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An	Extension	to	Fermat's	Pythagorean	Triangle	Area	Proof,		
and	Fermat's	Last	Theorem	

Richard	Kaufman	(rdkaufman01	at	gmail	dot	com)	

Abstract. Pierre	de	Fermat	proved	that	the	area	of	a	Pythagorean	triangle	is	not	a	
square.	Here	we	extend	his	result	for	Pythagoran	triangles	to	consider	cubic	integer	
areas	and	higher	power	areas.	We	show	how	each	such	power	𝑘	immediately	leads	
to	a	Fermat’s	equation	𝑎k	+	𝑏k	=	𝑐k	for	integer	𝑘	>	2	and	positive	integers	𝑎,	𝑏,	and	𝑐.	
Using	only	elementary	results,	we	show	that	a	Pythagorean	triangle	area	is	not	a	
cube.	Using	non-elemantary	results	from	Darmon	and	Merel,	we	can	extend	
Fermat’s	Pythagorean	triangle	area	result	to	show	that	these	areas	cannot	be	higher	
powers	either.	The	results	from	Darmon	and	Merel	are	an	alternative	to	using	
Andrew	Wiles	more	complex	result	for	Fermat	Last	Theorem	to	establish	the	same	
result	-	using	the	impossibility	of	the	Fermat	equations	𝑎k	+	𝑏k	=	𝑐k.	Based	on	
equations	derived	in	this	paper,	we	may	wonder	if	some	of	these	elementary	results	
could	have	been	known	to	Fermat	himself.	That	is,	could	Fermat’s	proof	that	the	
area	of	a	Pythagorean	triangle	is	not	a	square	have	helped	him	to	envision	what	we	
have	come	to	know	as	Fermat	equations	and	Fermat’s	Last	Theorem? 

1.	INTRODUCTION	

A	Pythagorean	triangle	is	a	right	triangle	with	positive	integer	sides.	In	the	17th	

century,	Pierre	de	Fermat	proved	that	the	area	of	a	Pythagorean	triangle	is	not	an	

integer	squared.	A	version	of	this	proof	by	Stillwell	[1]	uses	the	method	of	infinite	

descent,	which	we	show	in	this	section	and	use	in	the	next	section.	

A	Pythagorean	triangle	with	positive	integer	sides	𝐴	and	𝐵	and	hypotenuse	𝐶	obeys	

the	equation	𝐴! + 𝐵! = 𝐶!.	Without	loss	of	generality,	the	Pythagorean	triples	𝐴,	𝐵,	

and	𝐶	are	positive	integers	that	can	be	put	into	lowest	terms.	In	other	words,	they	

are	relatively-prime,	so	no	two	of	the	integers	have	a	common	factor	greater	than	1.	

Primitive	triples	𝐴,	𝐵,	and	𝐶	follow	Euclid’s	formula:	

𝐴 = 𝑚! − 𝑛!	
(1)	

𝐵 = 2𝑚𝑛	
(2)	

𝐶 = 𝑚! + 𝑛!	
(3)	
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These	formulas	show	that	𝐵	is	even,	so	𝐴	and	𝐶	are	odd.	The	positive	integers	𝑚	and	

𝑛	have	no	common	factor:	for	otherwise,	𝐴,	𝐵,	and	𝐶	would	share	the	common	factor	

(twice)	and	a	contradiction	would	result.	[2,3]	Also,	𝑚 > 𝑛 ≥ 1.	Finally,	𝑚	and	𝑛	

have	different	parity,	so	one	is	even,	and	the	other	is	odd.	Next,	Euclid’s	formulas	are	

used	for	the	area	of	a	Pythagorean	triangle.	

