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Abstract: 

Einstein’s derivation of the Lorentz transformation in section 3 of his famous 1905 paper is based on 

kinematics of light rays in X, Y and Z directions. However, the velocity of light worked out in Y and Z 

directions, with respect to the frame moving in X direction, and as observed from the stationary frame, is 

found to be incorrect. This renders the entire derivation invalid. 

It is further pointed out that even if the mistake was ignored, the relations are achieved by taking a time 

that is for travel of light from origin to a specific location (mirror). This limits the applicability of the 

relations only to events of light. Despite the restriction, however, Einstein extensively applied the 

relations to rigid bodies and moving clocks, even in the same paper. 

It is also discussed as to how, in the derivation of his 1916 book, he used the relations derived for a 

moving light signal, on rigid bodies. 

Further, a new objection-free method has been presented based on kinematics, using the principle of 

reciprocity of relative velocity between the two frames. 
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Introduction: 

Einstein, in his 1905 paper, presented the theory of Special Relativity based on the principle that the 

time of travel of light between two locations was not the same  in both the directions (of travel), except 

when the locations were in the observer’s stationary frame. The corresponding exercise, appearing in 

section 3 of his paper (discussed below), culminated into the Lorentz transformation. 

The derivation is all about equating, in a moving frame, the times of travel of light between two points, 

in the two directions , after casting them as functions of their own corresponding values, along with the 

distance between the two locations, as observed from the stationary frame. However, a kinematical 

mistake is found in calculation of the relative velocity of light in Y and Z directions, as observed from 

the stationary frame, and it renders the derivation invalid. 
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Further, even if the mistake is ignored for a moment, the Lorentz transformation relations have been 

achieved by taking a time that is for travel of light to a specific location. This limits the applicability of 

the relations only to events of light. 

Working towards the solution, a new objection-free method has been presented towards the end, based 

on the reciprocity of relative velocity between the two frames, by kinematics. 

The Section 3 of the paper is reproduced below in italics. My observations are intermittently placed, in 

normal font, between two dotted lines, as the matter progresses. 

 

$3. Theory of the Transformation of Co-ordinates and Times from a 

Stationary System to another System in Uniform Motion of Translation Relatively 

to the Former 

Let us in “stationary” space take two systems of co-ordinates, i.e. two sys- tems, each of 

three rigid material lines, perpendicular to one another, and issuing from a point. Let the axes of X 

of the two systems coincide, and their axes of  Y and Z respectively be parallel. Let each system 

be provided with a rigid measuring-rod and a number of clocks, and let the two measuring-rods, 

and likewise all the clocks of the two systems, be in all respects alike. 

Now to the origin of one of the two  systems (k) let a constant velocity v   be imparted in 

the direction of the increasing x of the other stationary system (K), and let this velocity be 

communicated to the axes of the co-ordinates, the relevant measuring-rod, and the clocks. To any 

time of the stationary system K there then will correspond a definite position of the axes of the 

moving system, and from reasons of symmetry we are entitled to assume that the motion of k may 

be such that the axes of the moving system are at the time t (this “t” always denotes a time of the 

stationary system) parallel to the axes of the stationary system. 

We now imagine space to be measured from the stationary system K by means of the 

stationary measuring-rod, and also from the moving system k  by means of the measuring-rod 

moving with it; and that we thus obtain the co-ordinates x, y, z, and ξ, η, ζ respectively. Further, 

let the time t of the stationary system be determined for all points thereof at which there are clocks 

by means of light signals in the manner indicated in $1; similarly let the time   τ of the moving 

system be determined for all points of the moving system at which there are clocks at rest 

relatively to that system by applying the method, given in $1, of light signals between the points at 

which the latter clocks are located. 

To any system of values x, y, z, t, which completely defines the place and time of an event in 

the stationary system, there belongs a system of values ξ, η, ζ, τ , determining that event relatively 

to the system k, and our task is now to find the system of equations connecting these quantities. 

