
Securing the Foundations of Probability Theory 

Randolph L. Gerl 

Abstract: Several traditional problems in probability theory are discussed and a resolution to 

them is proposed. The use of probability theory in the study of physical reality is contrasted with 

its use in pure mathematics and the latter is found to be problematic. The proposed resolution is 

postulated to work for all physical reality but is inclusive enough to cover many situations in 

pure mathematics. 

 

 

 

Introduction 

 

 

Probability theory must be self-consistent in all situations since it is so crucial to the functioning 

of the modern world. As scientists have shown, physical existence is fundamentally quantum in 

nature and, for quantum theory to be well founded, probability theory must be well founded as 

well. Current probability theory suffers from some foundational problems, for example the 

existence of non-measurable sets which do not allow probabilities to be defined and, for another 

example, issues over finite additivity vs countable additivity. Ideally, it should be possible to 

define probability measures for all events. Sigma algebras have been put forward to solve some 

of the problems with infinite sample spaces and this approach has been partially successful. Also, 

the conceptual basis for probability theory is still debated although in practice existing theory 

works well; references [1] through [11] touch on some of these issues as do many online and 

offline publications. As will be discussed, standard probability theory also introduces 

contradictions. Tragically, nonsensical propositions are common throughout much of the 

literature on probability theory. For example, false propositions like zero probability events are 

not impossible or zero probability events happen all the time. These false propositions even 

appear in some textbooks.  

 

 

Discussion 

 

The aim of this paper is to provide an axiomatic basis for probability theory that is totally free 

from these problems. It is useful to start with what is standard probability theory without sigma 
algebras. This minimalist approach contains some of the basics of standard probability theory: 



A probability space is a set {S, F, P} where S is the set of outcomes, F is a subset of the power 

set of S, and P is a function, P:F-->[0, 1], which defines the probability measure on F. The 

function P is subject to: 

  

 

 

Where,  or T=ω (the smallest transfinite ordinal). Countable additivity is provided in 

condition (2) and the issue of defining probability measures on uncountable sets is not yet dealt 

with. With this minimalist definition of a probability space, it can be shown that it is impossible 

to randomly choose an integer since there is no uniform probability measure on the integers. The 

well-known proof for this is a relatively simple proof by contradiction. Proof: assume that there 

exists a uniform probability measure on the integers and P is the probability of selecting any 

integer. Then, for any P>0 condition (2) requires that P(S) is infinite and that contradicts 

condition (3). If P=0, then condition (2) requires that P(S) is zero and that also contradicts 

condition (3). Since P=0 and P>0 are the only options, the original assumption must be false 

because it results in contradictions. So randomly picking an integer is proven impossible using 

probability theory because no uniform probability measure exists for the integers. It is important 

to note that countable additivity was used in the proof.  

 

 

Similar proofs can be constructed to show that there is no uniform probability measure on the set 

of natural numbers, rational numbers, prime numbers, odd numbers, etc., and so it is impossible 

to randomly pick any of them. A proof by contradiction can also be given that shows it is 

impossible to randomly choose a real number. Proof: use the integers to break up the real number 

line into half-open unit segments [k, k+1) for every integer k. Assume it is possible to randomly 

choose some real number r. Now, r must reside inside one of the half-open unit segments 

[k, k+1) and call the segment it resides in [j, j+1). But that means the integer that defines that 

half-open unit segment, j, was randomly chosen and that contradicts the fact that it is impossible 

to randomly choose an integer. So, the original assumption that it is possible to randomly choose 

a real number must be false. It is impossible to have a uniform probability measure on the real 

numbers. (One could imagine defining a measure on the rational interval [0, 1) that assigned 

probabilities based on ratios of lengths but that would contradict countable additivity.) 

 

 



With the minimalist approach used so far in this paper, it can be shown that it is impossible to 

randomly pick a real number from the half-open unit interval [0, 1). A proof by contradiction 

requires the axiom of choice. Proof: Partition the half-open unit interval [0, 1) into an 

uncountable number of partitions, P, where x and y (both members of [0, 1)) are in the same 

partition if and only if  (the set of rational numbers). By the axiom of choice, it is 

possible to pick one member from each partition and let the set P0 be the set containing those 

picks. A countable partition of [0, 1), call it CP, is defined such that each partition is indexed by 

each rational number q in  so that [0, 1) is partitioned into the disjoint sets CPq and let 

CP0=P0. CPq is the set of numbers in [0, 1) which are found by adding q, counterclockwise, to all 

the members in CP0 where the interval [0, 1) now has the topology of a circle. The sets CPq are a 

Vitali partition of [0, 1). Since the countable collection of sets CPq are indexed by a countable 

collection of rational numbers, a bijection between those rational numbers and the integers can 

be established. The sets CPq can now be indexed by the integers and call that indexing CPi where 

i is an integer. Now, assume that it is possible to randomly choose a real number in [0, 1) and call 

that number r. Now, r must be in one of the sets CPi and suppose it is in CPk. But that means the 

integer, k, that indexes the set CPk was randomly chosen and that contradicts the fact that it is 

impossible to randomly choose an integer. So, the original assumption that it is possible to 

randomly choose a real number from the half-open interval [0, 1) must be false. It is impossible 

to have a uniform probability measure on the interval [0, 1). (This is intuitively sensible for 

another reason: there can be no uniform probability measure on the set of rational numbers in 

the interval [0, 1) since they have a bijection to the integers).  

