ where ΔE≡[∫(E-E̅)2ρ(E)dE]1/2 and E̅≡∫Eρ(E)dE and the integrations are over the full real line.
In particular, if we define the "half life" τ1/2=mint>0 {t | Q(t)≤1/2} then τ1/2ΔE≥πℏ/4=h/8. The original
textbook claim can be given this precise meaning: τRMSΔE≥ℏ/2 where

τRMS=[∫t>0Q(√t)dt]1/2=[2∫t>0tQ(t)dt]1/2 is the root mean square lifetime. And if we define the "mean life"
τmean=∫t>0Q(t)dt then GiSaWo – Gislason, Sabelli, Wood 1985 – showed

τmean ΔE ≥ 5-3/23πℏ = 5-3/23h/2.

GiSaWo's constant also is best possible, in the sense that their inequality is tight when ρ(E)=(3/4)(1-E2) for
|E|≤1, else 0. With that ρ(E) the survival probability Q(t) has Q(t)t4 bounded below a positive constant
always, but bounded above a (different) positive constant on a positive-density subset of the halfline t>0.

The four timespans we have discussed always obey 0<τ1/2≤min(2τmean, 21/2τRMS, 23/2τBH) and τmean≤2τBH,
  τmean≤τRMS.   [The first arises from Markov's inequality in probability theory; the second from Hölder's
(1,∞) inequality, and the third from the concave-∪ nature of the squaring function.]

It now is natural to ask whether there is any uncertainty relation combining the virtues of both GiSaWo and
Bauer-Mello, i.e. of the form maxE ρ(E)≤κτmean/h (or ≤κτ1/2/h) for some positive constant κ. The answers

both are no, because the probability density ρ(E)=π-1/2Γ(v+3/2)Γ(v+1)-1(1-E2)v for |E|<1, else 0 (where v>-1
is a constant) corresponds to a survival probability Q(t) with Q(t)t2v+2 bounded below a positive constant
always, and above another positive constant on a positive-density subset of the halfline t>0. That's due to, e.g,
EQ 2-7-19 of Sneddon 1972. So if -1<v<0 then maxE ρ(E)=∞, while if -1/2<v then both τ1/2 and τmean are

http://en.wikipedia.org/wiki/Markov%27s_inequality
http://en.wikipedia.org/wiki/Holder%27s_inequality
http://en.wikipedia.org/wiki/HM-GM-AM-QM_inequalities
http://en.wikipedia.org/wiki/Jensen%27s_inequality


9/26/23, 09:31Black hole macroscopic quantum

Page 3 of 14file:///Volumes/CaseSensVol/BHmacroQ.html

finite and positive. So any v with -1/2<v<0 yields a counterexample. I do not know whether there is any
uncertainty relation of form maxE ρ(E)≤κτRMS/h.

However, I can prove (but② will not here) τmeanΔ1E>0.2889ℏ and more generally for any fixed k>0 that

τmeanΔkE>ckℏ where ΔkE≡[∫|E-E̅|kρ(E)dE]1/k and the ck are appropriate positive constants. I can also prove:
If the narrowest energy interval containing at least 31% probability [∫ρ(E)dE≥0.31] has width W31%, then
τ1/2W31%>0.005969ℏ.

For exact-exponential decay τ1/2/ln2=τmean=τBH=2-1/2τRMS; and ΔkE is finite for each k with 0<k<1, for

example τmeanΔ1/2E=ℏ and τmeanΔ2/3E=21/2ℏ; and W31%≈0.5295ℏ/τmean; but ΔkE=∞ for each k≥1. That
infinity is one reason that exact exponential decay is, under traditional quantum mechanics, considered
impossible (Fonda et al 1978); but if, say, radium decays exponentially for 300 halflives then switches to t-γ
style decay for some exponent γ with 2<γ<5 (which is roughly what most analysts contend), then (a) those
infinities would not arise, and (b) detecting this departure from exponentiality would be infeasible.

Ingredient #2: Gravitational radiation from rotating quadrupoles

Two rotating systems are

a. Uniformly-dense rigid thin rod of length=L and mass=M rotating about an axis perpendicular to the rod
through its midpoint.

b. Two point masses m and M, separated by distance L, both circularly orbiting their center of mass
(either because joined by a massless length-L rod, or because of their mutual gravitational attraction
according to Newton's laws).

Let the angular velocity be Ω, so the period is 2π/Ω. Either way, we have a "rotating quadrupole" which
therefore emits gravitational-wave radiation.

In case (a) Eddington 1922/1923 (where we've also used the formula I=ML2/12 for the moment of inertia I of
the rod) calculated the emitted power

Prod = 32GI2Ω6c-5/5 = 2GM2L4Ω6c-5/45.