In the first place it is clear that the equations must be linear on account of the properties of 

homogeneity which we attribute to space and time. 
If we place x

J
 = x – vt  it is clear that a point at rest in the system k  must 

have  a  system  of  values  x
J
,  y,  z,  independent  of  time.   We  first  define  τ  as  a function of x

J
, y, 

z, and t.  To do this we have to express in equations that τ is nothing else than the summary of the 

data of clocks at rest in system k, which have been synchronized according to the rule given in  $1. 

From  the  origin  of  system  k  let  a  ray  be  emitted  at  the  time  τ0  along  the X-axis  to  x
J
,  and  at  

the  time  τ1  be  reflected  thence  to  the  origin  of  the  co- ordinates, arriving there at the time τ2; we then 

must have  
1

2
 (τ0 + τ2) = τ1, or, by inserting the arguments of the function τ  and applying the principle of 

the constancy of the velocity of light in the stationary system:— 



1

2
[𝜏(0,0,0, 𝑡) + 𝜏 (0,0,0, 𝑡 +

𝑥′

𝑐 − 𝑣
+

𝑥′

𝑐 + 𝑣
)] = 𝜏 (𝑥′, 0,0, 𝑡 +

𝑥′

𝑐 − 𝑣
) 

Hence, if x
J
 be chosen infinitesimally small, 

1

2
(

1

𝑐 − 𝑣
+

1

𝑐 + 𝑣
)
𝜕𝜏

𝜕𝑡
=

𝜕𝜏

𝜕𝑥′
+

1

𝑐 − 𝑣

𝜕𝜏

𝜕𝑡
 

Or, 

𝜕𝜏

𝜕𝑥′
+

𝑣

𝑐2 − 𝑣2

𝜕𝜏

𝜕𝑡
= 0 

It is to be noted that instead of the origin of the co-ordinates we might have chosen any other 

point for the point of origin of the ray, and the equation just obtained is therefore valid for all 

values of x
J
, y, z. 

An analogous consideration—applied to the axes of Y and Z—it being borne in mind that light is always 

propagated along these axes, when viewed from the stationary system, with the velocity √𝑐2 − 𝑣2 gives us 

𝜕𝜏

𝜕𝑦
= 0  , 

𝜕𝜏

𝜕𝑧
= 0 

Since τ is a linear function, it follows from these equations that 

𝜏 = 𝑎 (𝑡 −
𝑣

𝑐2 − 𝑣2
𝑥′) 

where a is a function φ(v) at present unknown, and where for brevity it is assumed that at the 

origin of k, τ = 0, when t = 0. 

 

-------------------------------------------------------------------------------------------------------------------------- 

Observations 1: 

i) The relation obtained just above is a general relation for any value of 𝑡 and 𝑥′, provided that at the 

origin of k, τ = 0, when t = 0.  

To check whether the requirement mentioned at the start is met with, let us work out the values of 𝜏0, 

𝜏1 and 𝜏2. On substituting the parameters of 𝜏, at the three instants, from the starting equation, we get 

the values as follows.  

 

𝜏0 = 𝑎 (𝑡 −
𝑣

𝑐2 − 𝑣2
× 0) = 𝑎𝑡 

𝜏1 = 𝑎 ((𝑡 +
𝑥′

𝑐 − 𝑣
) −

𝑣

𝑐2 − 𝑣2
𝑥′) = 𝑎 (𝑡 +

𝑐

𝑐2 − 𝑣2
𝑥′) 

𝜏2 = 𝑎 ((𝑡 +
𝑥′

𝑐 − 𝑣
+

𝑥′

𝑐 + 𝑣
) −

𝑣

𝑐2 − 𝑣2
× 0) = 𝑎 (𝑡 +

2𝑐

𝑐2 − 𝑣2
𝑥′) 

Therefore, 



𝜏0 + 𝜏2 = 𝑎𝑡 + 𝑎 (𝑡 +
2𝑐

𝑐2 − 𝑣2
𝑥′) − 2𝑎 (𝑡 +

𝑐

𝑐2 − 𝑣2
𝑥′) = 2𝜏1 

 

Thus the relation meets the stipulated requirement. 