 

 

The traditional approach to probability introduces a contradiction here by then claiming it is 

possible to randomly select a real number in the interval [0, 1), for example, and it then uses 

Lebesgue measure theory to calculate the probability that the randomly chosen real number is 

inside a subinterval of the unit interval by using ratios of the lengths of the two intervals. But in 

doing this a contradiction has been introduced into the theory: the traditional approach now 

assumes it is possible to do something that was proven above, with a minimalist probability 

space, to be impossible. By supplementing the axiomatic conditions (1), (2), and (3) above with a 

Lebesgue measure option for uncountable sets with various constraints on the sigma algebra, F, 

the theory now becomes self-contradictory. The theory now says it is both possible and 

impossible to randomly select a real number from, for example, the half-open unit interval [0, 1). 

What has happened here is that countable additivity cannot be made consistent with the fact that 

some events are not Lebesgue measurable. Eliminating events that are not Lebesgue measurable 

and making F a strict proper subset of 2^S does not get rid of the contradiction. Furthermore, 

excluding non-Lebesgue measurable sets from F excludes valid events. Ideally, probability 

theory should be able to calculate their probabilities and say how to add up  or more 

probabilities.   

 



So, self-consistency and a solid foundation for probability theory suggests that Lebesgue 

measure theory should not be used to calculate probabilities for uncountable situations. This 

means that the traditional approach to probability density functions and continuous random 

variables must be revised to have a secure foundation for probability theory. In such a secure 

foundation, probability density functions and continuous random variables must be thought of as 

continuous approximations for discrete but extremely numerous finite cases. The use of the 
Lebesgue measure in probability theory was motivated by the desire to exclude troublesome 

events. But doing probability theory with uncountable sets is not something that applies to the 

physical world. In the physical world it cannot be claimed that a dart board, for example, 

contains an infinite number of locations. Physical reality is governed by quantum gravitational 

physics and the uncertainty principle suggests that the number of locations on a dart board, for 

example, will be an eigenvalue of some yet to be discovered quantum gravitational operator (and 

that eigenvalue is large but finite). The fact that a dart hits a location on a dart board is proof that 

the probability of it hitting there is not zero. The fact that a dart hits at a specific location is proof 

that physical space cannot be the idealized spaces of pure mathematics. The degrees of freedom 

for locations on a physical dart board must be large but finite. The same things must be true for 

all other "continuous" situations in the physical world. This doesn't mean that continuous 

approximations are of no use when dealing with dart boards, for instance. Those approximations 

are going to be easier to use than the true discrete quantum nature of such objects where the 

number of locations on a dart board is some huge quantum number and the probability of 

selecting any location is some very tiny but non-zero number. Nor can problems like these be 

solved by introducing infinitesimals into the theory, see [12] for example. 

 

 

Probability theory should not be formulated for the idealized abstract Platonic world of pure 

mathematics because it is ultimately founded on statistical observation in the physical world. 

Historically, probability theory is defined as mathematical modeling of the outcomes of 

experiments, for example, tossing coins, collecting statistics from observations or games of 

chance. So, the mathematical models for probability theory should relate to the physical world 

and not the abstract world of purely mathematical spaces. Throwing darts at the real number line 

is not anything that can take place in the physical world and so there is no way to do experiments 

and get data about it. Reformulating probability theory to solve the problems mentioned here, 

and other problems not mentioned here, should include the following: (a) make the theory self-

consistent by removing the Lebesgue measure, (b) expand countable additivity to include 

uncountable additivity to take over the job that sigma algebras, with their Lebesgue measures, 

used to do, (c) ensure that it is possible to define probability measures for all events, and (d) 

ensure that the theory doesn't permit false propositions like probability zero events can happen. 

Making these changes to the minimal theory given above results in an improved theory and 

definition for probability spaces: 



A probability space is a set {S, F, P} where S is the set of outcomes, F is the power set of S, and 

P is a function, P:F-->[0, 1], which defines the probability measure on F. The function P is 

subject to: 

  

 

 

All four changes are included here; for (a) and (b) the sets AK have their indexes well-ordered up 

to the ordinal OT (and no longer limited to natural numbers and ω), with  and OS is the 

unique ordinal isomorphic to S. The ordinal OS has the same cardinality as S. A probability 

measure cannot be defined on a proper class because, by definition, the powerset operation is 

done on sets. So (2) is now uncountable additivity and the sum should be absolutely convergent. 

For (c) and (d) the event set, F, is now the powerset of S and no longer just a subset of it. A 

consequence of this improved definition of a probability space is that uncountably infinite 

sample spaces must have sparse probability measures. That is, in those cases most events have 

zero probability and those that don’t are few and far between. 

 

Conclusion 

 

In this paper, a new definition of a probability space solves various problems that arise in the 

traditional approach. The removal of Lebesgue measures eliminates the problem of more than a 

trillion trillion events occurring daily on Earth that always have probability zero. For example, 

locations on Earth that are struck by photons or the locations of the center of masses of various 

objects when they come to rest. In those cases, traditional probability theory says that probability 

zero events are all that ever happen and non-zero probabilities for them never happen. In those 

cases zero probability is all that there is and that makes probability theory useless for them. This 

aspect of traditional probability theory is totally contrary to observations and common sense. 

With this improved approach, events with probability zero cannot happen. An event has 

probability zero if and only if it is impossible. Events with 100 percent probability must and 

always do occur. The almost surely and almost never philosophy never made observational sense 

and is removed from the theory. This formulation of probability spaces should be able to 

accommodate the yet to be discovered correct quantization of General Relativity and the yet to 

be discovered unified theory of nature. 
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