(The reason Eddington published this twice, using two different methods, was to become confident that
Einstein previously had been a factor of 2 too small.) This corresponds to a rate of emission of gravitons
(each graviton having angular frequency 2Ω) with mean time τ between graviton emissions equal to
τ=2ℏΩ/P=45ℏG-1M-2L-4Ω-5c5. See Smith 2021 for analysis of the claim "gravitons exist" and with energy
E=hf for a frequency=f graviton. (And if 2Ω were only an upper bound on graviton frequency, then our
formula would only upper-bound τ, which would be adequate for the purposes of this paper.) If we now
regard the rotating rod as a quantum system with mean decay time τ, we see from the GiSaWo bound and
E=mc2 that the mass of the rod necessarily is uncertain, with ΔM≥5-3/23πℏc-2/τ, that is,
ΔMrod≥(5-5/2π/3)GM2L4Ω5c-7=5-5/248πGI2Ω5c-7.
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Case (b) can be treated using the more general analysis in §10.5 of the book by Weinberg 1972, but
Eddington's I-based formula also works given that our two masses M and m have respective distances R and r
to their center of mass, whereupon solving MR=mr and R+r=L for r=LM/(m+M) and R=Lm/(m+M)
determines the moment of inertia I=mr2+MR2=L2mM/(m+M). The radiated power is
Pbinary=(32/5)Gm2M2(m+M)-2L4Ω6c-5. If the masses obey the Kepler-Newton law (m+M)G=Ω2L3 then the

radiated power can be rewritten as Pbinary=(32/5)m2M2(m+M)L-5G4c-5. Then as before we find

τbinary=2ℏΩ/Pbinary=(5/16)ℏG-7/2M-2m-2(m+M)-1/2L7/2c5 and

ΔMbinary≥5-5/2432πc-7G7/2M2m2(m+M)1/2L-7/2.

Without loss of generality 0<m≤M. Now suppose that the center-separation L happens to be near minimum
possible. The Schwarzschild radii of the two masses in isolation would be r=2mGc-2 and R=2MGc-2. So
clearly if L≤r+R=2(m+M)Gc-2 then our "two" black holes would actually be one merged entity. The
Newtonian equipotential surface at the same potential as a single isolated hole's horizon (corresponding to
escape velocity=c for an infinitesimal test mass) becomes topologically two spherical surfaces exactly when L
satisfies L>x+X with M/X+m/x=c2/(2G) and MX-2=mx-2. It is simplest to solve these equations when m=M
(hence r=R), the answer then being L>2x=2X=4R=8MGc-2. The fully-general answer is
L>2([m/M]1/2+1)(m+M)Gc-2. Of course, our uses of the "Newtonian potential" and the "Kepler-Newton law"
both are only approximately valid since we have ignored general relativistic time dilation, space distortion,
and dynamics. So the reader should keep in mind that all our formulas about black holes at near-minimal
separation are only approximate, i.e. are the leading order terms in the "post-Newtonian" sequence of
approximations. This still must yield a lower bound on radiated power, valid to within a dimensionless
constant factor. (For more accuracy one could use Will & Wiseman 1996's "second post-Newtonian order"
calculation; and to get the constant presumably arbitrarily near exact, one could do computer simulations ala
Healy & Lousto 2017.)

If our two masses indeed are black holes separated by that approximate minimum possible distance, then the
radiated power becomes

Pbinary = m2 M2 (m+M)-4 ([m/M]1/2+1)-5 PPl / 5

where PPl≡c5/G≈3.6283×1052 watts is the Planck power unit. Therefore if m≈M then Pbinary is about 2-95-

1=1/2560 Planck power units, i.e. about 1.4173×1049 watts, regardless of m+M.

Comparison vs. Experiment: The table lists seven LIGO-detected black hole mergers enjoying
comparatively high-quality data and analyses, and with primary/secondary mass ratios all fairly near 1.

The peak power was always between 27 and 40 in units of 1048 watts, showing as expected a noisy
decreasing trend with mass ratio. The lost/total mass ratios were always between 3% and 6%. The apparent
constancies of peak power and lost/total for fixed primary/secondary mass ratio, despite total mass varying by
an order of magnitude, agree with what our model predicts. The observed numerical values of the peak
power, however, are a factor somewhere between 2 and e times our model's prediction. We have several valid
excuses for that:

http://en.wikipedia.org/wiki/Schwarzschild_radius
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1. As we'd said, our model makes Newtonian approximations, which become poor as we approach (and
ridiculously poor after) horizon merger.

2. Our model ignored the fact that actual black holes have different spins, simplistically regarding all
black holes of a given mass as identical.

3. After topological merger occurs, gravitational waves will still radiate while the event horizon changes
from a goofy dumbbell shape into its ultimate nice round Kerr shape. That relaxation might well
involve greater energy-loss and/or more power than the pre-merger stage, but my model is only
applicable pre-merger.