It is pointed out here that though the relation meets the assumptions it is derived from, it fails to get 

the Lorentz transformation, when correct values are inputted to it, as shown in my Observations 3 and 

4 ahead. The reason is a mistake which is discussed at (ii) below. 

 

ii) The statement that the velocity of light in Y and Z directions, when viewed from the stationary system, 

would always be √𝑐2 − 𝑣2 is incorrect, as explained below. 

 

First of all, it is clarified that at this stage, the value of relative velocity of light in Y or Z direction is to be 

taken by kinematics and not relativity, which is also obvious from the terms of time traversed by light 

moving in X direction, in the starting equation itself, such as (𝑡 +
𝑥′

𝑐−𝑣
+

𝑥′

𝑐+𝑣
) and (𝑡 +

𝑥′

𝑐−𝑣
). Thus the relative 

velocity of light with respect to the moving frame can be both, less as well as more than 𝑐 by kinematics. 

 

Following the same principles, the relative velocity of light with respect to the origin of frame moving in X 

direction, as observed from the stationary frame, would always be √𝑐2 + 𝑣2  (by kinematics) in the diagonal 

direction in XY plane or XZ plane respectively, as the two velocities, i.e. 𝑐 and 𝑣, are mutually perpendicular to 

each other. However, the same velocity √𝑐2 + 𝑣2  (in the diagonal direction) would appear as velocity 𝑐 in the 

Y and Z directions (as the case may be), and as velocity 𝑣 in the X direction, as its components. 

 

To make it clearer, if we consider 𝑐 and 𝑣 as vectors, the relative velocity of light with respect to that of the 

moving frame, as seen from the stationary frame, is (𝑐 − 𝑣). When the two are collinear, as along X direction, 

these are simply added (𝑐 + 𝑣) or subtracted (𝑐 − 𝑣), as also done by the author at start itself. On the other 

hand, when the two velocities are perpendicular to each other, with the light ray moving either in the Y 

direction or in the Z direction, the magnitude of the aforementioned relative velocity becomes √𝑐2 + 𝑣2, 

irrespective of whether 𝑣 is in (+)ve direction or in (-)ve direction. If, however, the relative velocity was sought 

only in the Y direction or only in the Z direction, it would always be 𝑐, as there is no component of velocity 𝑣 

in these directions. 

 

Even if one argues that Einstein took the velocity of light in the diagonal direction as 𝑐 relativistically (though it 

is not to be done at this stage), the velocity of light in in Y or Z direction would still continue to be 𝑐 by the 

same principle of relativity. Thus the figure of √𝑐2 − 𝑣2 worked out by Einstein finds no place, either 

relativistically or non-relativistically. 

 

Although the correction does not alter the relations mentioned ahead i.e. 
𝜕𝜏

𝜕𝑦
= 0  , 

𝜕𝜏

𝜕𝑧
= 0 yet the derivation 

ahead fails to get Lorentz transformation, as will be seen shortly. 

---------------------------------------------------------------------------------------------------------------------------- 

 



With the help of this result we easily determine the quantities ξ, η, ζ by expressing in equations 

that light (as required by the principle of the constancy of the velocity of light, in combination 

with the principle of relativity) is also propagated with velocity c when measured in the moving 

system. For a ray of light emitted at the time τ = 0 in the direction of the increasing ξ 

 

𝜉 = 𝑐𝜏 or 𝜉 = 𝑎𝑐 (𝑡 −
𝑣

𝑐2−𝑣2
𝑥′) 

But the ray moves relatively to the initial point of k, when measured in the stationary 

system, with the velocity c − v, so that 

𝑥′

𝑐 − 𝑣
= 𝑡 

 

If we insert this value of t in the equation for ξ, we obtain 

𝜉 = 𝑎
𝑐2

𝑐2 − 𝑣2
𝑥′ 

 

--------------------------------------------------------------------------------------------------------------------------- 

Observations 2: 

As already mentioned in Observations 1 (i) above, the expression of 𝜏, as a function of 𝑡 and 𝑥′, is of a 

general nature, given the theory of transformation proposed. However, selecting 𝑡 as the time for light to 

travel a distance of 𝑥′ curtails the applicability of the resultant relation only to events of light. 

