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ABSTRACT

The Newton-Raphson method is the most widely used numerical calculation
method to determine the roots of Real polynomial functions, but it has the
drawback that it does not always converge. The method proposed in this work
establishes the convergence condition and the development of its application,
and therefore will always converge towards the roots of the function. This will
mean a conclusive advance for the determination of roots of Real polynomial
functions. According to interpretation of the Abel-Ruffini theorem, the roots
of polynomial functions of degree greater than 4 can only be determined by
numerical calculation.

KEYWORDS: Newton-Raphson method, roots of Real polynomial func-
tions, numerical calculation.

RESUMEN

El método Newton-Raphson es el método de cálculo numérico más utilizado
para determinar ráıces de funciones polinómicas Reales, pero tiene el inconve-
niente de que no siempre converge. El método que se propone en este art́ıculo
establece la condición de convergencia y el desarrollo de su aplicación, y en
consecuencia siempre convergerá hacia las ráıces de la función. Ello significaria
un avance conclusivo para la determinación de raices de funciones polinomicas
Reales. De acuerdo a interpretación del teorema de Abel-Ruffini, la determi-
nación de ráıces de funciones polinómicas de orden superior a 4 solo es posible
mediante cálculo numérico.

PALABRAS CLAVE: Método Newton-Raphson, ráıces de funciones poli-
nomicas Reales, calculo numérico.

Introduction

Here we propose the calculation of the roots of a Real polynomial function
of order H, f(x) =

∑H
i=0 aix

i; f : R→ R, in two phases:

First Phase: Numerical calculation of H − 2 roots of the function with a
successive approximation method that starts for the calculation of each root
with the value of each of the roots of the second derivative of the function.
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This start condition causes safe convergence towards the value of the root of the
function.

Second Phase: Direct calculation of the two remaining roots through a sec-
ond degree equation obtained once the H − 2 roots of the function are known.

1. Especification of the Method

In this method, the first approximation to the value of a root of the function
will be the value of a root of the second derivative of the function; the second
approximation to the value of the root of the function will be the value of x of
the intersection point of the abscissa axis with the line tangent to the function
at the point whose abscissa corresponds to the value of the root of the second
derivative of the function. For this new value of x, the tangent line to the
function is specified, and from the point of intersection of that tangent line with
the abscissa axis, another value of x is determined that will be even closer to the
value of the root of the function. Each time this procedure is repeated, a value
of x closer to the root of the function will be achieved until a value as close as
desired to the value of the root of the function is obtained. With this method
there will always be convergence towards the value of the root of the function.

To obtain the values of the roots of the second derivative of the Real poly-
nomial function to be solved, the successive derivatives of such function are
previously determined until the last derivative is a linear function. From this
group of successive derivatives, the roots of the intermediate derivatives are cal-
culated, starting from the last derivative if the order of the function to solve is
odd and from the penultimate derivative if the order of the function to solve is
even, until the values of the roots of the second derivative of the function to solve
are calculated. The last derivative equal to zero is a linear equation and the
penultimate derivative equal to zero is an equation of the second degree, both
are equations of direct resolution. To calculate the roots of each intermediate
derivative, we proceed with the approximation method described above.

The successive derivatives of a Real polynomial function are Real polynomial
functions. The number of roots of the second derivative of a Real polynomial
function is equal to H− 2, where H is the order of the function. Thus, knowing
the H − 2 roots of the function, such function can be reduced to quadratic
function that allows direct calculation of the remaining two roots. These two
roots will be the smallest and the largest of the roots of the function.

A variant of this method will be to test the function until the value of the
root is reached or to get a value as close as one wants to the root, from any
approximation x obtained in the way described above that is different from
the value of the root of the second derivative. The testing is done with values
greater than x if x is greater than the value of the root of the second derivative
of the function and with values less than x if x is less than the value of the root
of the second derivative of the function. It is possible that the value of the root
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of the second derivative of the function coincides with the value of the root of
the function.

2. Definitions

Let P0(x) be a Real polynomial function; domain ∈ R, co-domain ∈ R.
Let x(k, n) be the ordinal root k of the function Pn(x)
Let x(l, k, n) be the ordinal approximation l to the root x(k, n)
Starting from n = 1, Pn(x) is the nth derivative function of the Real poly-

nomial function P0(x)
Ecn: Pn(x) = 0

3. Application of the Method

Calculation of the Roots of the function P0(x)

Let
P0(x) = x5 − 19x4 + 133x3 − 421x2 + 586x–280

P0’(x) = P1(x) = 5x4 − 76x3 + 399x2 − 842x + 586
P0”(x) = P2(x) = 20x3 − 228x2 + 798x− 842
P0”’(x) = P3(x) = 60x2 − 456x + 798
P0””(x) = P4(x) = 120x− 456
P1(x);P2(x);P3(x);P4(x) are the successive derivatives of the function P0(x)