Event
name Masses (suns) Lost

mass Lost/Total Prim/Sec
Peak power

(1048W)
Comments

GW190521 150=85+66 7.6 5.1% 1.29 37±8 60Hz for 100msec (4 cycles)
GW170814 56=32+24 2.7±0.35 4.8% 1.33 37±5
GW200202 17.6=10.1+7.5 0.82 4.7% 1.35 ?

GW150914 68=38.7+32.5 3.1±0.4 4.6% 1.19 35±5 1st detected; 50M CPU hours
for simulations

GW170608 19=12+7 0.85±0.12 4.5% 1.71 34±11
GW151226 21.8=14.2+7.5 1.0±0.15 4.6% 1.89 33±12
GW170104 48.7=31.2+19.4 2.0±0.65 4.1% 1.61 31±10

And indeed, computer simulations by Healy & Lousto 2017 predict that the maximum possible peak power
(which happens near the time of horizon-merger; they did not say whether before or after) occurs for equal-
mass black holes, each with maximum spin aligned with orbital angular momentum, and equals 7.1368×1049

watts, i.e. 5.0355 times our prediction, a ratio suspiciously near both 5 and (5π/7)2≈5.035512. Even greater
power might be possible if the two holes were oppositely electrically charged, since then photons also would
be radiated. But astrophysical holes presumably are near-neutral, a hypothesis supported by the non-
observation of giant EM-radiation pulses from hole mergers. Their same peak-power-maximizing scenario
also maximizes the fraction of total initial mass ultimately radiated, i.e. lost: 11.3%. The minimum loss
fraction (≈3%) in the equal-mass case occurs for maximum hole spins anti-aligned with orbital angular
momentum. In the spinless equal mass case their peak power is 3.7226×1049 watts, i.e. 2.6265≈2ln(1+e)
times our model's prediction, with 4.857% of the initial mass allegedly radiated. This all makes it clear our
Newtonian model underestimates peak power.

We now use our peak-power formula to deduce the mean time τ between graviton emissions 
τbinary= 2-1/25ℏc-2 M-2m-2(m+M)3 ([m/M]1/2+1)7/2 which when m=M is τbinary=320ℏc-2m-1. Then via the

energy-time uncertainty principle (GiSaWo bound) and E=mc2, the uncertainty ΔM in total mass is lower
bounded by ΔMbinary ≥ 5-5/221/23π M2m2(m+M)-3 ([m/M]1/2+1)-7/2 which when m=M becomes

ΔMbinary ≥ (5-5/22-63π) (M+m) ≈ 0.002634 (M+m) > (M+m) / 380

regardless of c, G, and ℏ.

If, further, we assumed the inter-graviton time delays were approximately exponentially distributed, then we

http://en.wikipedia.org/wiki/Rotating_black_hole
http://arxiv.org/abs/2009.01075
http://arxiv.org/abs/1709.09660
http://arxiv.org/abs/2111.03606
http://arxiv.org/abs/1606.01210
http://arxiv.org/abs/1602.03840
http://arxiv.org/abs/1711.05578
http://arxiv.org/abs/1606.04855
http://arxiv.org/abs/1706.01812
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could increase the constant 0.002634 in the lower bound, e.g. using the half-life inequality τ1/2ΔE≥πℏ/4
instead of GiSaWo would increase it to 0.00354. Indeed, it would increase to arbitrarily large values under
the (false) assumption of arbitrarily precise exponentiality. I suspect that exponentiality should be quite
precise because gravitons are being emitted at the huge rate τ-1≈1088 per second for M+m=109 solar masses –
by far the greatest particle-emission rate I ever saw for anything – with chronologically-adjacent graviton-
emissions from source locations ⪆cτ≈10-79 meters apart presumably independent. Hence I expect probability
correlations of order 10-180. Therefore the graviton emission times presumably well-approximate a Poisson
process. Poisson process gap lengths are exactly exponentially distributed. Therefore I expect our lower
bounding constant 0.002634 is extremely conservative (and of course would be multiplied by 5.0355 if we
used Healy & Lousto's peak power formula instead of our model's), with the truth probably somewhere
between 0.04 and 0.6.

Remarkable Conclusion

Two closely orbiting comparable-mass black holes always form a quantum system, whose inherent
mass uncertainty necessarily exceeds 1/380 of its total mass. This is by far the largest intrinsic mass-
uncertainty I ever heard of for anything macroscopic. This can be (which presumably has happened many
times) a "macroscopic quantum phenomenon" weighing 109 solar masses, with diameter comparable to the
solar system, with mass-uncertainty exceeding millions of solar masses – all again by far the largest I ever
heard of – lasting for months③. As far as I know no prior author has ever pointed out that black holes, despite
their giantness, can be quantum in nature and require④ quantum gravity for accurate description. In fact, this
is the first physical system anybody ever thought of, in which quantum gravity plays such a large role
that it should be feasible to "observe" it in action. And given the recently developed capability of the
"event horizon telescope" to "see" certain black holes with high resolution, and LIGO's ability to "hear" black
hole mergers in real time, this for the first time opens up serious hope that it might be possible to learn about
quantum gravity by direct observation.