Despite such a limiting condition, Einstein used the relations extensively on all space–time sets, the first 

being on a rigid sphere in the next section 4 titled “Physical Meaning of the Equations Obtained in 

Respect to Moving Rigid Bodies and Moving Clocks”. The deviation is also practiced universally. 

The above issue (of deviation from assumptions of derivation), however, gets relegated behind, when 

one discovers a mistake, which is already explained in my Observations 1 (ii) above.  

-------------------------------------------------------------------------------------------------------------------------- 

 

In an analogous manner we find, by considering rays moving along the two other axes, 

that 

𝜂 = 𝑐𝜏 = 𝑎𝑐 (𝑡 −
𝑣

𝑐2 − 𝑣2
𝑥′) 

when 
𝑦

√𝑐2−𝑣2
= 𝑡, 𝑥′ = 0 

Thus 

𝜂 = 𝑎
𝑐

√𝑐2−𝑣2
𝑦 and 𝜁 = 𝑎

𝑐

√𝑐2−𝑣2
𝑧 

 

Substituting for x’ its value, we obtain 

𝜏 = ∅(𝑣)𝛽(𝑡 − 𝑣𝑥 𝑐2⁄ ), 



𝜉 = ∅(𝑣)𝛽(𝑥 − 𝑣𝑡), 

𝜂 = ∅(𝑣)𝑦, 

𝜁 = ∅(𝑣)𝑧, 

where 

𝛽 =
1

√1 − 𝑣2 𝑐2⁄
 

--------------------------------------------------------------------------------------------------------------------------- 

Observations 3: 

It has been explained in my Observations 1 (ii) above that the velocity of light in Y and Z directions is 

incorrectly taken as √𝑐2 − 𝑣2, and it should correctly be 𝑐 from simple kinematics. On applying this correction 

by replacing √𝑐2 − 𝑣2 with 𝑐, the expressions of 𝜂 and 𝜁 become as follows. 

𝜂 = 𝑎
𝑐

𝑐
𝑦 = 𝑎𝑦  and  𝜁 = 𝑎

𝑐

𝑐
𝑧 = 𝑎𝑧 

Further, in the above relations, the function ∅(𝑣) has been taken as follows. 

∅(𝑣) = 𝑎
𝑐

√𝑐2 − 𝑣2
= 𝑎𝛽 

When the above correction is applied, one gets  ∅(𝑣) = 𝑎
𝑐

𝑐
= 𝑎. 

Therefore, to correct the above-mentioned 4 relations, one has to multiply the RHS by 𝛽. On doing so, one 

gets, 

𝜏 = ∅(𝑣)𝛽2(𝑡 − 𝑣𝑥 𝑐2⁄ ), 

𝜉 = ∅(𝑣)𝛽2(𝑥 − 𝑣𝑡), 

𝜂 = ∅(𝑣)𝛽𝑦, 

𝜁 = ∅(𝑣)𝛽𝑧, 

--------------------------------------------------------------------------------------------------------------------------  

Notes: 

The derivation goes on further to find out the value of ∅(𝑣) which turns out to be 1.  

--------------------------------------------------------------------------------------------------------------------------- 

Observations 4: 

When the calculated value of ∅(𝑣) as 1 is substituted, the relations become as follows. 



𝜏 = 𝛽2(𝑡 − 𝑣𝑥 𝑐2⁄ ), 

𝜉 = 𝛽2(𝑥 − 𝑣𝑡), 

𝜂 = 𝛽𝑦, 

𝜁 = 𝛽𝑧, 

These are different from the Lorentz transformation relations and also cannot be the targeted relations, as 

these would not conform to constancy of light speed 𝑐 in the moving frame. 

Thus the assumptions made for transformation of coordinates and times fail to get the Lorentz 

transformation. 

