The simple structure of prime numbers

Ihsan Raja Muda Nasution

August 21, 2023

Abstract

The prime numbers have a pseudo-random structure. And this structure is not simple. In this paper, we analyze the behavior of prime numbers. And we diagnose the inner body of the prime numbers.

MSC: 11A41
Keywords: prime numbers, distribution of primes, critical line, structure of primes

1 Introduction

In 1859, Riemann [Rie59] showed that the location of zeros on the critical line implies the distribution of prime numbers. Our goal is to obtain the fundamental structure of primes.

2 The pattern of prime numbers

These below are several patterns of prime numbers.
Theorem 2.1 (Fundamental Theorem of Arithmetic). Every integer $n>1$ can be expressed as a product of primes; this representation is unique, apart from the order in which the factors occur [Bur02].

Theorem 2.2 (Euclid). There are infinitely many primes [Bur02].
Theorem 2.3 (Dirichlet). If a and b are coprime, then the arithmetic progression

$$
a, a+b, a+2 b, a+3 b, \ldots
$$

contains infinitely many primes [Bur02].

Theorem 2.4 (Prime Number Thorem). Let $x \in \mathbf{R}$, then

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=1
$$

where $\pi(x)=\sum_{p \leq x} 1$ [Bur02].
Theorem 2.5 (Bertrand's Postulate). For every integer $n>1$, there is a prime p such that $n<p<2 n$ [Ros05].

The Goldbach's conjecture asserts that every even integer greater than 2 can be written as the sum of two primes [Ros05].

Twin prime conjecture asserts that there are infinitely many pairs of primes p and $p+2$ [Ros05].

3 The axiomatic approach

In this section, we propose the simple characteristics of prime numbers. The set of prime numbers obeys several basic assumptions. Given the number 0,1 , a prime number p, and the set \mathbf{N}. Then
Postulate 3.1. $p \neq 0,1$.
Postulate 3.1 shows the existence of 0 and 1 implicitly. This postulate says that any prime number p does not equal 0 and 1 .
Postulate 3.2. $p^{0}=1$.
Postulate 3.2 shows the connection between the prime number p and 1 . The unit 1 is generated by a prime number p over the number 0 .
Postulate 3.3. $1 \mid p$.
Postulate 3.3 expresses the divisibility of primes over the unit 1. Postulate 3.2 deduces Postulate 3.3; i.e., $\left(p^{0}=1\right) \mid p$.
Postulate 3.4. $(-1)^{p}= \pm 1$.
Postulate 3.4 shows that the number ± 1 depends of the number -1 over any prime number p. Postulate 3.1 deduces Postulate 3.4 by using 0 and 1 ; i.e., given 0 and 1 , then $(0-1)^{p}=(-1)^{p}= \pm 1$.

Postulate 3.5. $p<p+1$.
Postulate 3.5 shows the ordered structure of prime numbers. Postulate 3.1 deduces Postulate 3.5; i.e., given 0 and 1 , then $p+0<p+1$ if and only if $p<p+1$. We see that $p+1$ is the successor of p.
Postulate 3.6. $0^{p} \in \mathbf{N}$.
First postulate of Peano Postulate says that $0 \in \mathbf{N}$. Postulate 3.6 can deduce first postulate of Peano Postulate; i.e., $0^{p}=0 \in \mathbf{N}$.

References

[Bur02] D. M. Burton. Elementary Number Theory. McGraw-Hill, New York, 5th edition, 2002.
[Rie59] B. Riemann. Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsber. Akad. Berlin, pages 671-680, 1859.
[Ros05] K. H. Rosen. Elementary Number Theory and Its Applications. Addison-Wesley, Boston, 5th edition, 2005.