Discussion

To see just how remarkable this is, let us compare it versus various other systems.

The rod-shaped interstellar asteroid "Oumuamua" has L≈400 meters, rotation period≈8 hours so
Ω≈2×10-4/second, and if made of iron has mass M≈4×109 kg. I compute ΔM≈8×10-61 kg. If we replaced the
iron by high strength steel and sped up the rotation period to 3 seconds (any faster and steels would not be
strong enough) then τ=10 picoseconds and ΔM≈9×10-41 kg, which still is 10 orders of magnitude smaller
than the mass of a single electron.

BAT99-98 in the Large Magellanic Cloud arguably is the most luminous star currently known. It is believed
to have mass 226 times our sun, luminosity≈1.9×1033 watts equivalent to 5×106 suns, and surface
temperature 45000°K. I deduce that it emits about 1051 photons per second. If we regard this entire star as a
quantum system with decay time 10-51 second, then its inherent mass-uncertainty is ΔM≈c-2ℏ1051/second≈1
kg. Peak supernova luminosities can reach 5×109 suns (1.9×1036 watts), suggesting by the same calculation

http://en.wikipedia.org/wiki/Poisson_point_process
http://eventhorizontelescope.org/
http://www.ligo.caltech.edu/
https://en.wikipedia.org/wiki/Oumuamua
http://en.wikipedia.org/wiki/BAT99-98
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ΔM of order ≤1000 kg. That still is peanuts in the sense that ΔM≤10-28M is far too small to detect.

The tininess of those ΔM's was not merely due to luck.

1. We can readily argue that the graviton-emission-caused ΔM of every rotating gravitationally-bound system
is (as a fraction of its total mass M) maximized when it is a black-hole close binary system – and if it does not
involve at least 2 black holes, is always much smaller.

2. For simplicity in the following argument let me work in Planck units (ℏ=c=G=kB=1) and ignore constant
factors of order 1. Consider a Euclidean ball of radius=R with at least the outer layer (layer thickness λ) of
this ball consisting of hot material (temperature T≈1/λ). Regard this as a quantum system which "decays" by
emitting photons, e.g. of blackbody radiation at temperature≈T and wavelength≈λ into the region outside the
ball. The "decay time" (i.e. mean time between such photon emissions) will then be of order R-2T-3λ. This
decay time will cause our system to have ΔM of order R2T3/λ. Meanwhile the mass M of that outer layer is at
least of order R2T4λ. Hence ΔM/M≈T-1λ-2≈T. We conclude that ΔM/M has order≥1 only when the
temperature T is at least of order 1 Planck temperature unit: T≥TPl≈1.417×1032°K. However, that assumed

Euclidean geometry. In fact, T<R-1/3 is necessary otherwise our ball will be so heavy it is a black hole (and
therefore not emit radiation at all). Therefore, ΔM/M of order ⪆1 is impossible for any system of our "hot
ball" type whose radius R exceeds order 1 Planck length units: R>LPl≈1.616×10-35 meters.

Particle Mass (MeV/c2) Est.Mean Lifetime (sec) ΔM/M (lost mass)/M
Roper resonance 1370 3.7×10-24 0.11 0.315

W± boson 80377±12 3×10-25 0.02301

Z0 boson 91187.6±2.1 3×10-25 0.02028

Top quark 172760±300 5×10-25 0.00642 0.535

Lithium-4 3751.304±0.002 1.31×10-21 0.000113 0.251

Higgs boson 125110±110 (1-5)×10-22 0.00004435

Tauon 1776.86±0.12 (2.903±0.005)×10-13 10-12

short kaon K0 497.611±0.013 (8.954±0.004)×10-11 10-14 0.7

kaon K± 493.677±0.016 (1.238±0.002)×10-8 9×10-17

long kaon K0 497.611±0.013 (5.116±0.021)×10-8 2×10-17

Polonium-212 197466.38 4.31×10-7 7×10-21 0.0189

Cobalt-60 55828.0019 2.4×108 4×10-35 5.06×10-5

Curium-250 232947 3.8×1011 6×10-39 0.5

Bismuth-209 194664 9×1026 3×10-54 0.0192

Tellurium-128 119142.2 1032 3×10-59 7.285×10-6

http://en.wikipedia.org/wiki/Planck_units
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3. The table shows some of the fastest-decaying unstable particles known, and computes their ΔM/M from
their mass M and estimated mean lifetime τ via the GiSaWo bound. The "Roper resonance" (Burkert &
Roberts 2019) is the first excited state of the proton. The isotopes from cobalt-60 onward (not ultrashort-
lived) are included merely for comparison purposes. We also tabulate "lost mass," the mass difference
between the heaviest decay product and the initial mass (in cases with sufficiently-unique decay reaction)
merely to demonstrate its non-relationship to the mass uncertainty ΔM.