-------------------------------------------------------------------------------------------------------------------------- 

 

Does it mean that the Lorentz Transformation are Incorrect? 

No. The above exercise is only a failed attempt to derive the Lorentz transformation for light by kinematics, 

which has otherwise been established by electrodynamics. However, these relations for events other than 

those of light are not yet derived, though used universally. The same Lorentz transformation relations can be 

derived for such events too, but with a different postulate/assumption. 

Alternative Methods: 

1. Einstein’s 1916 Book: 

Annexure I of the book also presents a derivation by kinematics. However, the derivation starts with 

building up equations (1) to (5) for a moving light signal, but soon thereafter digresses to apply the set of 

equations (5) on other-than-light objects such as origin of the moving frame, meter-rods and clocks placed in 

the stationary and moving frames etc. 

Thus, this derivation too is not correct, and therefore, is unsuitable for adoption. 

 

2. A New Derivation Based on Reciprocity of Velocity: 

Two of Einstein’s derivations of the Lorentz transformation relations by kinematics are found to be 

incorrect, as explained above. On the other hand, by application of the principle of velocity reciprocity 

between the two frames, it is possible to achieve the relations by kinematics. 

 

The same is presented below [2]. 

 

The following fig.1 may be referred. 

 



 

Fig.1 

The point A is the event which may be of a moving light signal or any arbitrary distance-time set. So, it 

is shown merely as (𝑥, 𝑡) in the non-primed frame and as (𝑥′, 𝑡′) in the primed frame. In case of light, the 

two parameters of the event are related as (𝑥 = 𝑐𝑡) and (𝑥′ = 𝑐𝑡′) respectively. 

The points O and O’ are the locations of origins of the non-primed and the primed frames respectively, 

which are in relative motion with respect to each other with a uniform relative velocity 𝑣 in the direction 

of location of the event A from origin O i.e. 𝑣 is along the line OO’A. At time 𝑡 = 𝑡′ = 0, both the 

origins were coincident, and at the same time, one of the frames starts its motion. Either of O and O’ 

could be taken as moving toward A, along the line OO’A. In the instant case, however, O’ is considered 

to be so. 

Both the diagrams show the locations of O, O’ and A at a particular time 𝑡 after the start. 

The top one represents O as stationary and O’ as moving, with the observer at O watching O’ and A. 

Similarly, the bottom one represents O’ as stationary and O as moving in the opposite direction, with the 

observer at O’ watching O and A. 

𝑥 is the distance of the event A at time 𝑡 in the non-primed frame, and similarly, 𝑥′ is the corresponding 

distance of the event A at time 𝑡′ in the primed frame. 

Both the representations are equally correct and interchangeable, by the essence of relativity i.e. 

reciprocity. 

Applying classical kinematics, one may write the following relations for the two cases respectively. 

O′A = 𝑥′ = 𝑥 − 𝑣𝑡
OA = 𝑥 = 𝑥′ + 𝑣𝑡′

} 

However, according to the Special Relativity, the distance and time in the moving frame are so modified 

that these conform to the postulate of constancy of light speed (in vacuum) in all inertial frames, and/or 

to the Lorentz Transformation Condition. 

Therefore, a bridging parameter, in the form of a constant, need to be applied to both the relations to 

strike conformity. 

 

Let 𝑎 be such a constant to be applied to both, as follows. 

 

𝑥′ = 𝑎(𝑥 − 𝑣𝑡)

𝑥 = 𝑎(𝑥′ + 𝑣𝑡′)
} . . . . . (1) 

 

On separating 𝑡′ and 𝑡, one-by-one, from the above two relations (1), one gets the following. 

 



𝑡′ = 𝑎 [𝑡 − (1 −
1

𝑎2
)
𝑥

𝑣
]

𝑡 = 𝑎 [𝑡′ + (1 −
1

𝑎2
)
𝑥′

𝑣
]
} . . . . . (2) 

 

 

Since both the frames are inertial, the postulate stipulates that 𝑥 = 𝑐𝑡 as well as 𝑥′ = 𝑐𝑡′.  
 

