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Abstract

Inspired by the work of Adhya and Ray, I provide my own proof of
selected theorems and lemmas discussed in [1]. Original theorems should
appear, in due course, in a future article.

Theorem 1. Every singleton set in a µ-T1 strong generalised topological space
is µ-closed.

Proof. All singletons in a singleton set are elements of the power set P(X). This
means that there exist B1, B2 ∈ µ, for each pair x, y ∈ X (with x ̸= y), such
that x ∈ {x}, y /∈ {x} and y ∈ {y}, x /∈ {y}. Because x, y ∈ µ and X ∈ µ, due
to (X,µ) being a strong generalised topological space, ∅ can only be in µ if X
is both µ-closed and µ-open. If each singleton set, {x} ∈ X, is not µ-closed
then X =

⋃
x∈X{x} is not µ-closed. This is a contradiction. Using the same

logic, every singleton set in a µ-T1 strong generalised topological space is also
µ-open.

Theorem 2. A metric space is Lebesgue if and only if every pseudo-Cauchy
sequence having distinct terms clusters in it.

Proof. ( =⇒ ) Let xm and xn both cluster to x. Let d(xm, x) < δ1 when
m ∈ N > k1 and let d(xn, x) < δ2 when n ∈ N > k2. Assume that the function,
f , is uniformly continuous - this means that ∀ϵ ∃ δ > 0 such that if x1 and x2 ∈ X
with d(x1, x2) < δ then d(f(x1), f(x2)) < ϵ ∀x1, x2 ∈ X. Let k = max{k1, k2} -
this means that when n,m > k, d(xn, xm) < d(xm, x) + d(xn, x) < δ1 + δ2 = δ.
Therefore d(f(xn), f(xm)) < f(δ) = ϵ. Allowing f(x) = y implies that both
f(xm) and f(xn) cluster to y.
( ⇐= ) Let, ∀ δ/2 > 0, d(xn, x) < δ/2 ∀n > kx ∈ N. Therefore d(xn, xm) <
d(xn, x) + d(xm, x) < δ/2 + δ/2 = δ ∀n,m ∈ N > kx. Because f is continuous,
this implies that (for f : X → Y such that x 7→ f(x) = y), d(f(xn), f(xm)) < ϵ,
∀ n,m ∈ N > ky (for all x ∈ X). This implies that d(f(xn), f(x)) < ϵ/2
∀n > ky ∈ N. This means that f is also uniformly continuous.

Lemma 3. Let (X, dX) and (Y, dY ) be g-quasi metric spaces of the same index
r. A sequence (xn, yn) is G-Cauchy in (X × Y, dXY ) if and only if (xn) and
(yn) are G-Cauchy in (X, dX) and (Y, dY ) respectively.
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Proof. ( =⇒ ) Let (xn, yn) by G-Cauchy in (X × Y, dXY ). Choose ϵ > r.
Then ∃k ∈ N such that dXY ((xn, yn), (xn+1, yn+1)) < ϵ, ∀n ≥ k. That is
dX(xn, xn+1), dY (yn, yn+1) < ϵ ∀n ≥ k. Then (xn) and (yn) are G-Cauchy in
(X, dX) and (Y, dY ), respectively.
( ⇐= ) Let xn) and (yn) be G-Cauchy in (X, dX) and (Y, dY ), respectively.
Choose ϵ > r. Then ∃k1, k2 ∈ N such that dX(xn, xn+1) < ϵ ∀ n ≥ k1
and dY (yn, yn+1) < ϵ ∀n ≥ k2. Set k =max{k1, k2}. Then dX(xn, xn+1),
dY (yn, yn+1) < ϵ ∀n ≥ k. Hence (xn, yn) is G-Cauchy in (X × Y, dXY ).

Lemma 4. Let (X, dX) and (Y, dY ) be g-quasi metric spaces of the same index
r. A sequence (xn, yn) is pseudo-Cauchy in (X × Y, dXY ) if and only if (xn)
and (yn) are pseudo-Cauchy in (X, dX) and (Y, dY ) respectively.

Proof. ( =⇒ ) Let (xn, yn) by pseudo-Cauchy in (X × Y, dXY ). Choose ϵ > r.
Then ∃k ∈ N such that dXY ((xn, yn), (xn+1, yn+1)) < ϵ, ∀n ≥ k. That is
dX(xp, xq), dY (yp, yq) < ϵ ∀ p, q ≥ k. Then (xn) and (yn) are pseudo-Cauchy in
(X, dX) and (Y, dY ), respectively.
( ⇐= ) Let xn) and (yn) be pseudo-Cauchy in (X, dX) and (Y, dY ), respectively.
Choose ϵ > r. Then ∃k1, k2 ∈ N such that dX(xp, xq) < ϵ ∀ p, q ≥ k1 and
dY (yp, yq) < ϵ ∀ p, q ≥ k2. Set k =max{k1, k2}. Then dX(xp, xq), dY (yp, yq) < ϵ
∀ p, q ≥ k. Hence (xn, yn) is pseudo-Cauchy in (X × Y, dXY ).
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