4. The lifetime of a composite of N identical subsystems should be of order 1/N times the subsystem lifetime,
my point being that ΔM/M is unaffected by N-fold cloning. If the subsystems are independent one could
perhaps argue the net ΔM should be smaller than the sum of the N component ΔM's (e.g. only about
N1/2ΔM) due to partial cancellations. Either way, any system made of the above-tabulated (or any other
known) particles should have ΔM/M≪1.

5. Obviously, every normally-encountered macroscopic object has undetectably small inherent mass-
uncertainty, ΔM≪10-20M.

In view of 1-5 above, it seems reasonable to conjecture that

A. No macroscopic physical system can ever have greater ΔM/M than two close-orbiting near-equal black
holes.

B. And the only physical systems whose ΔM/M values can compete are some of the most-unstable
subatomic particles (which, of course, are inherently quantum objects), the best one I know being the
(currently poorly understood) "Roper resonance."

C. Two close-orbiting near-equal black holes are an inherently quantum macroscopic system, innately
requiring quantum gravity for precise treatment④.

Now we must ask – to use a technical term – what the hell?!?!

"Macroscopic quantum phenomena" (MQP) can be weird and mysterious. The two most familiar are
superconductivity and superfluid liquid helium. I suspect that if these two phenomena had not been
discovered by accident, then no theorist would have been smart enough to predict them. As it was,
H.K.Onnes discovered in 1911 that mercury superconducts below about 4°K. It took until about 1961 (50
years later) before Bardeen, Cooper, Schrieffer, and Eliashberg (BCSE) gained (what some contend to be)
theoretical "understanding" of that – although those 4 people remained not smart enough to predict the
Josephson effect. This understanding, however, even as of year 2023 remains rather pathetic. If we had real
understanding, then a supercomputer could mentally search all possible ≤6-atom chemical compounds and
tell us the predicted best (e.g. highest Tc) superconductor. But that never happened; essentially all decent
superconductors have been found by experimenters operating on hunches or by random trials, with near-zero
quantitative theoretical help. And even BCSE far exceeds present understanding of the high-Tc cuprates.
Incidentally, superconductor Tc's are not related to ℏ in any simple way, unlike (say) their Fermi temperature
– much like our black hole ΔM/M's independence from ℏ.

Superfluidity in liquid helium below 2.17°K was first discovered in 1937 and more-or-less explained within
30 years, but some questions remained disputed/unclear even as of ≈2018, such as the existence of
"supersolids."

http://en.wikipedia.org/wiki/Fermi_energy
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My point with this historical retrospective is that despite 50-100 years of theoretical and experimental
examination, neither superfluidity nor superconductivity are understood nearly as well as we would like.
Given this historical proof of human incompetence about MQP – and close black hole binaries are a
completely new kind – plus our clear present incompetence about quantum gravity, I am unwilling to assert
that I know what is going on.

As far as I am aware, the LIGO team until now has believed (LIGO GR-test papers 2019-2022) that all their
data has been 100% compatible with non-quantum general relativity. I now advise them to gather that data
more accurately and analyse it more!

How can we interpret this in human terms? I can only say a little. Although you might survive repeated
shootings if given enough time to heal between shots, you will disintegrate if machine-gunned by a
tremendous number of bullets. What is happening here is the destruction of the deterministic nature of
spacetime geometry, when machine-gunned by a too-huge flux of a too-tremendous number of gravitons.

What is something that huge with that much mass quantum-uncertainty like? The GW150914 merger
involved the inspiral of two holes of masses 39 and 32 suns (radii 115 and 95km), about 1.3×109 lightyears
away from here, reaching maximum speed ≈0.6c, and radiating high power for about 0.2 seconds. The
gravity waves from this event distorted lengths on Earth by factors ±10-21, but 1000km from the merger those
distortions were ±1%. If a human went anywhere near black holes like those, i.e. with anywhere near stellar
mass, then the tides would "spaghettify" and kill him. However, tides near supermassive holes are survivably
small even at the event horizon. A human subjected to oscillating ±1% length distortions in an intense gravity
wave would suffer shattered bones if the frequency of the wave were too high versus the characteristic
acoustic frequencies of that bone, perhaps 3700 Hz for an adult femur, so that they could not readjust in time.
But wave frequencies from super-super mergers would be very low, giving you plenty of time to readjust,
suggesting this would not pose a problem. So as far as nonquantum effects are concerned, you should be able
to survive being right near a super-super merger, the most energetic event in the universe! However, lifeforms
and engineered mechanisms have always been able to take for granted the deterministic nature of lengths and
times to extremely high accuracy. Near a binary black hole with relative mass uncertainty ΔM/M∈(1/380,
0.6), lengths and times also should exhibit the same-order inherent relative uncertainties. I do not know how
lifeforms would react to or perceive an environment like that.