Fermat	proved	that	the	area	of	a	Pythagorean	triangle	is	not	an	integer	squared.	[4,	

p.13]	Here	we	outline	the	proof	shown	by	Stillwell.	[1]	Without	loss	of	generality,	a	

Pythagorean	triangle	given	by	the	equation	𝐴! + 𝐵! = 𝐶!	has	𝐴,	𝐵,	and	𝐶	that	are	

primitive	Pythagorean	triples.	The	area	of	the	Pythagorean	triangle	is	given	by:	

𝐴𝐵
2 = 𝑚𝑛(𝑚! − 𝑛!) = 𝑚𝑛(𝑚 + 𝑛)(𝑚 − 𝑛)	

(4)	

Since	𝑚	and	𝑛	have	no	common	factor,	then	none	of	𝑚,	𝑛,	𝑚 + 𝑛,	𝑚 − 𝑛	have	a	

common	factor.		

Suppose,	for	the	sake	of	later	contradiction,	that	the	area	of	a	Pythagorean	triangle	

was	a	square.	Then	each	of	𝑚,	𝑛,	𝑚 + 𝑛,	𝑚 − 𝑛	would	itself	be	a	square.	Let	𝑚 = 𝑟!,	

𝑛 = 𝑠!,	𝑚 + 𝑛 = 𝑡!,	and	𝑚 − 𝑛 = 𝑢!,	for	relatively-prime	positive	integers	𝑟,	𝑠,	𝑡,	𝑢	

(i.e.,	𝑢 > 0	since	𝑚 > 𝑛 ≥ 1).	Multiplying	𝑚 + 𝑛	by	𝑚 − 𝑛	gives	another	square:	

(𝑚 + 𝑛)(𝑚 − 𝑛) = 𝑚! − 𝑛! = 𝑡!𝑢!.	So	𝑚! = (𝑡𝑢)! + 𝑛!	shows	that	𝑛,	𝑡𝑢,	and	𝑚	are	

another	primitive	Pythagorean	triple.	Here	it	is	clear	that	𝑡𝑢	is	odd,	since	(𝑡𝑢)! = 𝐴,	

which	was	odd	in	Eq.	(1).		Euclid’s	formula	now	shows	that:	𝑡𝑢 = 𝑚"
! − 𝑛"!,		𝑛 =

2𝑚"𝑛",	and	𝑚 = 𝑚"
! + 𝑛"!,	where	𝑚"	and	𝑛"	are	relatively-prime	positive	integers.		

By	simple	substitution,	the	last	equation	is	𝑟! = 𝑚"
! + 𝑛"!.	Here	𝑛",	𝑚",	and	𝑟	are	yet	

another	primitive	Pythagorean	triple.	The	area	of	this	Pythagorean	triangle	is	

𝑚"𝑛"/2,	or	(2𝑚"𝑛")/4 = 𝑛/4 = 𝑠!/4.	So,	the	area	of	this	Pythagorean	triangle,	𝑠!/4,	
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is	a	square	that	is	also	smaller	than	the	area	of	the	original	Pythagorean	triangle,	

𝐴𝐵/2 = (𝑡𝑢)!(2𝑚𝑛)/2 = (𝑡𝑢)!(𝑟!𝑠!),	which	was	also	a	square.	But	this	new	triple,	

with	the	property	that	it	also	has	an	area	that	is	a	square,	can	then	be	reapplied	in	

an	infinite	descent,	which	is	impossible.	So,	the	area	for	a	Pythagorean	triangle	

cannot	be	a	square.	

	

2.	EXTENSION	OF	THE	AREA	OF	A	PYTHAGOREAN	TRIANGLE	TO	CUBES	AND	

HIGHER	POWERS.			

In	the	previous	section,	we	considered	if	the	area	of	a	Pythagorean	triangle	(i.e.,	

Area	⊿)	was	a	squared	integer.	In	this	section,	we	consider	if	the	area	of	a	

Pythagorean	triangle	was	a	cubed	integer	or	higher	power.	In	other	words:		

Area	⊿ = 𝑤# ,	for	positive	integer	𝑤	and	integer	𝑘 > 2.	

