
9/8/23, 12:22Black hole macroscopic quantum

Page 1 of 7file:///Volumes/CaseSensVol/BHmacroQ.html

Close-orbiting black hole pairs are
macroscopic quantum-gravitational systems
Warren D. Smith, warren.wds@gmail.com, August 2023.

Abstract. Close-orbiting pairs of near-equal black holes (M≈m) are a new kind of macroscopic
quantum object because they have inherent mass-uncertainty ΔMtotal⪆0.0013(M+m). These are the
largest and heaviest macroscopic quantum systems ever found, and the first physical system ever
thought of which plausibly requires quantum gravity for an accurate description, and which
plausibly will enable learning about quantum gravity via direct observation.

Ingredient #1: Energy-time uncertainty principle

The vast majority of quantum mechanics textbooks say that ΔEΔt≥ℏ/2 where ℏ≈1.055×10-34 joule
seconds, unfortunately without providing any precise meaning for ΔE or Δt and without telling the
reader what, exactly, this supposed inequality even means. Fortunately, some precise statements
are available. Bauer & Mello 1976 considered an unstable quantum system with "survival
probability" Q(t) as a function of time t≥0, and probability-density ρ(E) for its initial energy E. If
the system were described by a wavefunction Ψ(x,t) then Q(t) with 0≤Q(t)=|∫Ψ*(x,0)Ψ(x,t)dx|2≤1;
may be interpreted as the probability the system remains in its initial state Ψ(x,0) after time t.

Define the "Bauer-Mello timespan" τBM≡(1/2)∫t>0Q(t)1/2dt. For any system obeying the classic
"exponential decay law" Q(t)=exp(-t/L) this definition would exactly yield its mean lifetime τBM=L.

And any Q(t) falling proportionally to t-γ (or faster) when t→∞, for any fixed exponent γ>2, will yield
a finite τBM.

A measure of the energy-width of the system is WE=1/maxEρ(E). The Bauer-Mello theorem then
may be written τBMWE≥πℏ/2=h/4 or equivalently (which I prefer)

maxE ρ(E) ≤ 4 τBM / h    where    h=2πℏ≈6.626×10-34 joule seconds.

Bauer & Mello's constant 4 is best possible in the sense that their inequality becomes an equality in
the classic exponential decay case Q(t)=exp(-t/τ) when the energy necessarily is described by the
Cauchy density ρ(E)=2π-1Γ/(4[E-E0]2+Γ2) where Γ is the width of the energy-interval where
ρ(E)≥maxEρ(E)/2=ρ(E0)/2 and τΓ=ℏ.

Other precise statements were obtained by Mandelstam & Tamm 1945, for example
Q(t)≥cos(tΔE/ℏ)2 when 0≤t≤(π/2)ΔE/ℏ where ΔE≡[∫(E-E̅)2ρ(E)dE]1/2 and E̅≡∫Eρ(E)dE and the
integrations are over the full real line. In particular, if we define the "half life"
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τ1/2=min {t | Q(t)≤1/2, t>0} then τ1/2ΔE≥πℏ/4=h/8. And if we define the "mean life" τmean=∫t>0Q(t)dt
then Gislason, Sabelli, Wood 1985 showed

τmean ΔE ≥ 5-3/23πℏ = 5-3/23h/2.

Their constant also is best possible, in the sense that their inequality is tight when ρ(E)=(3/4)(1-E2)
for |E|≤1, else 0. With that ρ(E) the survival probability Q(t) has Q(t)t4 bounded below a positive
constant always, but bounded above a different positive constant on a positive-density subset of
the halfline t>0.

It now is natural to ask whether there is any uncertainty relation combining the virtues of both
Gislason and Bauer-Mello, i.e. of the form maxE ρ(E)≤κτmean/h (or ≤κτ1/2/h) for some positive

constant κ. Both answers are no, because the probability density ρ(E)=π-1/2Γ(v+3/2)Γ(v+1)-1(1-E2)v

for |E|<1, else 0 (where v>-1 is a constant) corresponds to a survival probability Q(t) with Q(t)t2v+2

bounded below a positive constant always, and above another positive constant on a positive-
density subset of the halfline t>0. That's due to, e.g, EQ 2-7-19 of Sneddon 1972. So if -1<v<0 then
maxE ρ(E)=∞, while if -1/2<v then τmean>0 (and τ1/2) are finite. So any v with -1/2<v<0 yields a
counterexample.

However, I am able to prove τmeanΔ1E>0.2889ℏ where Δ1E≡∫|E-E̅|ρ(E)dE. I can also prove: If the
narrowest energy interval containing at least 31% probability [∫ρ(E)dE≥0.31] has width W31%, then
τ1/2W31%>0.005969ℏ.