Contrast vs. Hawking: Hawking radiation is something that gets "more quantum" (e.g. hotter, more power)
the tinier the black hole. But my black hole pair mass-uncertainty gets "more quantum" (e.g. lasts longer,
shorter intergraviton timespans during each of which total energy is highly uncertain) the larger the holes.

What happens inside the hole? Time outside a Schwarzschild-metric's event-horizon proceeds forward,
while time inside it points radially inward (which is why anybody incapable of backward time-travel cannot
escape from the hole). The horizon itself is a "null surface" which "does not experience time." Long (as
regarded by faraway observers) waves become infinitesimally short on Schwarzschild horizons due to infinite
blueshift factors. So: can the quantum length-uncertainties which occur merely temporarily around merging
from the standpoint of an external observer, get blueshifted to microscopic size then "frozen" onto the
horizon, thereby causing the spacetime metric inside the final hole to be quantum-weird permanently?

My new MQP might "not matter." Why? (a) Regard the black hole binary as an unstable quantum system,
but each time it radiates another graviton, we get a new such system. If all these systems were "independent"
in some suitable sense then their mass uncertainties might, if observed "blurred" over long time spans (say

http://www.ligo.org/detections/GW150914/fact-sheet.pdf
http://en.wikipedia.org/wiki/Black_hole_thermodynamics
http://en.wikipedia.org/wiki/Hawking_radiation
http://en.wikipedia.org/wiki/Schwarzschild_metric
http://en.wikipedia.org/wiki/Null_hypersurface
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1020 graviton-emissions) largely cancel out, e.g. effectively reducing ΔM by a factor 1010. (And indeed,
notice that the claimed experimental error bars on some of our tabulated particle masses are considerably
smaller than their inherent uncertainties, which is mainly due to averaging over many observed particles.)
But, at least naively, it seems as ridiculous to argue for such "independence" as it would be to argue that the
Earth, after emitting one photon, reaches a state "independent" of its prior state – indeed, considerably more
ridiculous if we want the mass to become a random deviate "independently" re-sampled from a distribution
with standard deviation 106 solar masses, after each single graviton emission. I currently have almost no clue
to what extent the "independence/blur/cancel" hypothesis is valid or useful; and to what extent, and how, the
largeness of ΔM/M "really matters."

(b) We noted the unusual peculiarity that the peak "quantum uncertainty" ΔM in mass, does not depend on
ℏ. Usually, "quantum effects" go to zero when ℏ→0. Does this mean this quantum uncertainty is "really not
quantum" somehow? And is it related to the "lost mass" (which also does not depend on ℏ, and has the same
order of magnitude as ΔM)?

My answers: First, that was far too facile: our ΔM/M formula also is independent of c and G, but it would be
absurd to contend it is "not really relativistic or gravitational." Second, at least for general decaying systems,
lost-mass and mass-uncertainty clearly are very unrelated, and the derivation shows my peak ΔM really is
quantum in origin despite ΔM/M's lack of dependence on ℏ. (Actually it does involve ℏ, but in two ways,
which cancel.) Third, the ΔM and lost-mass concepts differ greatly in their time-behavior. For M≈109 suns, it
takes months to lose that mass; but the mass-uncertainties ΔM arise on time scales 10-88 seconds.

Are those non-dependences on ℏ merely artifacts of my model being the leading order post-Newtonian
approximation, so that ℏ's would appear in higher-order correction terms? No: I claim peak ΔM/M is
independent of ℏ at all orders in the postNewton expansion. Why? General relativity (GR) obeys the scale
invariance property that scaling up all masses, lengths, and times by an arbitrary factor s, leaves GR
unaltered. Hence the power P radiated is s-invariant, while the frequency F scales like s-1, hence the mean
timegap τ=hF/P between graviton emissions will scale like h/s, hence peak ΔM will scale like hc-2/τ which
(like M) scales like s – and note the h has canceled out – so peak ΔM/M is both ℏ and s-invariant. Q.E.D.

Since the "lost mass" also is s-invariant for any standardized hole-inspiral scenario, we see⑤ that peak ΔM/M
and ultimate (lost mass)/M indeed will be the same for our problem, up to a factor that is an evidently-
nonconstant function of initial-spin data.

Perhaps scale invariance is a hallmark of macroscopic quantum phenomena, indeed exactly what permits
them to reach macroscopic size. You might object that the entire description of superfluid liquid helium
certainly is not scale-invariant. Yes, but the key parameter, the number density of helium atoms times the
cubed thermal wavelength of one such atom, is unchanged (at any fixed temperature) by getting a bigger
bottle of liquid helium. Another example is a single photon: its ΔE/E is invariant on scaling to long
wavelengths, and does not depend on ℏ.