As	before,	Pythagorean	triple	with	𝐴 = (𝑚! − 𝑛!),	𝐵 = 2𝑚𝑛,	and	𝐶 = 𝑚! + 𝑛!	

corresponds	to	a	Pythagorean	triangle.	The	area	of	a	Pythagorean	triangle	is	given	

by	Eq.	(4),	$%
!
= 𝑚𝑛(𝑚 + 𝑛)(𝑚 − 𝑛),	and	none	of	𝑚,	𝑛,	𝑚 + 𝑛,	𝑚 − 𝑛	have	a	common	

factor.			

Suppose,	that	Area	⊿ = 𝑤# ,	for	positive	integer	𝑤	and	integer	𝑘 ≥ 2.	From	Eq.	(4),	

then	each	of	𝑚,	𝑛,	𝑚 + 𝑛,	𝑚 − 𝑛	would	itself	be	a	power	of	𝑘.	Let	𝑚 = 𝑟# ,	𝑛 = 𝑠# ,	

𝑚 + 𝑛 = 𝑡# ,	and	𝑚 − 𝑛 = 𝑢# ,	for	relatively-prime	positive	integers	𝑟,	𝑠,	𝑡,	and	𝑢.	

Then	Area	⊿ = 𝑟#𝑠#𝑡#𝑢# .		

By	simple	substitution,	𝑚 + 𝑛 = 𝑟# + 𝑠# = 𝑡# 	and	𝑚 − 𝑛 = 𝑟# − 𝑠# = 𝑢# ,	and	we	

have	the	following	two	equations,	respectively:	

𝒓𝒌 + 𝒔𝒌 = 𝒕𝒌	
(5)	
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𝒓𝒌 − 𝒔𝒌 = 𝒖𝒌	
(6)	

Each	resembles	a	Fermat	equation	for	integer	𝑘 > 2,	where	𝑟,	𝑠,	𝑡,	and	𝑢	are	

relatively-prime	positive	integers.	

Yet	another	Fermat	equation	arises	using	𝐴 = 𝑚! − 𝑛! = (𝑚 + 𝑛)(𝑚 − 𝑛) = 𝑡#𝑢# ,	

whereby	𝐴 = 𝑚! − 𝑛! = (𝑟#)! − (𝑠#)! = (𝑟# + 𝑠#)(𝑟# − 𝑠#) = (𝑡𝑢)# .	Note	that	

since	𝐴	is	odd	per	Eq.	(1),	then	𝑡𝑢	is	odd.	Here	the	Fermat	equation	is:	

(𝒕𝒖)𝒌 + (𝒔𝟐)𝒌 = (𝒓𝟐)𝒌	
(7)	

which	is	not	a	multiple	of	Eq.	(5)	or	(6).		

Adding	Eq.	(5)	and	(6),	then:		

𝒕𝒌 + 𝒖𝒌 = 𝟐𝒓𝒌	
(8)	

So,	we	see	that	for	integer	𝑘 > 2,	we	have	a	set	of	Fermat	Equations	shown	by	the	

last	four	equations.	

We	also	know	from	elementary	methods	[4,	p. 34.]	that	Eq.	(8),	𝑡# + 𝑢# = 2𝑟# ,	has	

no	integer	solutions	when	𝑘 = 3	and	𝑡,	𝑢,	and	𝑟	are	relatively-prime.	Since	the	case	

of	𝑘 = 3	is	impossible,	then	we	know	that	𝒓𝟑 + 𝒔𝟑 ≠ 𝒕𝟑	and	Area	⊿ ≠ 𝑤)	for	positive	

integer	𝑤.	So,	the	area	of	a	Pythagorean	triangle	cannot	be	a	cube.	

	

3.	FURTHER	RESULTS.			

In	the	last	section,	we	showed	equations	that	would	result	from	the	area	of	a	

Pythagorean	triangle	being	a	cube	or	higher	power.		Specifically,	this	included	Eq.	

(8),	𝒕𝒌 + 𝒖𝒌 = 𝟐𝒓𝒌,where	𝑘 > 2.	However,	a	non-elementary	paper	by	Darmon	and	

Merel5	(see	their	Main	Theorem	1)	shows	that	the	equation	𝒕𝒌 + 𝒖𝒌 = 𝟐𝒓𝒌	“has	no	

non-trivial	primitive	solutions	when”	integer	𝑘 ≥ 3.	