The three timespans we have discussed always obey 0<τ1/2≤2τmean,   τ1/2≤23/2τBH, and
τmean≤2τBH.   For exact-exponential decay τ1/2/ln2=τmean=τBH and W31%≈0.5295ℏ/τmean and
ΔE=Δ1E=∞. The lattermost is one reason that exact exponential decay is, under traditional
quantum mechanics, considered impossible (Fonda et al 1978); but if, say, Cobalt-60 decays
exponentially for 300 halflives then switches to t-4 style decay (which is roughly what most analysts
contend), then (a) this mathematical problem would not arise, and (b) detecting this departure from
exponentiality would be infeasible.

Ingredient #2: Gravitational radiation from rotating quadrupoles

Two rotating systems are

a. Uniformly-dense rigid thin rod of length=L and mass=M rotating about its midpoint about an
axis perpendicular to the rod.

b. Two point masses m and M, separated by distance L, both circularly orbiting their center of
mass (either because joined by a massless length-L rigid rod, or because of their mutual
gravitational attraction according to Newton's laws).

Let the angular velocity be Ω, so the period is 2π/Ω. Either way, we have a "rotating quadrupole"
which therefore emits gravitational-wave radiation.
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In case (a) Eddington 1922/1923 (where we've also used the formula I=ML2/12 for the moment of
inertia I of the rod) calculated the emitted power

Prod = 32GI2Ω6c-5/5 = 2GM2L4Ω6c-5/45.

(The reason Eddington published this twice, using two different methods, was to become confident
that Einstein previously had gotten it wrong by a factor of 2.) This corresponds to a rate of emission
of gravitons (each graviton having angular frequency 2Ω) with mean time τ between graviton
emissions equal to τ=2ℏΩ/P=45ℏG-1M-2L-4Ω-5c5. See Smith 2021 for analysis of the claim
"gravitons exist" and with energy E=hf for a frequency=f graviton. If we now regard the rotating rod
as a quantum system with mean decay time τ, we see from the Gislason bound that the mass of
the rod necessarily is uncertain, with ΔM≥(5-3/23/2)hc-2/τ, that is,
ΔMrod≥(5-5/2π/3)GM2L4Ω5c-7=5-5/248πGI2Ω5c-7.

Case (b) can be treated using the more general analysis in §10.5 of the book by Weinberg 1972,
but Eddington's I-based formula also works given that our two masses M and m have respective
distances R and r to their center of mass, whereupon solving MR=mr and R+r=L for r=LM/(m+M)
and R=Lm/(m+M) allows us to determine the moment of inertia I=mr2+MR2=L2mM/(m+M). The
radiated power is Pbinary=(32/5)Gm2M2(m+M)-2L4Ω6c-5. If the masses obey the Kepler-Newton law

(m+M)G=Ω2L3 then the radiated power can be rewritten as Pbinary=(32/5)m2M2(m+M)L-5G4c-5.

Then as before we find τbinary=2ℏΩ/Pbinary=(5/16)ℏG-7/2M-2m-2(m+M)-1/2L7/2c5 and

ΔMbinary ≥(5-5/248π)c-7G7/2M2m2(m+M)1/2L-7/2.

Without loss of generality 0<m≤M. Now suppose that the center-separation L happens to be near
minimum possible. The Schwarzschild radii of the two masses in isolation would be r=2mGc-2 and
R=2MGc-2. So clearly if L≤r+R=2(m+M)Gc-2 then our "two" black holes would actually be one
merged entity. The Newtonian equipotential surface at the same potential as a single isolated hole's
horizon (corresponding to escape velocity=c for an infinitesimal test mass) becomes topologically
two spherical surfaces exactly when L satisfies L>x+X with M/X+m/x=c2/(2G) and MX-2=mx-2. It is
simplest to solve these equations when m=M (and hence r=R), the answer then being
L>2x=2X=4R=8MGc-2. The fully-general answer is L>2([m/M]1/2+1)(m+M)Gc-2. Of course, our uses
of the "Newtonian potential" and the "Kepler-Newton law" both are only approximately valid since
we have ignored general relativistic time dilation, space distortion, and dynamics. So the reader
should keep in mind that all our formulas about black holes at near-minimal separation are only
approximate.

If our two masses indeed are black holes separated by that approximate minimum possible
distance, then

Pbinary = m2 M2 (m+M)-4 ([m/M]1/2+1)-5 PPl / 5

where PPl≡c5/G≈3.628×1052 watts is the Planck power unit. Therefore if m≈M then Pbinary is

http://en.wikipedia.org/wiki/Schwarzschild_radius
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about 2-95-1=1/2560 Planck power units, i.e. about 1.417×1049 watts, regardless of m+M.