To conclude: that ℏ-independence indeed looked suspicious a priori, but seems less so a posteriori. Anybody
still wanting to decry our ΔM/M as "not really quantum" probably would need to make major advances in
"interpretation of quantum mechanics" before hoping to convince anybody.
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(c) Suppose the mass of the black hole binary somehow keeps getting "measured" extremely frequently,
thereby preventing it from being very uncertain. The concept of quantum measurement has always been
mysterious... and it is hard to imagine how measurements could happen at any enormous-enough rate... but
anyhow this is another conceivable way our effect might "not matter." On the other hand that very
measurement itself might be a quantum-gravitational effect, in which case quantum gravity would "matter."

There simply is zero prior experience with any macroscopic system featuring nonnegligible ΔM/M. All I can
say for now is: this certainly seems worthy of investigation.

Endnotes

①: Mössbauer lines with lifetimes>100ps and hence linewidths<6.6×10-6eV usually get substantially
broadened by extranuclear fields hence rarely can match Re-187's accuracy. A countermeasure is to embed
your isotope inside a suitably symmetric nonmagnetic crystal (e.g. Fe-57 inside ferrocyanides). That can work
well for absorbers, but for emitters you also need the (chemically different!) parent isotope to be embedded in
the same way, and for all that not to be wrecked when the parent disintegrates – difficult. Decker & Lortz
[J.Appl.Phys. 42,2 (1971) 830-833] used both the ferrocyanide, plus the "multiple absorber thicknesses" trick
enabling separate determination of the absorber and emitter linewidths (not merely their sum), to find in their
Table III only 30% greater Mössbauer linewidth than deduced from Kistner & Sunyar's [Phys. Rev. B 139,2
(1965) 295] directly-measured mean life 140ns for the 14.41keV excitation of Fe-57. Better – 18% and 16%
– agreements: τMossb=131±4ps versus τdirect=154±33ps for the 129.4keV Ir-191 line, and τMossb=267±6ps
versus τCoul.excit.=308±16ps for the 46.48keV W-183 line. [Data sources: Bullard et al: Phys.Rev.B 43,10
(1991) 7405, Baglin: Nucl.Data Sheets 134,4 (2016) 149, Mössbauer: Z.Naturforschung A 14 (1959) 211,
Steiner et al 1969, Wagner et al: Phys.Rev.Lett. 28,9 (1972) 530, Owens et al: Phys.Rev. 185,4 (1969) 1555,
Lindskog et al: Zeitschr.f.Phys. 170,3 (1972) 347, Malmskog & Bäcklin: Arkiv Fysik 39 (1969) 411,
Narismha Rao & Jnanananda: Proc.Phys.Soc. 87,2 (1966) 455, Berlovich et al: Sov.Phys.JETP 16,5 (1963)
1144.]

②: Proofs available on request.

③: About 50 black holes have been found in our galaxy, plus about 150 supermassives with confirmed mass
measurements in other galaxies, plus over a million less-studied quasars. There are 3.5×1011 galaxies in the
observable universe based on correcting galaxy counts from the "Hubble extreme deep field" image with
dark-sky optical background measures by Lauer et al 2021 from the New Horizons spaceprobe. It's estimated
there are over 108 holes in our galaxy alone and 4×1019 in the observable universe (Sicilia, Lapi et al 2022);
and that average galaxies contain ≈1 supermassive hole, suggesting there are 3.5×1011 supermassives in the
observable universe. Ours, "Sagittarius A*," has mass≈4.2×106 suns, while perhaps the heaviest presently
known is TON 618 at 6.6×1010 solar masses. The Schwarzschild radius 19.7 AU of a 109-sun black hole is
comparable to the Sun-Neptune distance 28.9 AU. Two big holes, currently ≈1600 light-years apart in the
galaxy NGC 7727 and massing 6×106 and 154×106 suns, are forecast to merge within the next 250 Myr. The
blazar OJ 287 is believed based on optical periodicity observed over 100 years, and other observations
including very long baseline interferometries dating back to 1995, to be a binary supermassive with
redshifted orbital period≈12 years, with component masses (depending on the modeler) each somewhere
between 108 and 2×1010 solar; one merger forecast was only 104 years from now. Other super-super binary

http://en.wikipedia.org/wiki/Supermassive_black_hole
http://esahubble.org/images/heic1214a/
http://en.wikipedia.org/wiki/Hubble_Ultra-Deep_Field
http://en.wikipedia.org/wiki/Sagittarius_A*
http://en.wikipedia.org/wiki/TON_618
http://en.wikipedia.org/wiki/NGC_7727
http://en.wikipedia.org/wiki/OJ_287
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Period(days) #moons Eccentricities
0-100 8 0-0.02