H = 5: the order of P0(x) is odd → Ec4: P4(x) = 0; Ec4: 120x–456 = 0 →
x(1, 4) = 456/120 = 3.80

x(1, 4) corresponds to the value of the second derivative of the function
P2(x), so x(1, 4) will be the first approximation to a root of the function P2(x).
Then:

x(1, 1, 2) = x(1, 4) → x(1, 1, 2) = 3.80

The approximations to the roots of the function are defined by the following
formula:

x(l + 1, k, n) =
−Pn(x(l, k, n)) + Pn+1(x(l, k, n)) ∗ x(l, k, n)

Pn+1(x(l, k, n))

Thus,
x(1, 1, 2) = 3.80;P2(x(1, 1, 2)) = −4.48
x(2, 1, 2) = 3.734502924;P2(x(2, 1, 2)) = −0.0005619475
x(3, 1, 2) = 3.73442045758701;P2(x(3, 1, 2)) = −2.67369E − 08
x(4, 1, 2) = 3.73442045719464;P2(x(4, 1, 2)) = 0
Then x(1, 2) = x(4, 1, 2)→ x(1, 2) = 3.73442045719464
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P2(x)

(x− x(1, 2))
=

P2(x)

(x− 3.73442045719464)
= 20x2 − 153.3115909x + 225.4700588

20x2 − 153.3115909x + 225.4700588 = 0 → x(2, 2) = 1.984337851;x(3, 2) =
5.681241692

x(1, 2);x(2, 2);x(3, 2) correspond to the values of each root of the second
derivative of the function P0(x), so x(1, 2);x(2, 2);x(3, 2) will each be the first
approximation to one of the roots of the function P0(x). Then:

x(1, 1, 0) = x(1, 2);x(1, 2, 0) = x(2, 2);x(1, 3, 0) = x(3, 2)
x(1, 1, 0) = 3.73442045719464;x(1, 2, 0) = 1.984337851;x(1, 3, 0) = 5.681241692

Thus,
x(1, 1, 0) = 3.73442045719464;P0(x(1, 1, 0)) = −5.205518732
x(2, 1, 0) = 3.989557854;P0(x(2, 1, 0)) = −0.188927438
x(3, 1, 0) = 3.999947413;P0(x(3, 1, 0)) = −0.000946592
x(4, 1, 0) = 3.99999999861755;P0(x(4, 1, 0)) = −2.48833E − 08
x(5, 1, 0) = 3.99999999999995;P0(x(5, 1, 0)) = −9.09495E − 13
x(6, 1, 0) = 4;P0(x(6, 1, 0)) = 0
Then x(1, 0) = x(6, 1, 0)→ x(1, 0) = 4

x(1, 2, 0) = 1.984337851;P0(x(1, 2, 0)) = 0.470028549
x(2, 2, 0) = 1.999997258;P0(x(2, 2, 0)) = 8.226E − 05
x(3, 2, 0) = 2;P0(x(3, 2, 0)) = 0
Then x(2, 0) = x(3, 2, 0)→ x(2, 0) = 2

x(1, 3, 0) = 5.681241692; P0(x(1, 3, 0)) = −26.02866987
x(2, 3, 0) = 5.122483594; P0(x(2, 3, 0)) = −3.322773707
x(3, 3, 0) = 5.012417523; P0(x(3, 3, 0)) = −0.302023732
x(4, 3, 0) = 5.000162194; P0(x(4, 3, 0)) = −0.00389334
x(5, 3, 0) = 5.000000028; P0(x(5, 3, 0)) = −6.72E − 07
x(6, 3, 0) = 5; P0(x(6, 3, 0)) = 0
Then x(3, 0) = x(6, 3, 0)→ x(3, 0) = 5

P0(x)

(x− x(1, 0)) ∗ (x− x(2, 0)) ∗ (x− x(3, 0))
=

P0(x)

(x− 4) ∗ (x− 2) ∗ (x− 5)
= x2−8x+7

x2–8x + 7 = 0→ x(4, 0) = 1;x(5, 0) = 7

Then the roots of the function P0(x) = x5−19x4+133x3−421x2+586x–280
are x(1, 0) = 4; x(2, 0) = 2; x(3, 0) = 5; x(4, 0) = 1; x(5, 0) = 7
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4. Convergence in Real functions:

For Real functions f(x); f : R→ R, if the method of the tangents (Newton-
Raphson) is started at an inflexion point, it will always converge towards a
(x, f(x)))=(x, 0) point.

Conclusions:

The subject of this article is more than three centuries late. It is a conclusive
advance on the Newton-Raphson method. This article proposes the novelty of
the convergence condition and the development of its application for Real poly-
nomial functions, with which everything related to the numerical calculation of
roots of Real polynomial functions is settled. It also establishes the convergence
condition for Real functions, which would make it possible to try developments
of its application for the numerical calculation of roots of Real functions.
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