The mean time τ between graviton emissions then is
τbinary= 2-1/25ℏc-2 M-2m-2(m+M)3 ([m/M]1/2+1)7/2 which when m=M is τbinary=320ℏc-2M-1 Then via

the energy-time uncertainty principle (Gislason bound) and E=mc2, the uncertainty ΔM in total
mass is lower bounded by ΔMbinary ≥ (5-5/221/23π) M2m2(m+M)-3 ([m/M]1/2+1)-7/2 which when m=M

becomes ΔMbinary ≥ (5-5/22-73π) (M+m) ≈ 0.001317 (M+m) regardless of c, G, and ℏ.

Remarkable Conclusion

Two closely orbiting comparable-mass black holes always form a quantum system, whose
inherent mass uncertainty necessarily has the same order as 0.0013 times its total mass.
This is by far the largest inherent mass-uncertainty I ever heard of for anything macroscopic. This
can be (which presumably has happened many times) a "macroscopic quantum phenomenon"
weighing billions of solar masses, with diameter comparable to the solar system, with mass-
uncertainty amounting to millions of solar masses – all again by far the largest I ever heard of –
lasting for a week or more. As far as I know no prior author has ever pointed out that black holes,
despite their giantness, can be quantum in nature and require quantum gravity for their description.
In fact, this is the first physical system anybody ever thought of, in which quantum gravity
plays such a large role that it should be feasible to "observe" it in action. And given the
recently developed capability of the "event horizon telescope" to "see" certain black holes with high
resolution, and LIGO's ability to "hear" black hole mergers in real time, this for the first time opens
up serious hope that it might be possible to learn about quantum gravity by direct observation.

Discussion

So that we can see just how remarkable this is, let us compare it versus various other systems.

The rod-shaped interstellar asteroid "Oumuamua" has L≈400 meters, rotation period≈8 hours so
Ω≈2×10-4/second, and if made of iron has mass M≈4×109 kg. I compute ΔM≈8×10-61 kg. If we
replaced the iron by high strength steel and sped up the rotation period to 3 seconds (any faster
and steels would not be strong enough) then τ=10 picoseconds and ΔM≈9×10-41 kg, which still is
10 orders of magnitude smaller than the mass of a single electron.

The star BAT99-98 in the Large Magellanic Cloud arguably is the most luminous star currently
known. It is believed to have mass 226 times our sun, luminosity≈1.9×1033 watts equivalent to
5×106 suns, and surface temperature 45000°K. I deduce that it emits about 1051 photons per
second. If we regard this entire star as a quantum system with decay time 10-51 second, then its
inherent mass-uncertainty is ΔM≈c-2ℏ1051/second≈1 kg. Peak supernova luminosities can reach
5×109 suns (1.9×1036 watts), suggesting by the same calculation ΔM of order ≤1000 kg. That still is
peanuts in the sense that ΔM≤10-28M is far too small to detect.

The tininess of those ΔM's was not merely due to luck.

http://eventhorizontelescope.org/
http://www.ligo.caltech.edu/
https://en.wikipedia.org/wiki/Oumuamua
http://en.wikipedia.org/wiki/BAT99-98
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1. We can readily argue that the graviton-emission-caused ΔM of every rotating gravitationally-
bound system is (as a fraction of its total mass M) maximized when it is a black-hole close binary
system – and if it does not involve at least 2 black holes, is always much smaller.

2. For simplicity in the following argument let me work in Planck units (ℏ=c=G=kB=1) and ignore
constant factors of order 1. Consider a Euclidean ball of radius=R with at least the outer layer (layer
thickness λ) of this ball consisting of hot material (temperature T≈1/λ). Regard this as a quantum
system which "decays" by emitting photons, e.g. of blackbody radiation at temperature≈T and
wavelength≈λ into the region outside the ball. The "decay time" (i.e. mean time between such
photon emissions) will then be of order R-2T-3λ. This decay time will cause our system to have ΔM
of order R2T3/λ. Meanwhile the mass M of that outer layer is of order R2T4λ. Hence ΔM/M≈T-

1λ-2≈T. We conclude that ΔM/M has order≥1 only when the temperature T is at least of order 1
Planck temperature unit: T≥TPl≈1.417×1032°K. However, this analysis had assumed Euclidean

geometry. In fact, T<R-1/3 is necessary otherwise our ball will be so heavy it is a black hole (and
therefore not emit radiation at all). Therefore, ΔM/M⪆1 is impossible for any system of our "hot ball"
type whose radius R exceeds order 1 Planck length units: R>LPl≈1.616×10-35 meters.

3. We now give a table showing some of the fastest-decaying unstable particles known, computing
their ΔM/M from their mass M and estimated mean lifetime τ via the Gislason bound. The "Roper
resonance" (Burkert & Roberts 2019) is the first excited state of the proton. Cobalt-60 (not ultrafast
decaying) is included for comparison purposes.