	 5	

This	means	that	the	Eq.	(5),	𝒓𝒌 + 𝒔𝒌 = 𝒕𝒌,	where	𝑘 > 2	cannot	exist,	since	it	was	used	

to	derive	Eq.	(8).	

So,	we	can	use	results	from	Darmon	and	Merel,	as	opposed	to	Andrew	Wiles6	more	

elaborate	proof	of	Fermat’s	Last	Theorem,	to	show	that	Fermat	Equations	cannot	

result	from	the	area	of	a	Pythagorean	triangle.		Therefore	the	Area	⊿ ≠ 𝑤# ,	for	

positive	integer	𝑤	and	integer	𝑘 > 2.	This	is	an	extension	of	Fermat’s	Pythagorean	

triangle	area	proof	to	cubic	integer	areas	and	higher	powers.	

Although	non-elementary	results	were	cited	in	this	section,	it	is	still	possible	that	

there	are	additional	elementary	results	(such	as	indicated	from	the	Fermat	

Equations	from	Section	2	or	the	Appendix)	that	remain	to	be	discovered.	

	

4.	FINAL	REMARKS	

There	is	a	striking	similarity	between	Fermat’s	proof	that	the	Pythagorean	triangle	

has	no	square	area	and	the	Fermat	equations	arising	from	considering	higher	

powers.	We	might	wonder	if	this	is	how	Fermat	first	envisioned	what	came	to	be	

known	as	Fermat’s	Last	Theorem.	Could	he	have	had	some	further	insight	into	the	

elementary	equations	shown	here?		
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APPENDIX	(Note	the	Appendix	can	be	drastically	changed	or	removed)	

This	appendix	is	included	for	the	interested	reader.	It	shows	some	other	results	

developed	during	this	paper	that	could	lead	to	additional	elementary	results	for	

Fermat’s	Last	Theorem,	perhaps	by	an	infinite	descent	argument.		

We	first	note	some	relationships	of	the	right	triangle,	shown	by	DiDomenico	[7,	

p.77]	that	will	be	used.	Every	triangle	has	an	incircle	with	an	inradius	R,	such	as	

shown	in	Figure	2	for	the	right	triangle	with	sides	𝐴 = 𝑋 + 𝑅	and	𝐵 = 𝑅 + 𝑍,	and	

hypotenuse	𝐶 = 𝑋 + 𝑍.	

	

	

Figure	2:	Right	triangle	with	sides	𝐴 = 𝑋 + 𝑅	and	𝐵 = 𝑅 + 𝑍,	and	hypotenuse	𝐶 =
𝑋 + 𝑍.	The	triangle	has	an	incircle	with	inradius	𝑅.	

 

The sides of the triangle can be used to determine the inradius 𝑅 = (+,-),(-,/)0(+,/)
!

=

(𝐴 + 𝐵 − 𝐶)/2. DiDomenico showed that the right triangle’s area is $%
!
= 𝑋𝑍. 

To	establish	an	elementary	proof	of	Fermat’s	Last	Theorem,	it	would	be	sufficient	to	

show	that	𝑘 = 𝑝,	an	odd	prime,	would	show	that	the	Fermat	equation,	𝑎# + 𝑏# = 𝑐# ,	
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was	not	possible	for	integer	𝑘 > 2	and	positive	integers	𝑎,	𝑏,	and	𝑐.	This	is	because	it	

has	been	proven	for	exponent	4,	and	any	other	exponent	could	be	rewritten	with	

odd	prime	exponent	𝑝,	such	that	(𝑎1)2 + (𝑏1)2 = (𝑐1)2,	for	positive	integer	𝑤.	

Therefore,	we	consider	a	Pythagorean	triangle	to	have	Area	⊿ = 𝑤2,	for	positive	

integer	𝑤	and	odd	prime	𝑝.	