 

Using the above relations (1) and (2), in conjunction with the postulate, separately in the two frames i.e. 

𝑥 = 𝑐𝑡 and 𝑥′ = 𝑐𝑡′, let us proceed as follows, on two separate threads (columns of the following table). 

 

𝑥′ = 𝑐𝑡′ 𝑥 = 𝑐𝑡 
Substitute the expressions of 𝑥′ and 𝑡′ from 

relations (1) and (2) above to get 

𝑎(𝑥 − 𝑣𝑡) = 𝑐 (𝑎 [𝑡 − (1 −
1

𝑎2
)
𝑥

𝑣
]) 

Substitute the expressions of 𝑥 and 𝑡 from 

relations (1) and (2) above to get 

𝑎(𝑥′ + 𝑣𝑡′) = 𝑐 (𝑎 [𝑡′ + (1 −
1

𝑎2
)
𝑥′

𝑣
]) 

Substitute 𝑥 with 𝑐𝑡 to get 

𝑎(𝑐𝑡 − 𝑣𝑡) = 𝑐 (𝑎 [𝑡 − (1 −
1

𝑎2
)
𝑐𝑡

𝑣
]) 

Substitute 𝑥′ with 𝑐𝑡′ to get 

𝑎(𝑐𝑡′ + 𝑣𝑡′) = 𝑐 (𝑎 [𝑡′ + (1 −
1

𝑎2
)
𝑐𝑡′

𝑣
]) 

 

Divide both the sides of eq. by 𝑐𝑡 to get 

 

𝑎 (1 −
𝑣

𝑐
) = 𝑎 [1 − (1 −

1

𝑎2
)
𝑐

𝑣
] 

Divide both the sides of eq. by 𝑐𝑡′ to get 

 

𝑎 (1 +
𝑣

𝑐
) = 𝑎 [1 + (1 −

1

𝑎2
)
𝑐

𝑣
] 

Or, 

1 −
𝑣

𝑐
= 1 − (1 −

1

𝑎2
)
𝑐

𝑣
 

Or, 

1 +
𝑣

𝑐
= 1 + (1 −

1

𝑎2
)
𝑐

𝑣
 

Or, 

𝑎 =
1

√1 −
𝑣2

𝑐2

= 𝛾 

 

𝑎 =
1

√1 −
𝑣2

𝑐2

= 𝛾 

Substitute the above value of 𝑎 in relations 

(1) and (2), and replace 𝑎 with 𝛾 to get 

 

𝑥′ = 𝛾(𝑥 − 𝑣𝑡)

𝑡′ = 𝛾 (𝑡 −
𝑣𝑥

𝑐2
)
} 

𝑥 = 𝛾(𝑥′ + 𝑣𝑡′)

𝑡 = 𝛾 (𝑡′ +
𝑣𝑥′

𝑐2
)
} 

Substitute the above value of 𝑎 in relations 

(1) and (2), and replace 𝑎 with 𝛾 to get 

 

𝑥′ = 𝛾(𝑥 − 𝑣𝑡)

𝑡′ = 𝛾 (𝑡 −
𝑣𝑥

𝑐2
)
} 

𝑥 = 𝛾(𝑥′ + 𝑣𝑡′)

𝑡 = 𝛾 (𝑡′ +
𝑣𝑥′

𝑐2
)
} 

 

 

Thus the Lorentz transformation is achieved for both the frames separately, by the new 

method. 

 

Conclusion: 

The article shows as to how Einstein, in his 1905 paper, derived the Lorentz transformation by 

kinematics, with a mistake which has remained unnoticed by the Physics community. 



His next attempt in his 1916 book is also riddled with mistakes, which have been pointed out briefly in 

the article. 

The mistakes, however, do not undermine the validity of the Lorentz transformation, which has been 

established beyond doubt for light, by electrodynamics. 

The essence of relativity i.e. reciprocity of the relative velocity between the two frames has been shown 

to be strong enough to throw out the Lorentz transformation by kinematics, in both the frames 

individually. 
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