Particle Mass (MeV/c2) Est.Mean Lifetime (sec) ΔM/M

Roper resonance 1370 3.7×10-24 0.11

W± boson 80377±12 3×10-25 0.02301

Z0 boson 91187.6±2.1 3×10-25 0.02028

Top quark 172760±300 5×10-25 0.00642

Lithium-4 3751.304±0.002 1.31×10-21 0.000113

Higgs boson 125110±110 (1-5)×10-22 0.00004435

Tauon 1776.86±0.12 (2.903±0.005)×10-13 10-12

short kaon K0 497.611±0.013 (8.954±0.004)×10-11 10-14

kaon K± 493.677±0.016 (1.238±0.002)×10-8 9×10-17

long kaon K0 497.611±0.013 (5.116±0.021)×10-8 2×10-17

Cobalt-60 55828.0019 2.4×108 4×10-35

4. The lifetime of a composite of N identical subsystems should be of order 1/N times the
subsystem lifetime, my point being that ΔM/M is unaffected by N-fold cloning. If the subsystems are
independent one could perhaps argue the net ΔM should be smaller than the sum of the N
component ΔM's (e.g. only about N1/2ΔM) due to partial cancellations. Either way, I expect that any

http://en.wikipedia.org/wiki/Planck_units
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system made of the above-tabulated (or any other known) particles will have ΔM/M very below 1.

5. Obviously, every normally-encountered macroscopic object has undetectably small inherent
mass-uncertainty, ΔM≪10-20M.

In view of the above, it seems reasonable to conjecture that

A. No macroscopic physical system can ever have greater ΔM/M than two close-orbiting near-
equal black holes.

B. And the only physical systems whose ΔM/M values can compete are some of the most-
unstable particles (which, of course, are inherently quantum microscopic objects), the best
one I know being the (currently poorly understood) "Roper resonance."

C. Two close-orbiting near-equal black holes are an inherently quantum macroscopic system,
inherently requiring quantum gravity for precise treatment.

Now we must ask – to use a technical term – what the hell?!?!

"Macroscopic quantum phenomena" can be weird and mysterious. The two most familiar are
superconductivity and superfluid liquid helium. I suspect that if these two phenomena had not been
experimentally discovered by accident, then the theorists would never have been smart enough to
predict them. As it was, H.K.Onnes discovered in 1911 that mercury superconducts below about
4°K. It took until about 1961 (50 years later) before Bardeen, Cooper, Schrieffer, and Eliashberg
gained (what some contend to be) theoretical "understanding" of that – although those 4 people
remained not smart enough to predict the Josephson effect. This understanding, however, even as
of year 2023 remains rather pathetic. If we had real understanding, then we could have a
supercomputer mentally search all possible ≤6-atom chemical compounds and tell us the predicted
best (e.g. highest Tc) superconductor. But as of year 2023, that has never happened, and
essentially all decent superconductors have been found by experimenters operating on hunches or
by random trials, with essentially zero help from theoretical "understanding." And even the BCSE
level of understanding is far greater than present understanding of the high-Tc cuprates.

Superfluidity in liquid helium below 2.17°K was first discovered in 1937 and was more-or-less
explained within 10 years, but some questions remain disputed even today, such as the question of
to what extent solid helium is "supersolid."

My point with this historical excursion is that despite 50-100 years of theoretical and experimental
examination, neither superfluidity nor superconductivity are understood nearly as well as we would
like. Given this historical proof of human incompetence about macroscopic quantum phenomena,
plus our clear present incompetence about quantum gravity, I am unwilling to assert that I know
what is going on about the present new (close black hole binaries) kind of macroscopic quantum
phenomenon.

As far as I am aware, the LIGO team until now has operated under the belief that all their data has
been 100% compatible with non-quantum general relativity. I now advise them to gather that data
at higher accuracy and think about it more!

It might be that this whole macroscopic quantum phenomenon "does not matter." Regard the black
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hole binary as an unstable quantum system, but each time it radiates another graviton, we get a
new such system. If all these systems were "independent" in some suitable sense their mass
uncertainties might, if observed "blurred" over long time spans (say 1020 graviton-emissions)
largely cancel out, e.g. effectively reducing ΔM by a factor 1010. (And indeed, notice that the
claimed experimental error bars on some of the masses tabulated above are considerably smaller
than their inherent uncertainties, which is mainly due to averaging over many observed particles.)
That's an interesting hypothesis, but I currently have almost no clue to what extent it is true and to
what extent, and how, the largeness of ΔM/M "really matters." All I can say for now is: this certainly
seems worthy of investigation.
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