As	discussed	in	previous	papers	[8,9],	Fermat’s	equation	𝑎2 + 𝑏2 = 𝑐2	for	odd	prime	

𝑝	would	result	in	an	acute	triangle	with	sides	𝑎,	𝑏,	and	𝑐.	The	acute	triangle’s	area,	

when	squared,	would	be	a	positive	integer	(note	that	this	does	say	that	the	area	

itself	is	a	square).	In	addition,	it	was	shown	that	the	Fermat	equation	𝑎2 + 𝑏2 = 𝑐2	

could	be	rewritten	with	𝑎 = 𝑥 + 𝑦,	𝑏 = 𝑦 + 𝑧,	and	𝑐 = 𝑥 + 𝑧	as:	

(𝑥 + 𝑦)2 + (𝑦 + 𝑧)2 = (𝑥 + 𝑧)2	
(9)	

	
Here,	𝑥,	𝑦,	and	𝑧	are	positive	integers,	and	𝑦 = (𝑎 + 𝑏 − 𝑐)/2	is	divisible	by	odd	

prime	𝑝.	The	Pythagorean	triangle	with	Area	⊿ = 𝑤2	was	previously	shown	to	have	

sides	𝐴 = (𝑡𝑢)2,	𝐵,	𝐶	such	that	𝐴! + 𝐵! = 𝐶!.	Equation	(7)	show	that	(𝑡𝑢)2 +

(𝑠!)2 = (𝑟!)2	,	which	corresponds	to	an	acute	triangle	with	a	squared	area	that	is	an	

integer	(discussed	in	the	previous	paragraph)	with	integer	sides	𝑡𝑢,	𝑠!,	and	𝑟!.	

Figure	3	illustrates	this:		
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Figure	3:	Illustration	of	a	Pythagorean	triangle	with	positive	integer	sides	𝐴 = (𝑡𝑢)2,	
𝐵,	𝐶	and	𝐴𝑟𝑒𝑎" ∈ ℤ,;	Acute	triangle	with	positive	integer	sides	𝑡𝑢,	𝑠!,	𝑟!	and	

𝐴𝑟𝑒𝑎!! ∈ ℤ,.			
(Not	to	scale)	𝑝	is	an	odd	prime.	

	

Using	relationships	for	a	right	triangle,	then	inradius	𝑅 = $,%03
!

=

(45)!,(!67)086",7"9
!

= (45)!,(!:!;!)08:"!,;"!9
!

.	Equation	(7)	can	be	substituted	for	the	

first	term	in	the	numerator	to	give:	𝑅 = 8:"!0;"!9,(!:!;!)08:"!,;"!9
!

= 𝑠2(𝑟2 − 𝑠2).	So,	

Eq.	(6)	shows	that	the	inradius	is:		

𝑅 = (𝑠𝑢)2	
(10)	

	
This	means	that	the	inradius	of	the	right	triangle	is	a	power	of	p.		

Also,	since	𝐴 = 𝑋 + 𝑅 = (𝑡𝑢)2 = 𝑋 + (𝑠𝑢)2,	then	𝑋 = (𝑡𝑢)2 − (𝑠𝑢)2.	Then,	from	Eq.	

(5),		𝑋 = 𝑢2(𝑡2 − 𝑠2) = 𝑢2𝑟2,	so:	

𝑋 = (𝑢𝑟)2	
(11)	

	

𝐶	

𝐴 = (𝑡𝑢)2	

𝑡𝑢	

𝑠!	 𝑟!	

𝐵	
𝐴𝑟𝑒𝑎"	

𝐴𝑟𝑒𝑎!	



	 9	

The	Area	⊿ = 𝑟2𝑠2𝑡2𝑢2 = 𝑋𝑍,	per	DiDomenico,	so	𝑍 = :!;!4!5!

+
= :!;!4!5!

5!:!
= 𝑠2𝑡2:	

𝑍 = (𝑠𝑡)2	
(12)	

	
Since	the	hypotenuse	of	the	right	triangle	is	𝐶 = 𝑋 + 𝑍,	then	we	have	that	𝐶 =

(𝑢𝑟)2 + (𝑠𝑡)2.	