100-450 11 0.11-0.24
450-727 38 0.14-0.30
727-800 36 0.25-0.44

candidates include the quasar QSO B1312+7837 [period 6.4 years, est.masses (1-3)×108 solar],
SDSSJ1430+2303 whose period in optical and X-rays decreased from about a year to a month in 3 years,
suggesting merger before year 2026 [estimated masses (40-800)×106 solar], the blazar PKS 0346-27 [100-
day period, mass of primary (9-60)×109 solar], SDSS J025214.67-002813.7 [4.6 cycles detected over 20
years of observation, summed mass 108.4±0.1 solar with mass ratio 10], and PKS 1302-102 [period 1884±88
days, separation 0.1 parsec, masses 108.3-9.4 solar]. This all suggests that (very roughly) 1 super-super merger
occurs per month in the observable universe. LIGO detected ≈170 mergers of black holes during 2016-2023
whose individual masses ranged from 5 to 90 suns. The lifetime of the high power output stage of such
mergers is linearly proportional to their mass, and was 0.1 second for the "GW170608" merger on 16 Nov.
2017 of 10.9+7.6 Msun holes yielding 17.8 Msun result. Hence the merger of two equal holes yielding a 109

Msun result should output high power for 9 weeks.

④: Nonquantum gravity (Newton or Einstein) is generated by deterministic masses, meaning ΔM≈0M.
Therefore the gravity generated by any system with large inherent mass uncertainty (meaning ΔM of order
M/1000 or more) can only be described by quantum gravity.

⑤: A similar scaling argument shows the duration of high power emission (meaning power exceeding any
fixed positive constant times the peak power or Planck power) corresponds to a constant number of orbits,
independent of m+M.

Other consequences of our model include (tsing-t)-5/4 behavior of the power curve at least for times t
sufficiently before tmerge, where tmerge is the time of topological horizon-merger, and tsing the later time at
which the two point masses would in our model merge into one point, and to get this result we need to
assume/pretend the spiral always is very near-circular; and (which partly justifies that) the automatic
circularization of elliptical orbits.

We first explain the circularization. If you were circularly orbiting the
sun and wanted to convert to an elliptical orbit with the same energy,
then (i) fire your rocket to "slow down", causing you to drop toward
the sun on an elliptical orbit with perihelion located where you'd fired
the rocket. Then (ii) when you reach aphelion, re-fire the rocket to
"speed up" to regain your lost energy. Conversely, if in an elliptical
orbit you want to circularize, then contrive to lose energy at aphelion
and regain it at perihelion. This is exactly what our radiated-power formulas predict happen – maximum
radiative losses occur at aphelion and minimum at perihelion – therefore orbits should automagically
circularize as black holes inspiral. The same idea also should work for Jupiter's moons, except their energy
losses are caused by tides (my point being that tides are strongest at aphelion) rather than gravitational wave
emission. Experimental confirmation: the table of the 95 moons known by March 2023 shows the
innermost have the least eccentricities, as expected since they experience the biggest tides. This table
assumes Themisto's mean eccentricity≈0.25 [M.Brozovic & R.A.Jacobson: Astronomical J. 153,4 (2017)
147] and its third row omits the two "outlier" moons Carpo (period=456, eccent=0.416) and S/2003 J 18
(period=598, eccent=0.09) to make the trend clearer.

Now we explain the (tsing-t)-5/4 behavior. The Newtonian potential energy of two point masses M and m

http://en.wikipedia.org/wiki/PKS_1302-102
http://en.wikipedia.org/wiki/List_of_gravitational_wave_observations
https://en.wikipedia.org/wiki/Apsis
http://ssd.jpl.nasa.gov/sats/elem/sep.html
http://en.wikipedia.org/wiki/Moons_of_Jupiter
http://solarsystem.nasa.gov/moons/jupiter-moons/themisto/by-the-numbers/
http://en.wikipedia.org/wiki/Themisto_(moon)
http://en.wikipedia.org/wiki/Carpo_(moon)
http://en.wikipedia.org/wiki/Jupiter_LV
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separated by distance L is Epot=-GmM/L. The Newtonian kinetic energy Ω2I/2 if they orbit their center of
mass according to Kepler-Newton laws equals Ekin=(½)GmM/L. Therefore the total energy is
E=Ekin+Epot=(-½)GmM/L. By conservation of energy and Eddington's radiation-power formula

dE/dt=(-32/5)m2M2(m+M)L-5G4c-5 as we inspiral (approximating the spiral as a succession of circles
infinitesimally radially-spaced). Hence dE/dt=JE5 where for conciseness I have written
J=(1024/5)m-3M-3(m+M)G-1c-5. The solution of this differential equation is E=-2-1/2J-1/4(tsing-t)-1/4, yielding
the "power curve"

Pbinary(t) = -dE/dt = 2-5J-1/4(tsing-t)-5/4 = (51/4/32) m3/4M3/4(m+M)-1/4 G1/4c5/4 (tsing-t)-5/4.
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