There	are	other	results	that	arise	from	considering	when	the	sides	of	a	Pythagorean	

Triangle	are	not	divisible	by	odd	prime	𝒑.	In	this	section,	we	show	that	Eq.	(6),	𝑟2 =

𝑢2 + 𝑠2,	which	clearly	has	smaller	primitive	solutions	than	Eq.	(5)	,	𝑟2 + 𝑠2 = 𝑡2,	

still	does	not	have	the	smallest	possible	solutions	for	a	Fermat	equation	with	odd	

prime	𝑝,	when	relatively-prime	positive	integers	𝑟,	𝑠,	𝑡,	and	𝑢	are	not	divisible	by	𝑝.		

We	begin	with	the	following	known	elementary	result	[4,	pp. 100-101]	that	are	

adapted	to	a	notation	useful	to	this	paper:	

Theorem	1:	

Let	𝑝	be	an	odd	prime	where	𝑑2 + 𝑒2 = 𝑓2,	with	relatively-prime	positive	

integers	𝑑,	𝑒,	and	𝑓,	which	are	not	divisible	by	𝒑.	Then:	

𝑓 − 𝑒 = 𝑑"
2,	 𝑑2/(𝑓 − 𝑒) = 𝑑!

2,	 𝑑 = 𝑑"𝑑!	

𝑓 − 𝑑 = 𝑒"
2,		 𝑒2/(𝑓 − 𝑑) = 𝑒!

2,	 𝑒 = 𝑒"𝑒!	

𝑑 + 𝑒 = 𝑓"
2,	 𝑓2/(𝑑 + 𝑒) = 𝑓!

2,	 𝑓 = 𝑓"𝑓!	

where	𝑑",	𝑑!,	𝑒",	𝑒!,	𝑓",	𝑓!	are	pairwise	relatively-prime	positive	integers,	and	𝑑!,	

𝑒!,	𝑓!	are	odd	and	greater	than	1.	Also,	it	is	noted	in	the	text	that	𝑑"
2 + 𝑒"

2 ≠ 𝑓"
2.	

We	now	use	Theorem	1,	where	we	assume	that	none	of	𝒓,	𝒔,	𝒕,	and	𝒖	are	divisible	

by	𝒑.	

Eq.	(5):	

𝑡2 − 𝑠2 = 𝑟2,	 𝑡 − 𝑠 = 𝑟"
2,	 𝑟2/(𝑡 − 𝑠) = 𝑟!

2,	 𝑟 = 𝑟"𝑟!	
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𝑡2 − 𝑟2 = 𝑠2,	 𝑡 − 𝑟 = 𝑠"
2,	 𝑠2/(𝑡 − 𝑟) = 𝑠!

2,	 𝑠 = 𝑠"𝑠!	

𝑟2 + 𝑠2 = 𝑡2,	 𝑟 + 𝑠 = 𝑡"
2,	 𝑡2/(𝑟 + 𝑠) = 𝑡!

2,	 𝑡 = 𝑡"𝑡!	

where	𝑟",	𝑟!,	𝑠",	𝑠!,	𝑡",	𝑡!	are	pairwise	relatively-prime	positive	integers,	and	𝑟!,	𝑠!,	

𝑡!	are	odd	and	greater	than	1.		

Eq.	(6):	

𝑟2 − 𝑠2 = 𝑢2,	 𝑟 − 𝑠 = 𝑢"
2,	 𝑢2/(𝑟 − 𝑠) = 𝑢!

2,	 𝑢 = 𝑢"𝑢!	

𝑟2 − 𝑢2 = 𝑠2,	 𝑟 − 𝑢 = 𝑠)
2,	 𝑠2/(𝑟 − 𝑢) = 𝑠<

2,	 𝑠 = 𝑠)𝑠<	

𝑢2 + 𝑠2 = 𝑟2,	 𝑢 + 𝑠 = 𝑟)
2,	 𝑟2/(𝑢 + 𝑠) = 𝑟<

2,	 𝑟 = 𝑟)𝑟<	

where	𝑢",	𝑢!,	𝑠),	𝑠<,	𝑟),	𝑟<	are	pairwise	relatively-prime	positive	integers,	and	𝑢!,	

𝑠<,	𝑟<	are	odd	and	greater	than	1.	Note	that	we	do	not	assume	that	𝑠" = 𝑠),	𝑠! = 𝑠<,	

𝑟" = 𝑟),	and	𝑟! = 𝑟<,	as	discussed	further	below.	

Using	these	equations	for	(𝑢 + 𝑠) + (𝑟 − 𝑢) = (𝑟 + 𝑠),	then:	
	

𝑟)
2 + 𝑠)

2 = 𝑡"
2	

(13)	

Also,	(𝑡 − 𝑠) − (𝑡 − 𝑟) = (𝑟 − 𝑠),	so:	

𝑟"
2 − 𝑠"

2 = 𝑢"
2	

(14)	

Suppose	earlier	that	it	was	assumed	that	𝑠" = 𝑠),	𝑠! = 𝑠<,	𝑟" = 𝑟),	and	𝑟! = 𝑟<.	Then,	

Eq.	(13)	would	become	𝑟"
2 + 𝑠"

2 = 𝑡"
2,	which	would	be	a	contradiction	of	𝑟"

2 + 𝑠"
2 ≠ 𝑡"

2	

from	Theorem	1	for	Eq.	(5),	𝑟2 + 𝑠2 = 𝑡2.	

It	is	evident	from	Eq.	(13)	that	𝑡" > 1.	The	closest	that	𝑡"	and	𝑠)	could	be	is	𝑡" = 𝑠) +

1,	in	which	case	𝑡"
2 − 𝑠)

2 = (𝑠) + 1)2 − 𝑠)
2 = 𝑟)

2 > 1.	So,	𝑟) > 1.	The	same	argument	

shows	that	𝑠) > 1.	A	similar	argument	can	be	applied	to	Eq.	(14)	to	show	that	𝑢",	𝑟",	

𝑠"	are	all	greater	than	1.	So,	we	have	that	𝑟",	𝑟!,	𝑠",	𝑠!,	𝑡",	𝑡!	are	pairwise	relatively-
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prime	positive	integers	all	greater	than	1.		And	𝑢",	𝑢!,	𝑠),	𝑠<,	𝑟),	𝑟<	are	pairwise	

relatively-prime	positive	integers	all	greater	than	1.	

Eq.	(13),	𝑟)
2 + 𝑠)

2 = 𝑡"
2,	provides	for	smaller	primitive	solutions	than	Eq.	(5),	𝑟2 +

𝑠2 = 𝑡2,	which	can	be	rewritten	as	(𝑟)𝑟<)2 + (𝑠)𝑠<)2 = (𝑡"𝑡!)2.	Since	both	equations	

are	valid,	then	we	might	suspect	that	they	can	be	related	by	𝑟< = 𝑠< = 𝑡! = 1,	but	

this	is	not	the	case,	since	they	are	all	greater	than	1.		

Also,	Eq.	(14),	𝑟"
2 − 𝑠"

2 = 𝑢"
2,	provides	for	smaller	primitive	solutions	than	Eq.	(6),	

𝑟2 − 𝑠2 = 𝑢2,	which	can	be	rewritten	as	(𝑟"𝑟!)2 + (𝑠"𝑠!)2 = (𝑢"𝑢!)2.	Since	both	of	

these	equations	are	valid,	then	we	might	suspect	that	they	can	be	related	by	𝑟! =

𝑠! = 𝑢! = 1,	but	this	is	not	the	case	again,	since	they	are	all	greater	than	1.	It	is	

possible	that	some	additional	elementary	results	for	Fermat’s	Last	Theorem,	or	even	

an	infinite	descent	argument,	could	still	be	determined,	maybe	by	a	reader	of	this	

paper.	
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